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Abstract

The Minimum Description Length (MDL) principle selects the model that has the
shortest code for data plus model. We show that for a countable class of models,
MDL predictions are close to the true distribution in a strong sense. The result
is completely general. No independence, ergodicity, stationarity, identifiability,
or other assumption on the model class need to be made. More formally, we show
that for any countable class of models, the distributions selected by MDL (or MAP)
asymptotically predict (merge with) the true measure in the class in total variation
distance. Implications for non-i.i.d. domains like time-series forecasting, discrim-
inative learning, and reinforcement learning are discussed.

1 Introduction

The minimum description length (MDL) principle recommends to use, among competing models,
the one that allows to compress the data+model most [Grü07]. The better the compression, the
more regularity has been detected, hence the better will predictions be. The MDL principle can be
regarded as a formalization of Ockham’s razor, which says to select the simplest model consistent
with the data.

Multistep lookahead sequential prediction. We consider sequential prediction problems, i.e. hav-
ing observed sequence x≡(x1,x2,...,x`)≡x1:`, predict z≡(x`+1,...,x`+h)≡x`+1:`+h, then observe
x`+1 ∈X for `≡ `(x) = 0,1,2,.... Classical prediction is concerned with h= 1, multi-step looka-
head with 1<h<∞, and total prediction with h=∞. In this paper we consider the last, hardest
case. An infamous problem in this category is the Black raven paradox [Mah04, Hut07]: Having
observed ` black ravens, what is the likelihood that all ravens are black. A more computer science
problem is (infinite horizon) reinforcement learning, where predicting the infinite future is necessary
for evaluating a policy. See Section 6 for these and other applications.

Discrete MDL. Let M = {Q1,Q2,...} be a countable class of models=theories=hypotheses=
probabilities over sequences X∞, sorted w.r.t. to their complexity=codelength K(Qi)=2log2i (say),
containing the unknown true sampling distribution P . Our main result will be for arbitrary measur-
able spaces X , but to keep things simple in the introduction, let us illustrate MDL for finite X .

In this case, we define Qi(x) as the Qi-probability of data sequence x∈X `. It is possible to code x
in logP (x)−1 bits, e.g. by using Huffman coding. Since x is sampled from P , this code is optimal
(shortest among all prefix codes). Since we do not know P , we could select the Q∈M that leads to
the shortest code on the observed data x. In order to be able to reconstruct x from the code we need
to know which Q has been chosen, so we also need to code Q, which takes K(Q) bits. Hence x can
be coded in minQ∈M{−logQ(x)+K(Q)} bits. MDL selects as model the minimizer

MDLx := arg min
Q∈M

{− logQ(x) +K(Q)}

Main result. Given x, the true predictive probability of some “future” event A is P [A|x], e.g. A
could be x`+1:`+h or any other measurable set of sequences (see Section 3 for proper definitions).
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We consider the sequence of predictive measures MDLx[·|x] for `=0,1,2,... selected by MDL. Our
main result is that

MDLx[·|x] converges to P [·|x] in total variation distance for `→∞ with P -probability 1

(see Theorem 1). The analogous result for Bayesian prediction is well-known, and an immediate
corollary of Blackwell&Dubin’s celebrated merging-of-opinions theorem [BD62]. Our primary con-
tribution is to prove the analogous result for MDL. A priori it is not obvious that it holds at all, and
indeed the proof turns out to be much more complex.

Motivation. The results above hold for completely arbitrary countable model classesM. No inde-
pendence, ergodicity, stationarity, identifiability, or other assumption need to be made.

The bulk of previous results for MDL are for continuous model classes [Grü07]. Much has been
shown for classes of independent identically distributed (i.i.d.) random variables [BC91, Grü07].
Many results naturally generalize to stationary-ergodic sequences like (kth-order) Markov. For in-
stance, asymptotic consistency has been shown in [Bar85]. There are many applications violating
these assumptions, some of them are presented below and in Section 6. For MDL to work, P needs
to be inM or at least close to some Q∈M, and there are interesting environments that are not even
close to being stationary-ergodic or i.i.d.

Non-i.i.d. data is pervasive [AHRU09]; it includes all time-series prediction problems like weather
forecasting and stock market prediction [CBL06]. Indeed, these are also perfect examples of non-
ergodic processes. Too much green house gases, a massive volcanic eruption, an asteroid impact,
or another world war could change the climate/economy irreversibly. Life is also not ergodic; one
inattentive second in a car can have irreversible consequences. Also stationarity is easily violated
in multi-agent scenarios: An environment which itself contains a learning agent is non-stationary
(during the relevant learning phase). Extensive games and multi-agent reinforcement learning are
classical examples [WR04].

Often it is assumed that the true distribution can be uniquely identified asymptotically. For non-
ergodic environments, asymptotic distinguishability can depend on the realized observations, which
prevent a prior reduction or partitioning of M. Even if principally possible, it can be practically
burdensome to do so, e.g. in the presence of approximate symmetries. Indeed this problem is the
primary reason for considering predictive MDL. MDL might never identify the true distribution, but
our main result shows that the sequentially selected models become predictively indistinguishable.

For arbitrary countable model classes, the following results are known: The MDL one-step lookahead
predictor (i.e. h= 1) of three variants of MDL converges to the true predictive distribution. The
proof technique used in [PH05] is inherently limited to finite h. Another general consistency result
is presented in [Grü07, Thm.5.1]. Consistency is shown (only) in probability and the predictive
implications of the result are unclear. A stronger almost sure result is alluded to, but the given
reference to [BC91] contains only results for i.i.d. sequences which do not generalize to arbitrary
classes. So existing results for discrete MDL are far less satisfactory than the elegant Bayesian
merging-of-opinions result.

The countability of M is the severest restriction of our result. Nevertheless the countable case
is useful. A semi-parametric problem class

⋃∞
d=1Md with Md = {Qθ,d : θ ∈ IRd} (say) can be

reduced to a countable class M= {Pd} for which our result holds, where Pd is a Bayes or NML
or other estimate of Md [Grü07]. Alternatively,

⋃
dMd could be reduced to a countable class by

considering only computable parameters θ. Essentially all interesting model classes contain such
a countable topologically dense subset. Under certain circumstances MDL still works for the non-
computable parameters [Grü07]. Alternatively one may simply reject non-computable parameters
on philosophical grounds [Hut05]. Finally, the techniques for the countable case might aid proving
general results for continuousM, possibly along the lines of [Rya09].

Contents. The paper is organized as follows: In Section 2 we provide some insights how MDL
works in restricted settings, what breaks down for general countableM, and how to circumvent the
problems. The formal development starts with Section 3, which introduces notation and our main
result. The proof for finite M is presented in Section 4 and for denumerable M in Section 5. In
Section 6 we show how the result can be applied to sequence prediction, classification and regression,
discriminative learning, and reinforcement learning. Section 7 discusses some MDL variations.
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2 Facts, Insights, Problems

Before starting with the formal development, we describe how MDL works in some restricted set-
tings, what breaks down for general countableM, and how to circumvent the problems. For deter-
ministic environments, MDL reduces to learning by elimination, and results can easily be understood.
Consistency of MDL for i.i.d. (and stationary-ergodic) sources is also intelligible. For generalM,
MDL may no longer converge to the true model. We have to give up the idea of model identification,
and concentrate on predictive performance.

Deterministic MDL = elimination learning. For a countable class M = {Q1,Q2,...} of de-
terministic theories=models=hypotheses=sequences, sorted w.r.t. to their complexity=codelength
K(Qi) = 2log2i (say) it is easy to see why MDL works: Each Q is a model for one infinite se-
quence xQ1:∞, i.e. Q(xQ) = 1. Given the true observations x≡xP1:` so far, MDL selects the simplest
Q consistent with xP1:` and for h=1 predicts xQ`+1. This (and potentially other) Q becomes (forever)
inconsistent if and only if the prediction was wrong. Assume the true model is P = Qm. Since
elimination occurs in order of increasing index i, and Qm never makes any error, MDL makes at
most m−1 prediction errors. Indeed, what we have described is just classical Gold style learning
by elimination. For 1<h<∞, the prediction xQ`+1:`+h may be wrong only on xQ`+h, which causes
h wrong predictions before the error is revealed. (Note that at time ` only xP` is revealed.) Hence
the total number of errors is bounded by h·(m−1). The bound is for instance attained on the class
consisting of Qi = 1ih0∞, and the true sequence switches from 1 to 0 after having observed m·h
ones. For h=∞, a wrong prediction gets eventually revealed. Hence each wrong Qi (i <m) gets
eventually eliminated, i.e. P gets eventually selected. So for h=∞ we can (still/only) show that the
number of errors is finite. No bound on the number of errors in terms of m only is possible. For
instance, forM={Q1 = 1∞,Q2 =P = 1n0∞}, it takes n time steps to reveal that prediction 1∞ is
wrong, and n can be chosen arbitrarily large.

Comparison of deterministic↔probabilistic and MDL↔Bayes. The flavor of results carries over
to some extent to the probabilistic case. On a very abstract level even the line of reasoning carries
over, although this is deeply buried in the sophisticated mathematical analysis of the latter. So the
special deterministic case illustrates the more complex probabilistic case. The differences are as
follows: In the probabilistic case, the true P can in general not be identified anymore. Further, while
the Bayesian bound trivially follows from the 1/2-century old classical merging of opinions result
[BD62], the corresponding MDL bound we prove in this paper is more difficult to obtain.

Consistency of MDL for stationary-ergodic sources. For an i.i.d. classM, the law of large num-
bers applied to the random variables Zt := log[P (xt)/Q(xt)] implies 1

`

∑`
t=1Zt→ KL(P ||Q) :=∑

x1
P (x1)log[P (x1)/Q(x1)] with P -probability 1. Either the Kullback-Leibler (KL) divergence is

zero, which is the case if and only if P =Q, or logP (x1:`)−logQ(x1:`)≡
∑`
t=1Z`∼KL(P ||Q)`→

∞, i.e. asymptotically MDL does not select Q. For countable M, a refinement of this argument
shows that MDL eventually selects P [BC91]. This reasoning can be extended to stationary-ergodic
M, but essentially not beyond. To see where the limitation comes from, we present some troubling
examples.

Trouble makers. For instance, let P be a Bernoulli(θ0) process, but let the Q-probability that
xt = 1 be θt, i.e. time-dependent (still assuming independence). For a suitably converging but “os-
cillating” (i.e. infinitely often larger and smaller than its limit) sequence θt→ θ0 one can show that
log[P (x1:t)/Q(x1:t)] converges to but oscillates around K(Q)−K(P ) w.p.1, i.e. there are non-
stationary distributions for which MDL does not converge (not even to a wrong distribution).

One idea to solve this problem is to partitionM, where two distributions are in the same partition
if and only if they are asymptotically indistinguishable (like P and Q above), and then ask MDL
to only identify a partition. This approach cannot succeed generally, whatever particular criterion is
used, for the following reason: Let P (x1)>0 ∀x1. For x1 =1, let P and Q be asymptotically indis-
tinguishable, e.g. P=Q on the remainder of the sequence. For x1 =0, let P andQ be asymptotically
distinguishable distributions, e.g. different Bernoullis. This shows that for non-ergodic sources like
this one, asymptotic distinguishability depends on the drawn sequence. The first observation can lead
to totally different futures.

Predictive MDL avoids trouble. The Bayesian posterior does not need to converge to a single (true
or other) distribution, in order for prediction to work. We can do something similar for MDL. At
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each time we still select a single distribution, but give up the idea of identifying a single distribu-
tion asymptotically. We just measure predictive success, and accept infinite oscillations. That’s the
approach taken in this paper.

3 Notation and Main Result

The formal development starts with this section. We need probability measures and filters for infinite
sequences, conditional probabilities and densities, the total variation distance, and the concept of
merging (of opinions), in order to formally state our main result.

Measures on sequences. Let (Ω :=X∞,F ,P ) be the space of infinite sequences with natural fil-
tration and product σ-field F and probability measure P . Let ω ∈Ω be an infinite sequence sam-
pled from the true measure P . Except when mentioned otherwise, all probability statements and
expectations refer to P , e.g. almost surely (a.s.) and with probability 1 (w.p.1) are short for with
P -probability 1 (w.P .p.1). Let x=x1:`=ω1:` be the first ` symbols of ω.

For countable X , the probability that an infinite sequence starts with x is P (x):=P [{x}×X∞]. The
conditional distribution of an event A given x is P [A|x] :=P [A∩({x}×X∞)]/P (x), which exists
w.p.1. For other probability measures Q on Ω, we define Q(x) and Q[A|x] analogously. General X
are considered at the end of this section.

Convergence in total variation. P is said to be absolutely continuous relative to Q, written

P � Q :⇔ [Q[A] = 0 implies P [A] = 0 for all A ∈ F ]

P and Q are said to be mutually singular, written P⊥Q, iff there exists an A∈F for which P [A]=1
and Q[A]=0. The total variation distance (tvd) between Q and P given x is defined as

d(P,Q|x) := sup
A∈F

∣∣Q[A|x]− P [A|x]
∣∣ (1)

Q is said to predict P in tvd (or merge with P ) if d(P,Q|x)→ 0 for `(x)→∞ with P -probability
1. Note that this in particular implies, but is stronger than one-step predictive on- and off-sequence
convergence Q(x`+1 = a`+1|x1:`)−P (x`+1 = a`+1|x1:`)→ 0 for any a, not necessarily equal ω
[KL94]. The famous Blackwell and Dubins convergence result [BD62] states that if P is absolutely
continuous relative to Q, then (and only then [KL94]) Q merges with P :

If P � Q then d(P,Q|x)→ 0 w.p.1 for `(x)→∞

Bayesian prediction. This result can immediately be utilized for Bayesian prediction. Let M :=
{Q1,Q2,Q3,...} be a countable (finite or infinite) class of probability measures, and Bayes[A] :=∑
Q∈MQ[A]wQ with wQ>0 ∀Q and

∑
Q∈MwQ=1. If the model assumption P ∈M holds, then

obviously P � Bayes, hence Bayes merges with P , i.e. d(P,Bayes|x)→ 0 w.p.1 for all P ∈M.
Unlike many other Bayesian convergence and consistency theorems, no (independence, ergodicity,
stationarity, identifiability, or other) assumption on the model classM need to be made. The analo-
gous result for MDL is as follows:

Theorem 1 (MDL predictions) LetM be a countable class of probability measures on X∞ con-
taining the unknown true sampling distribution P . No (independence, ergodicity, stationarity, iden-
tifiability, or other) assumptions need to be made onM. Let

MDLx := arg min
Q∈M

{− logQ(x) +K(Q)} with
∑
Q∈M

2−K(Q) <∞

be the measure selected by MDL at time ` given x∈X `. Then the predictive distributions MDLx[·|x]
converge to P [·|x] in the sense that

d(P,MDLx|x) ≡ sup
A∈F

∣∣MDLx[A|x]− P [A|x]
∣∣ → 0 for `(x)→∞ w.p.1

K(Q) is usually interpreted and defined as the length of some prefix code for Q, in which
case

∑
Q2−K(Q) ≤ 1. If K(Q) := log2w

−1
Q is chosen as complexity, by Bayes rule Pr(Q|x) =

Q(x)wQ/Bayes(x), the maximum a posteriori estimate MAPx :=argmaxQ∈M{Pr(Q|x)}≡MDLx.
Hence the theorem also applies to MAP. The proof of the theorem is surprisingly subtle and complex
compared to the analogous Bayesian case. One reason is that MDLx(x) is not a measure on X∞.
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Arbitrary X . For arbitrary measurable spaces X , definitions are more subtle, essentially because
point probabilities Q(x) have to be replaced by probability densities relative to some base measure
M , usually Lebesgue for X = IRd, counting measure for countable X , and e.g. M [·] = Bayes[·] for
general X . We have taken care of that all results and proofs are valid unchanged for general X ,
with Q(·) defined as a version of the Radon-Nikodym derivative relative to M . We spare the reader
the details, since they are completely standard and do not add any value to this paper, and space is
limited. The formal definitions of Q(x) and Q[A|x] can be found e.g. in [Doo53, BD62]. Note that
MDLx is independent of the particular choice of M .

4 Proof for Finite Model Class

We first prove Theorem 1 for finite model classesM. For this we need the following Definition and
Lemma:

Definition 2 (Relations between Q and P ) For any probability measures Q and P , let

• Qr+Qs=Q be the Lebesgue decomposition ofQ relative to P into an absolutely continuous
non-negative measure Qr�P and a singular non-negative measure Qs⊥P .

• g(ω) := dQr/dP = lim`→∞[Q(x1:`)/P (x1:`)] be (a version of) the Radon-Nikodym
derivative, i.e. Qr[A]=

∫
A
g dP .

• Ω◦ := {ω :Q(x1:`)/P (x1:`)→0} ≡ {ω :g(ω)=0}.
• ~Ω := {ω :d(P,Q|x)→0 for `(x)→∞}.

It is well-known that the Lebesgue decomposition exists and is unique. The representation of
the Radon-Nikodym derivative as a limit of local densities can e.g. be found in [Doo53, VII§8]:
Z
r/s
` (ω) := Qr/s(x1:`)/P (x1:`) for ` = 1,2,3,... constitute two martingale sequences, which con-

verge w.p.1. Qr�P implies that the limit Zr∞ is the Radon-Nikodym derivative dQr/dP . (Indeed,
Doob’s martingale convergence theorem can be used to prove the Radon-Nikodym theorem.) Qs⊥P
implies Zr∞=0 w.p.1. So g is uniquely defined and finite w.p.1.

Lemma 3 (Generalized merging of opinions) For any Q and P , the following holds:

(i) P�Q if and only if P [Ω◦]=0
(ii) P [Ω◦]=0 implies P [~Ω]=1 [(i)+[BD62]]

(iii) P [Ω◦∪~Ω]=1 [generalizes (ii)]

(i) says that Q(x)/P (x) converges almost surely to a strictly positive value if and only if P is
absolutely continuous relative toQ, (ii) says that an almost sure positive limit ofQ(x)/P (x) implies
that Q merges with P . (iii) says that even if P 6�Q, we still have d(P,Q|x)→ 0 on almost every
sequence that has a positive limit of Q(x)/P (x).

Proof. Recall Definition 2.

(i⇐) Assume P [Ω◦]=0: P [A]>0 impliesQ[A]≥Qr[A]=
∫
A
g dP>0, since g>0 a.s. by assumption

P [Ω◦]=0. Therefore P�Q.

(i⇒) Assume P�Q: Choose a B for which P [B]=1 and Qs[B]=0. Now Qr[Ω◦]=
∫

Ω◦
g dP =0

implies 0≤Q[B∩Ω◦]≤Qs[B]+Qr[Ω◦] = 0+0. By P �Q this implies P [B∩Ω◦] = 0, hence
P [Ω◦]=0.

(ii) That P �Q implies P [~Ω] = 1 is Blackwell-Dubins’ celebrated result. The result now follows
from (i).

(iii) generalizes [BD62]. For P [Ω◦] = 0 it reduces to (ii). The case P [Ω◦] = 1 is trivial. Therefore
we can assume 0<P [Ω◦]<1. Consider measure P ′[A] :=P [A|B] conditioned on B :=Ω\Ω◦.
Assume Q[A]=0. Using

∫
Ω◦
g dP=0, we get 0=Qr[A]=

∫
A
g dP=

∫
A\Ω◦g dP . Since g>0 outside

Ω◦, this implies P [A\Ω◦] = 0. So P ′[A] =P [A∩B]/P [B] =P [A\Ω◦]/P [B] = 0. Hence P ′�Q.
Now (ii) implies d(P ′,Q|x)→ 0 with P ′ probability 1. Since P ′�P we also get d(P ′,P |x)→ 0
w.P ′.p.1.

Together this implies 0≤d(P,Q|x)≤d(P ′,P |x)+d(P ′,Q|x)→0 w.P ′.p.1, i.e. P ′[~Ω]=1. The claim
now follows from

5



P [Ω◦ ∪ ~Ω] = P ′[Ω◦ ∪ ~Ω]P [Ω \ Ω◦] + P [Ω◦ ∪ ~Ω|Ω◦]P [Ω◦]

= 1 · P [Ω \ Ω◦] + 1 · P [Ω◦] = P [Ω] = 1

The intuition behind the proof of Theorem 1 is as follows. MDL will asymptotically not select Q
for which Q(x)/P (x)→0. Hence for those Q potentially selected by MDL, we have ω 6∈Ω◦, hence
ω∈ ~Ω, for which d(P,Q|x)→0 (a.s.). The technical difficulties are for finiteM that the eligible Q
depend on the sequence ω, and for infiniteM to deal with non-uniformly converging d, i.e. to infer
d(P,MDLx|x)→0.

Proof of Theorem 1 for finite M. Recall Definition 2, and let gQ,Ω◦Q,~ΩQ refer to some Q∈M≡
{Q1,...,Qm}. The set of sequences ω for which some gQ for some Q ∈M is undefined has P -
measure zero, and hence can be ignored. Fix some sequence ω∈Ω for which gQ(ω) is defined for
all Q∈M, and letMω :={Q∈M :gQ(ω)=0}.

MDLx := arg min
Q∈M

LQ(x), where LQ(x) := − logQ(x) +K(Q).

Consider the difference

LQ(x)− LP (x) = − log
Q(x)

P (x)
+K(Q)−K(P )

`→∞−→ − log gQ(ω) +K(Q)−K(P )

For Q∈Mω , the r.h.s. is +∞, hence

∀Q∈Mω ∃`Q∀`>`Q : LQ(x) > LP (x)

SinceM is finite, this implies

∀`>`0 ∀Q∈Mω : LQ(x) > LP (x), where `0 := max{`Q : Q ∈Mω} <∞
Therefore, since P ∈M, we have MDLx 6∈Mω ∀`> `0, so we can safely ignore all Q∈Mω and
focus on Q∈Mω :=M\Mω . Let Ω1 :=

⋂
Q∈Mω

(Ω◦Q∪~ΩQ). Since P [Ω1]=1 by Lemma 3(iii), we
can also assume ω∈Ω1.

Q ∈Mω ⇒ gQ(ω) > 0 ⇒ ω 6∈ Ω◦Q ⇒ ω ∈ ~ΩQ ⇒ d(P,Q|x)→ 0

This implies d(P,MDLx|x) ≤ sup
Q∈Mω

d(P,Q|x) → 0

where the inequality holds for ` > `0 and the limit holds, since M is finite. Since the set of ω
excluded in our considerations has measure zero, d(P,MDLx|x) → 0 w.p.1, which proves the
theorem for finiteM.

5 Proof for Countable Model Class

The proof in the previous Section crucially exploited finiteness of M. We want to prove that the
probability that MDL asymptotically selects “complex” Q is small. The following Lemma estab-
lishes that the probability that MDL selects a specific complex Q infinitely often is small.

Lemma 4 (MDL avoids complex probability measures Q) For any Q and P we have
P [Q(x)/P (x)≥c infinitly often]≤1/c.

Proof. P [∀`0∃`>`0 :
Q(x)

P (x)
≥ c] (a)

= P [ lim
`→∞

Q(x)

P (x)
≥ c] ≤

(b)

≤ 1

c
E[lim

`

Q(x)

P (x)
]

(c)
=

1

c
E[lim

`

Q(x)

P (x)
]

(d)

≤ 1

c
lim
`

E[
Q(x)

P (x)
]

(e)
≡ 1

c

(a) is true by definition of the limit superior lim, (b) is Markov’s inequality, (c) exploits the fact that
the limit of Q(x)/P (x) exists w.p.1, (d) uses Fatou’s lemma, and (e) is obvious.

For sufficiently complex Q, Lemma 4 implies that LQ(x)>LP (x) for most x. Since convergence is
non-uniform in Q, we cannot apply the Lemma to all (infinitely many) complex Q directly, but need
to lump them into one Q̄.
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Proof of Theorem 1 for countable M. Let the Q ∈ M = {Q1,Q2,...} be ordered somehow,
e.g. in increasing order of complexity K(Q), and P = Qn. Choose some (large) m ≥ n and let
M̃ :={Qm+1,Qm+2,...} be the set of “complex” Q. We show that the probability that MDL selects
infinitely often complex Q is small:

P [MDLx ∈ M̃ infinitely often] ≡ P [∀`0∃`>`0 : MDLx ∈ M̃]

≤ P [∀`0∃`>`0 ∧Q ∈ M̃ : LQ(x) ≤ LP (x)] = P [∀`0∃`>`0 : sup
i>m

Qi(x)
P (x) 2K(P )−K(Qi) ≥ 1]

(a)

≤ P [∀`0∃`>`0 : Q̄(x)
P (x) δ 2K(P ) ≥ 1]

(b)

≤ δ 2K(P )
(c)

≤ ε

The first three relations follow immediately from the definition of the various quantities. Bound (a)
is the crucial “lumping” step. First we bound

sup
i>m

Qi(x)

P (x)
2−K(Qi) ≤

∞∑
i=m+1

Qi(x)

P (x)
2−K(Qi) = δ

Q̄(x)

P (x)
,

δ :=
∑
i>m

2−K(Qi) <∞, Q̄(x) :=
1

δ

∑
i>m

Qi(x)2−K(Qi),

While MDL·[·] is not a (single) measure on Ω and hence difficult to deal with, Q̄ is a proper prob-
ability measure on Ω. In a sense, this step reduces MDL to Bayes. Now we apply Lemma 4 in (b)
to the (single) measure Q̄. The bound (c) holds for sufficiently large m=mε(P ), since δ→ 0 for
m→∞. This shows that for the sequence of MDL estimates

{MDLx1:` :` > `0} ⊆ {Q1, ..., Qm} with probability at least 1− ε
Hence the already proven Theorem 1 for finiteM implies that d(P,MDLx|x)→ 0 with probability
at least 1−ε. Since convergence holds for every ε>0, it holds w.p.1.

6 Implications

Due to its generality, Theorem 1 can be applied to many problem classes. We illustrate some imme-
diate implications of Theorem 1 for time-series forecasting, classification, regression, discriminative
learning, and reinforcement learning.

Time-series forecasting. Classical online sequence prediction is concerned with predicting x`+1

from (non-i.i.d.) sequence x1:` for `= 1,2,3,.... Forecasting farther into the future is possible by
predicting x`+1:`+h for some h>0. Hence Theorem 1 implies good asymptotic (multi-step) predic-
tions. Offline learning is concerned with training a predictor on x1:` for fixed ` in-house, and then
selling and using the predictor on x`+1:∞ without further learning. Theorem 1 shows that for enough
training data, predictions “post-learning” will be good.

Classification and Regression. In classification (discrete X ) and regression (continuous X ), a sam-
ple is a set of pairs D= {(y1,x1),...,(y`,x`)}, and a functional relationship ẋ= f(ẏ)+noise, i.e. a
conditional probability P (ẋ|ẏ) shall be learned. For reasons apparent below, we have swapped the
usual role of ẋ and ẏ. The dots indicate ẋ∈X and ẏ ∈Y), while x= x1:` ∈X ` and y= y1:` ∈Y`.
If we assume that also ẏ follows some distribution, and start with a countable model class M of
joint distributions Q(ẋ,ẏ) which contains the true joint distribution P (ẋ,ẏ), our main result implies
that MDLD[(ẋ,ẏ)|D] converges to the true distribution P (ẋ,ẏ). Indeed since/if samples are assumed
i.i.d., we don’t need to invoke our general result.

Discriminative learning. Instead of learning a generative [Jeb03] joint distribution P (ẋ,ẏ), which
requires model assumptions on the input ẏ, we can discriminatively [LSS07] learn P (·|ẏ) directly
without any assumption on y (not even i.i.d). We can simply treat y1:∞ as an oracle to all Q, define
M′= {Q′} with Q′(x) :=Q(x|y1:∞), and apply our main result toM′, leading to MDL′x[A|x]→
P ′[A|x], i.e. MDLx|y1:∞ [A|x,y1:∞]→ P [A|x,y1:∞]. If y1,y2,... are conditionally independent, or
more generally for any causal process, we have Q(x|y) =Q(x|y1:∞). Since the x given y are not
identically distributed, classical MDL consistency results for i.i.d. or stationary-ergodic sources do
not apply. The following corollary formalizes our findings:

Corollary 5 (Discriminative MDL) Let M3 P be a class of discriminative causal distributions
Q[·|y1:∞], i.e. Q(x|y1:∞) =Q(x|y), where x=x1:` and y= y1:`. Regression and classification are
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typical examples. Further assume M is countable. Let MDLx|y := argminQ∈M{−logQ(x|y)+
K(Q)} be the discriminative MDL measure (at time ` given x,y). Then supA

∣∣MDLx|y[A|x,y]−
P [A|x,y]

∣∣→0 for `(x)→∞, P [·|y1:∞] almost surely, for every sequence y1:∞.

For finite Y and conditionally independent x, the intuitive reason how this can work is as follows:
If ẏ appears in y1:∞ only finitely often, it plays asymptotically no role; if it appears infinitely often,
then P (·|ẏ) can be learned. For infinite Y and deterministicM, the result is also intelligible: Every
ẏ might appear only once, but probing enough function values xt = f(yt) allows to identify the
function.

Reinforcement learning (RL). In the agent framework [RN03], an agent interacts with an envi-
ronment in cycles. At time t, an agent chooses an action yt based on past experience x<t ≡
(x1,...,xt−1) and past actions y<t with probability π(yt|x<ty<t) (say). This leads to a new
perception xt with probability µ(xt|x<ty1:t) (say). Then cycle t+ 1 starts. Let P (xy) =∏`
t=1µ(xt|x<ty1:t)π(yt|x<ty<t) be the joint interaction probability. We make no (Markov, sta-

tionarity, ergodicity) assumption on µ and π. They may be POMDPs or beyond.

Corollary 6 (Single-agent MDL) For a fixed policy=agent π, and a class of environments
{ν1,ν2,...} 3 µ, let M= {Qi} with Qi(x|y) =

∏`
t=1νi(xt|x<ty1:t). Then d(P [·|y],MDLx|y)→ 0

with joint P -probability 1.

The corollary follows immediately from the previous corollary and the facts that the Qi are causal
and that with P [·|y1:∞]-probability 1 ∀y1:∞ implies w.P .p.1 jointly in x and y.

In reinforcement learning [SB98], the perception xt := (ot,rt) consists of some regular observation
ot and a reward rt∈ [0,1]. Goal is to find a policy which maximizes accrued reward in the long run.
The previous corollary implies

Corollary 7 (Fixed-policy MDL value function convergence) Let VP [xy] := EP [·|xy][r`+1 +
γr`+2+γ2r`+3+...] be the future γ-discounted P -expected reward sum (true value of π), and simi-
larly VQi

[xy] forQi. Then the MDL value converges to the true value, i.e. VMDLx|y [xy]−VP [xy]→0,
w.P .p.1. for any policy π.

Proof. The corollary follows from the general inequality |EP [f ]−EQ[f ]| ≤ sup|f | ·supA|P [A]−
Q[A]| by inserting f := r`+1 +γr`+2 +γ2r`+3 + ... and P = P [·|xy] and Q = MDLx|y[·|xy], and
using 0≤f≤1/(1−γ) and Corollary 6.

Since the value function probes the infinite future, we really made use of our convergence result in
total variation. Corollary 7 shows that MDL approximates the true value asymptotically arbitrarily
well. The result is weaker than it may appear. Following the policy that maximizes the estimated
(MDL) value is often not a good idea, since the policy does not explore properly [Hut05]. Neverthe-
less, it is a reassuring non-trivial result.

7 Variations

MDL is more a general principle for model selection than a uniquely defined procedure. For instance,
there are crude and refined MDL [Grü07], the related MML principle [Wal05], a static, a dynamic,
and a hybrid way of using MDL for prediction [PH05], and other variations. For our setup, we could
have defined multi-step lookahead prediction as a product of single-step predictions: MDLI(x1:`) :=∏`
t=1MDLx<t(xt|x<t) and MDLI(z|x)=MDLI(xz)/MDLI(x), which is a more incremental MDL

version. Both, MDLx and MDLI are ‘static’ in the sense of [PH05], and each allows for a dynamic
and a hybrid version. Due to its incremental nature, MDLI likely has better predictive properties than
MDLx, and conveniently defines a single measure over X∞, but inconveniently is 6∈M. One reason
for using MDL is that it can be computationally simpler than Bayes. E.g. ifM is a class of MDPs,
then MDLx is still an MDP and hence tractable, but MDLI like Bayes are a nightmare to deal with.

Acknowledgements. My thanks go to Peter Sunehag for useful discussions.
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