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Abstract 

Contrast statistics of the majority of natural images conform to a Weibull distri­
bution. This property of natural images may facilitate efficient and very rapid 
extraction of a scene's visual gist. Here we investigated whether a neural response 
model based on the Wei bull contrast distribution captures visual information that 
humans use to rapidly identify natural scenes. In a learning phase, we measured 
EEG activity of 32 subjects viewing brief flashes of 700 natural scenes. From 
these neural measurements and the contrast statistics of the natural image stimuli, 
we derived an across subject Wei bull response model. We used this model to pre­
dict the EEG responses to 100 new natural scenes and estimated which scene the 
subject viewed by finding the best match between the model predictions and the 
observed EEG responses. In almost 90 percent of the cases our model accurately 
predicted the observed scene. Moreover, in most failed cases, the scene mistaken 
for the observed scene was visually similar to the observed scene itself. Similar re­
sults were obtained in a separate experiment in which 16 other subjects where pre­
sented with artificial occlusion models of natural images. Together, these results 
suggest that Weibull contrast statistics of natural images contain a considerable 
amount of visual gist information to warrant rapid image identification. 

1 Introduction 

Natural images, although apparently diverse, have a surprisingly regular statistical regularity. There 
is a strong correlation between adjacent image points in terms of local features such as luminance 
[1]. These second-order correlations decrease with distance between image points, giving rise to the 
typical 1/12 power spectra of natural images. On account of this power-law characteristic, natural 
images compromise a very small and distinguishable subset of the space of all possible images, with 
specific scene categories occupying different parts of this subspace. For example, white noise images 
can be distinguished from natural images because of their deviation from the power law statistics, 
while street scenes and beach scenes can be separated from each other on the basis of differences 
in ensemble power spectra [2]. Thus, the power spectra of natural images contain an indeterminate 
amount of the visual gist of these images. 

The similarity structure among nearby image points, however, represents only part of the statistical 
structure in natural images. There are also higher-order correlations, which introduce structure in 
the phase spectra of natural images. This structure is assumed to carry perceptually important image 
features such as edges and has been measured in terms of kurtosis in the contrast distribution of 
natural images [3, 4, 5]. Geusebroek and Smeulders [6] showed that the two-parameter Weibull 
distribution adequately captures the variance and kurtosis in the contrast distribution of the majority 
of natural images. In fact, the two parameters of the Weibull contrast distribution tum out to organize 
the space of all possible natural scenes in a perceptually meaningful manner [7] and thus are likely 
to provide additional information about a scene's visual gist. 



Scholte et al. [7] have further shown that the two parameters of the Weibull contrast distribution 
match biologically realistic computations of Lateral Geniculate Nucleus (LGN) cells. Specifically, 
they simulated X-cell responses by filtering images with a difference of Gaussians (DoG), rectifying 
the filtered images and transforming the pixel values of the resulting images with a contrast gain 
function adequate for P-cells. To simulate Y-cell responses, the rectified images were passed through 
a Gaussian smoothing function and resulting pixel values were subsequently transformed with a 
contrast gain function adequate for M-cells. The sum of the resulting X-cell responses turned out 
to correlate highly with one Wei bull parameter (r=0.95), whereas the sum of the resulting Y-cell 
responses correlated highly with the other Weibull parameter (r=0.70). Moreover, the two Wei bull 
parameters correlated highly with EEG activity (r2=0.5) at the occipital part of the brain. The 
findings of Scholte et al. [7] show that our brain is capable of approximating the Wei bull contrast 
distribution of an image on the basis of filters that are biologically realistic in shape, sensitivity, and 
SIze. 

Here we hypothesized that if Wei bull contrast distributions of natural images carry perceptually im­
portant information, a neural response model based on the Weibull contrast distribution will predict 
brain responses to brief flashes of natural images. We tested this hypothesis with two experiments in 
which we rapidly presented a large set of natural or artificial images to multiple subjects while mea­
suring EEG activity across the entire cortex. In each experiment, we constructed a neural response 
model from the Weibull statistics of the presented images and corresponding EEG data, which we 
then applied to predict EEG responses to a new collection of natural or artificial images. To vali­
date the constructed neural response models, we used the approach of Kay et al. [8]: predicted and 
measured EEG responses were compared to determine whether the observed image was correctly 
identified. 

2 Methods 

We first describe how we filter images locally with a set of biologically-realistic filters. Then we 
address a local contrast response selection mechanism with which we construct a contrast magnitude 
map for a given input image (a detailed description is in submission [12]). Subsequently, Weibull 
contrast statistics are estimated from such maps and the relation between image statistics and neural 
activity modeled. The section ends with an explanation of a performance measure for EEG-based 
image identification. 

2.1 Local contrasts values in natural images 

As in [7], we use contrast filters that have spatial characteristics and contrast response properties 
closely mirroring well-known characteristic receptive-fields of LGN neurons [9]. Specifically, we 
use a bank of second-order Gaussian derivative filters that span multiple octaves in spatial scale, 
that have peak sensitivity approximately inverse to filter size and that have contrast gain properties 
independent of size. We represent contrast gain using an established non-linear response model that 
divides input contrast by the sum of the input and a semi-saturation constant [10]. In this model a low 
value of the semi-saturation parameter indicates high non-linear contrast gain whereas higher values 
result in a linear mapping and thus will not lead to saturation. Given an image, we process each 
image location with a bank of 5 contrast filters covering 5 octaves in spatial scale and, subsequently, 
subject the output of each scale-tuned filter to 5 different gain controls (5 semi-saturation values). 
This results, for each image location, in 25 contrast response values. 

We applied each of the 5 scale-specific filters, combined with each of the 5 contrast gain controls, 
to 800 natural images. Figure 1 shows average responses over all image locations. Contrast is high 
at small scale and low semi-saturation. It decreases exponentially with scale owing to the peak 
sensitivity of the filters, which is inversely related to spatial scale. That contrast also decreases with 
semi-saturation is explained by the fact that the amount of contrast suppression is proportional to 
the semi-saturation value. From these summary statistics it follows that, although natural image 
contrast varies considerable within and across scale and contrast gain, the fast majority of natural 
image contrasts falls above a lower threshold. It is reasonable to assume that the LGN considers 
contrast below this statistical threshold as noise and only processes contrasts above it, i.e. only 
processes reliable contrast outputs. 
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Figure 1: Approximation of the typical range of contrasts generated by LGN neurons tuned to different spatial 
frequencies (5 octave scales) and with different contrast gain properties (5 semi-saturation constants). Shown 
are the average of local contrast (dark gray), plus and minus two standard deviations, in the gray level (left), 
blue-yellow (middle) and red-green (right) color components of 800 natural images. 

2.2 Natural image statistics-based selection of unique local image contrast values 

What spatial scale and contrast gain does the LGN use to process local image contrast? It is unlikely 
that the LGN (linearly) integrates the output of a population of spatially overlapping filters to de­
termine local image contrast as this would make it sensitive to receptive field clutter [II]. Here we 
depart from the view that LGN aims to minimize receptive clutter by selecting a single output from a 
population of scale and gain specific contrast filters [12]. Specifically, in order to determine contrast 
at an image location, we apply the smallest filter with boosted contrast output above what can be 
expected to be noise for that particular filter. We define local contrast as the amount of contrast ex­
ceeding the noise threshold, which for a given scale and gain is set here to half standard deviation of 
contrasts in 800 natural images (see figure 1). This contrast response selection mechanism produces 
a contrast magnitude map in ways similar to the scale selection model in [13]. 

We apply the local contrast selection mechanism separately to the individual color components of 
an image. From a single color image, the three color components are extracted using the Gaussian 
color model [14], resulting in a gray-scale, blue-yellow and red-green image representations. Each 
of these representations is convolved with the 25 scale and gain specific contrast filters and subse­
quently subjected to our local contrast selection mechanism. For each color component a dedicated 
scale and gain dependent noise threshold is used (see figure I). As a result, for each color image we 
get three contrast magnitude maps, which we linearly sum to arrive at a single contrast magnitude 
map. 

2.3 Weibull statistics of local image contrast 

The contrast magnitude map of an image is summarized in a histogram, representing the distribution 
of local contrast values of that image. Note that the histogram does not preserve information about 
spatial structure in the contrast magnitude map: a scrambling the contrast magnitude map will not 
affect the histogram. We subsequently fit a three-parameter Weibull distribution to the contrast 
histogram. The three-parameter Wei bull distribution is given by 

f(x) = cexpc';tY (I) 

The parameters of this distribution are indicative for the spatial structure in a natural scene (see 
figure 2) and can be put in a biologically plausible framework [7]. The scale parameter f3 describes 
the width of the histogram. Hence, it varies roughly with the variation in local image contrasts. The 
shape parameter y describes the shape of the histogram. It varies with the amount of scene clutter. 
The J1 parameter, represents the origin of the distribution. Its position is influenced by uneven 
illumination. The three Weibull parameters are estimated using a maximum likelihood estimator 
(MLE). To achieve illumination invariance, the J1 parameter is normalized out. 
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Figure 2: Two arbitrary natural images from the Corel Photo Library with varying degrees of details and 
varying degrees of scene clutter. The details in the upper image are chaotic. They range from large for the bird 
to small for partially occluded tree branches. In contrast, the second picture depicts a single coherent object, 
the eagle, against a highly uniform background. The image gradient at each image location shows the contrast 
strength. All gradients accumulated in a histogram reveal the distribution of local contrasts. The scale and 
shape parameters of the Weibull distribution are estimated from the fit to the histogram by maximum likelihood 
estimation. 

2.4 Model Estimation 

We use EEG response signals from C channels (electrodes) covering the entire cortex, to develop 
a Wei bull response model that predicts neuronal responses to natural images. EEG signals are 
measured for S subjects watching N natural images. We average these signals across subjects to 
obtain a more robust response signal per channel and per image. This results in an N x C matrix 
F(t) of response signals fne(t). We construct a linear Wei bull response model for each channel 
separately. Our rationale for combining the two Weibull parameters in a linear fashion is that these 
two parameters can be suitably extracted from the X and Y units in the LGN model (as shown in 
Scholte et al [7]) and as such the linear combination reflects linear pooling at the LGN level. 

Functional data analysis [15] provides a natural framework for modeling continuous stochastic brain 
processes. We use a point-wise multivariate functional linear model to establish the relation between 
Weibull parameters X = [,81, ... ,i3N;YI, ···,YNf and the EEG response feCt) = Line, ... ,jNeF. The 
values i3n, Yn are the Wei bull parameters of image nand lne is the across subject average response to 
that image at channel c. Wei bull response model estimation for channel c then reduces to solving 

feet) = XwCt) + E(t) (2) 

where wet) is 2 x I vector of regression functions and ECt) = [EICt), .... , Es(t)f is the vector ofresid­
ual functions. Under the assumption that the residual functions E(t) are independent and normally 
distributed with zero mean, the regression function is estimated by least squares minimization such 
that 

weCt) = min f11fe(t) - XW*(t)11 2dt. 
W'(i) t 

(3) 

A roughness penalty, based on the second derivative of wCt), regularize the estimate we(t). The 
estimated regression function provides the best estimate of feCt) in least squares sense: 

(4) 

We use we(t) to predict the EEG responses to a new set of M images represented by their Weibull 
distribution. The EEG responses to these new images are predicted using the Wei bull response 



model: 

(5) 

where the M X 2 data matrix Y contains the two Weibull parameters for each of the new images and 
the M-vector of functions ge(t) denotes the predicted neural responses for channel c. 

2.5 Image Identification 

How well does the Wei bull response model predict EEG responses to natural images? We answer 
this question in terms of EEG-based identification of individual images. Given a set of M new im­
ages and their Weibull parameters Y, the Weibull response model provides the EEG prediction ge(t). 
The match between prediction ge(t) and true, measured EEG activity ge(t) = [gl, ... ,gM] provides 
a means for image identification. More specifically, an M X M similarity matrix S is constructed, 
where each element contains the Pearson's correlation coefficient R between measured gem(t) and 
predicted gcm(t) response. The similarity matrix shows for each individual image, the amount of 
EEG correlation with the other images. The image whose predicted activity pattern is most corre­
lated with the measured activity pattern is selected. A similarity matrix is constructed separately 
for each of the C channels. These similarity matrices are squared in order to allow averaging of 
similarity matrices across channels. Hence, the square of the correlation coefficient r2 rather than r 
itself is used as a measure of similarity between true and predicted response. 

3 Experiments and Results 

3.1 Stimulus and EEG Data 

In our experiments we used 800 color images with a resolution 345 x 217 pixels and a bit-depth 
of 24. Of these, 400 were pictures of animals in their natural habitat and 400 pictures of natural 
landscapes, city scenes, indoor scenes and man-made objects. These images were taken from a 
larger set of images used in Fabre-Thorpe [16]. This subset of images was reasonably balanced in 
terms of Michelson contrast, spatial frequency and orientation properties. The Weibull properties of 
these images nevertheless covered a wide range of real-world images. The data set did not contain 
near duplicates. 

The images were presented to 32 subjects on a 19" I1yama monitor with a resolution of 1024*768 
pixels and a frame-rate of 100 Hz. Subjects were seated 90 cm from the monitor. During EEG 
acquisition a stimulus was presented, on average every 1500 ms (range 1000-2000 ms) for 100 
ms. Each stimulus was presented 2 times for a total of 1600 presentations. Recordings were made 
with a Biosemi 52-channel Active Two EEG system (Biosemi Instrumentation BV, Amsterdam, The 
Netherlands). Data was sampled at 256 Hz. Data analysis was identical to [17] with the exception 
that the high-pass filter was placed at 0.1 Hz (12 db/octave) and the pre-stimulus baseline activity 
was taken between -100 and 0 ms with regard to stimulus onset. Trials were averaged over subject 
per individual stimulus resulting in 800 averages of 20 to 32 averages per individual image. 

3.2 Experiments 

The experiments were carried out with the following parameters settings. Two banks of Gaussian 
second-order derivative filters were used to determine image contrast for each image location. The 
first set consisted of filters with octave spatial scales 1.5, 3, 6, 12, 24 (std. in pixels). This set was 
used to determine the Wei bull scale parameter [3. The other filter bank, with scales 3, 6, 12, 24, 
48, was used for the estimation of Wei bull shape parameter y. The spatial properties of the two 
sets were determined experimentally and roughly correspond to receptive field sizes of small X and 
large Y Ganglion cells in the early visual system of the human brain [18]. We used 5 semi-saturation 
constants between 0.15 and 1.6 to cover the spectrum from linear to non-linear contrast gain control 
in the LGN. 

A cross validation study was performed to obtain reliable performance measurements. We repeated 
the same experiment 50 times, each time randomly selecting 700 images for model estimation and 
100 images for image identification. Performance was measured in terms of the percentage of cor­
rectly identified images for each of the 50 experiments. The 50 measures were then averaged to 
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Figure 3: Total explained variance in ERP signals by the two Wei bull parameters. The peak of 
the total explained variance is highest (75 percent) for the IZ electrode overlying the early visual 
cortex and gradually decays at higher brain areas. The time course of explained variance for the IZ 
electrode reveals that the peak occurs at 113 ms after stimulus onset. 

arrive at a single performance outcome. Hence, accuracy was defined as the fraction of images 
for which the predicted activity pattern and measured activity pattern produced the highest r2. As 
accuracy does not reflect how close the correct image was to being selected, we also ranked the 
correlation coefficients and determined within which percentage of the ranked M images the correct 
one was. 

3.3 Results 

We first present correlations between ERP signals from across the entire brain and the two parame­
ters of the Weibull fit to the sum of selected local contrast values in the gray-level, blue-yellow and 
red-green components of each image. Correlations are strikingly high at electrode Iz overlying the 
early visual cortex. The peak r2 (square of the correlation coefficient) over time for that electrode is 
75 percent (r = 0.8691; p = 0). The peak r2 over time slowly decays away from the occipital part 
of the head as can be seen from the topographic plots in figure 3. The Wei bull parameters explain 
most variance in the ERP signal very early in visual processing at 113 ms after stimulus onset (3) 
and continue to explain variance up to about 200 ms. This suggests that the two Wei bull parameters 
are probably only relevant to the brain in the early phases of visual processing. 

Accuracy results are shown in figure 4. The topographic plots show image identification accuracy 
for single channels (electrodes). Channel IZ produces the highest accuracy with 5 percent. This 
means that based on ERP signal at the IZ electrode, 5 out of 100 images are on average correctly 
identified from the similarity matrix. Then follow channel Oz with 4.3 percent, 02 with 4.1 and 
so on. Image identification based on multiple channels strikingly improves performance as shown 
in figure 4. When the similarity matrices from the 20 most contributive channels are averaged, 
accuracy of almost 90 percent is obtained. This means that, with a Wei bull response model of only 
two parameters, almost every image can be correctly identified from the neural activity that this 
image triggers. As an aside we note that this implies that the different parts of the early visual 
system process different types of images (in terms of the two Wei bull parameters) in different ways. 

To test the individual contribution of the Weibull parameters, we performed principal component 
analysis on the beta and gamma parameters and used the principal component scores separately for 
image identification. A Weibull response model based only on one of the two principal component 
scores performs significantly less as can be seen in figure 4. Moreover, there is large difference in 
accuracy performance between the two projected Wei bull parameters. These results demonstrate 
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Figure 4: Accuracy performance for the full (two-parameter) and partial (orthogonal projection of 
one of the two parameters) Weibull response model. Accuracy is based on the accumulation of 
image identification at multiple channels. The topographic plots show the accuracy performance for 
the individual channels. 

that the two Weibull parameters indeed capture two different perceptual aspects of natural scenes, 
which together constitutes an important part of early neural processing of natural images. 

Accuracy results in figure 4 only show how often the correct image is ranked first, not where it is 
ranked. We therefore analyzed the image rankings (data not shown). For the first most contributive 
channel (41), the correct image is always ranked within the top 13 percent of the images. The 
ranking slightly worsens (top 15 percent) for the second most contributive channel (Oz) and for the 
third (02, top 16 percent). From the fourth channel and beyond there is a clear but steady drop 
in ranking. The ranking data show an overall pattern similar to the one seen in the accuracy data 
and indicate that, even in cases where an image is not correctly identified, the misidentification is 
limited. 

When does identification fail? We extracted frequently confused image pairs from all similarity ma­
trices of all 50 cross validation steps for all 64 channels. These image pairs reveal that identification 
errors tend to occur when the selected image is visually similar to the correct image. The upper row 
of figure 5 shows 4 images from our data set and the images with which these have been confused 
frequently. The first set of 2 images, containing grazing cows and a packed donkey, have been con­
fused 6 times across the 50 cross validation experiments, the second, and third set 5 times and the 
fourth set 4 times. The overall similarity between the confused images is evident and remarkable 
considering the variety of images we have used. These findings suggest that the Wei bull model 
captures aspect of a scene's visual gist that the brain possibly uses for perception at a glance. 

We further scrutinized image identification performance on occlusion models of natural images. 
Following [19], we created 24 types of dead leave images containing disks of various sizes (large, 
medium and small), size distributions (Power law and exponential), intensities (equal intensity ver­
sus decaying intensity) and opacities (occluding versus transparent). For each image type, 16 in­
stances were composed resulting in a total of 384 dead leave images. We presented 16 subjects with 
the 384 dead leaves images while recording their EEG activity. As with our natural images, the beta 
and gamma parameter values of the Weibull contrast distributions underlying the 364 dead leave 
images correlated highly with EEG activity (r2 = 0.83). A cross validation experiment in which we 
used 284 dead leaves images for building a Wei bull response model and 100 for image identifica­
tion resulted in an average image identification performance of 94 percent (see figure 4). Confusion 
analysis revealed that dead leave images with clear disks were well identified, whereas dead leaves 
images composed of transparent and thus indistinguishable disks were confused frequently (figure 



Figure 5: Most confused image pairs during cross-validation. Note the global similarity in spatial 
configuration between the natural image pairs. Similarity between most confused dead leave image 
pairs is also apparent: except for the fourth pair, they are all images with transparent disk (but with 
different disk sizes and disk intensity patterns). Dead leave images with small, opaque and equal 
intensity disks (as in the lower right example) were least confused. 

5). Apparently, the information in the EEG signal that facilitates image identification is related to 
clear object-background differences. 

4 Discussion and Conclusion 

To determine local image contrasts, we have applied a bank of biologically-motivated contrast filters 
to each image location and selected a single filter output based on receptive field size and response 
reliability. The statistics of locally selected image contrasts, appropriately captured by the Weibull 
distribution, explain up to 75 percent of occipital EEG activity for natural images and almost 83 
for artificial dead leave images. We have used Wei bull contrast statistics of these images and corre­
sponding EEG activity to construct a Weibull response model for EEG-based rapid image identifica­
tion. Using this model, we have obtained image identification performance of 90 percent for natural 
images and 94 percent for dead leave images, which is remarkable considering the simplicity of the 
two-parameter Weibull image model and the limited spatial resolution of EEG data. We attribute 
this success to the ability of the Weibull parameters to structure the space of natural images in a 
highly meaningful and compact way, invariant to a large class of accidental or trivial scene features. 
Both the scale and shape parameters contribute to the meaningful organization of natural images and 
appear to play an important role in the early neural processing of natural images. 

Kay et. al [8] report similar image identification performance using an other biologically plausible 
model. In this model, a natural image is represented by a large set of Gabor wavelets differing in 
size, position, orientation, spatial frequency and phase. Haemodynaymic responses in the visual 
cortex are integrally modeled as a linear function of the contrast energy contained in quadrature 
wavelet pairs. In a repeated trial experiment involving 1700 training images, 120 test images, and 
fMRI data of 2 subjects, 92 percent of the test images were correctly identified for one subject and 72 
for a second subject. In a single trial experiment, the reported performances are 52 and 31 percent 
respectively. We note that in contrast to [8], our neural response model is based on (summary) 
statistics of filter outputs, rather than on filter outputs themselves. This may explain our models 
ability to compactly describe a scene's visual gist. 

In conclusion, we embrace the view that common factors of natural images imprinted in the brain 
daily, underlie rapid image identification by humans. Departing from this view, we establish a 
relationship between natural image statistics and neural processing through the Weibull response 
model. Results with EEG-based image identification using the Wei bull response model, together 
with the biological plausibility of the Weibull response model, supports the idea that the human 
visual system evolved, among others, to estimate the Weibull statistics of natural images for rapid 
extraction of their visual gist [7]. 
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