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Abstract

A central hypothesis about early visual processing is that it represents inputs in a
coordinate system matched to the statistics of natural scenes. Simple versions of
this lead to Gabor–like receptive fields and divisive gain modulation from local
surrounds; these have led to influential neural and psychological models of visual
processing. However, these accounts are based on an incomplete view of the visual
context surrounding each point. Here, we consider an approximate model of linear
and non–linear correlations between the responses of spatially distributed Gabor-
like receptive fields, which, when trained on an ensemble of natural scenes, unifies
a range of spatial context effects. The full model accounts for neural surround
data in primary visual cortex (V1), provides a statistical foundation for perceptual
phenomena associated with Li’s (2002) hypothesis that V1 builds a saliency map,
and fits data on the tilt illusion.

1 Introduction

That visual input at a given point is greatly influenced by its spatial context is manifest in a host
of neural and perceptual effects (see, e.g., [1, 2]). For instance, stimuli surrounding the so-called
classical receptive field (RF) lead to striking nonlinearities in the responses of visual neurons [3, 4];
spatial context results in intriguing perceptual illusions, such as the misjudgment of a center stimulus
attribute in the presence of a surrounding stimulus [5–7]; it also plays a critical role in determining
the salience of points in visual space, for instance controlling pop-out, contour integration, texture
segmentation [8–10] and more generally locations where statistical homogeneity of the input breaks
down [1]. Contextual effects are widespread across sensory systems, neural areas, and stimulus
attributes — making them an attractive target for computational modeling.

There are various mechanistic treatments of extra-classical RF effects (e.g.,[11–13]) and contour
integration [14], and V1’s suggested role in computing salience has been realized in a large-scale
dynamical model [1, 15]. There are also normative approaches to salience (e.g., [16–19]) with links
to V1. However, these have not substantially encompassed neurophysiological data or indeed made
connections with the perceptual literature on contour integration and the tilt illusion. Our aim is
to build a principled model based on scene statistics that can ultimately account for, and therefore
unify, the whole set of contextual effects above.

Much seminal work has been done in the last two decades on learning linear filters from first prin-
ciples from the statistics of natural images (see e.g. [20]). However, contextual effects emerge from
the interactions among multiple filters; therefore here we address the much less well studied issue
of the learned, statistical, basis of the coordination of the group of filters — the scene–dependent,
linear and non–linear interactions among them. We focus on recent advances in models of scene
statistics, using a Gaussian Scale Mixture generative model (GSM; [21–23]) that captures the joint
dependencies (e.g., [24–31]) between the activations of Gabor–like filters to natural scenes. The
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GSM captures the dependencies via two components, (i) covariance in underlying Gaussian vari-
ables, which accounts for linear correlations in the activations of filters; and (ii) a shared mixer
variable, which accounts for the non–linear correlations in the magnitudes of the filter activations.

As yet, the GSM has not been applied to the wide range of contextual phenomena discussed above.
This is partly because linear correlations, which appear important to capture phenomena such as
contour integration, have largely been ignored outside image processing (e.g., [23]). In addition,
although the mixer variable of the GSM is closely related to bottom-up models of divisive normal-
ization in cortex [32, 33], the assignment problem of grouping filters that share a common mixer for
a given scene has yet to receive a computationally and neurobiologically realistic solution. Recent
work has shown that incorporating a simple, predetermined, solution to the assignment problem in a
GSM could capture the tilt illusion [34]. Nevertheless, the approach has not been studied in a more
realistic model with Gabor-like filters, and learning assignments from natural scenes. Further, the
implications of assignment for cortical V1 data and salience have not been explored.

In this paper we extend the GSM model to learn both assignments and linear covariance (section 2).
We then apply the model to contextual neural V1 data, noting its link to the tilt illusion (section 3);
and then to perceptual salience examples (section 4). In the discussion (section 5), we also describe
the relationship between our GSM model and other recent scene statistics approaches (e.g., [31, 35]).

2 Methods

A recent focus in natural image statistics has been the joint conditional histograms of the activations
of pairs of oriented linear filters (throughout the paper, filters come from the first level of a steerable
pyramid with 4 orientations [36]). When filter pairs are proximal in space, these histograms have a
characteristic bowtie shape: the variance of one filter depends on the magnitude of activation of the
other. It has been shown [22] that this form of dependency can be captured by a class of generative
model known as Gaussian Scale Mixture (GSM), which assumes that the linear filter activations
x = vg are random variables defined as the product of two other random variables, a multivariate
Gaussian g, and a (positive) scalar v which scales the variance of all the Gaussian components.

Here, we address two additional properties of natural scenes. First, in addition to the variance
dependency, filters which are close enough in space and feature space are linearly dependent, as
shown by the tilt of the bowtie in fig. 1b. In order for the GSM to capture this effect, the multivariate
Gaussian must be endowed with a non-diagonal covariance matrix. This matrix can be approximated
by the sample covariance matrix of the filter activations or learned directly [23]; here, we learn it
by maximizing the likelihood of the observed data. The second issue is that filter dependencies
differ across image patches, implying that there is no fixed relationship between mixers and filters
[28]. The general issue of learning multiple pools of filters, each assigned to a different mixer on
an patch–dependent basis, has been addressed in recent work [30], but using a computationally and
biologically impracticable scheme [37] which allowed for arbitrary pooling.

We consider an approximation to the assignment problem, by allowing a group of surround filters to
either share or not the same mixer with a target filter. While this is clearly an oversimplified model
of natural images, here we aimed for a reasonable balance between the complexity of the model,
and biological plausibility of the computations involved.

2.1 The generative model

The basic repeating unit of our simplified model involves center and surround groups of filters: we
use nc to denote the number of center filters, and xc their activations; similarly, we use ns and xs

for the surround; finally, we define ncs
.=nc+ns and x .= (x1

c , . . . x
nc
c , x1

s, . . . x
ns
s )>. We consider

a single assignment choice as to whether the center group’s mixer variable vc is (case ξ1), or is
not (case ξ2) shared with the surround, which in the latter case would have its own mixer variable
vs. Thus, there are 2 configurations, or competing models, which are themselves combined (i.e., a
mixture of GSM’s, see also [35]). The graphical models of the two configurations are shown in Fig.
1a. We show this from the perspective of the center group, since in the implementation we will be
reporting model neuron responses in the center location given the contextual surround.
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Defining Gaussian components as g .= (g1
c , . . . g

nc
c , g1

s , . . . g
ns
s )>, and assuming the mixers are

independent and the pools are independent given the mixers, the mixture distribution is:

p(x) = p(ξ1)p(x | ξ1) + p(ξ2)p(x | ξ2) (1)
p(x | ξ1) =

∫
dvc p(vc)p(x | vc, ξ1) (2)

p(x | ξ2) =
∫
dvc p(vc)p(xc | vc, ξ2)

∫
dvs p(vs)p(xs | vs, ξ2) (3)

We assume a Rayleigh prior distribution on the mixers, and covariance matrix Σcs for the Gaussian
components for ξ1, and Σc and Σs for center and surround, respectively, for ξ2. The integrals in eqs.
(2,3) can then be solved analytically:

p(x | ξ1) =
det(Σ−1

cs )
1
2

(2π)
ncs
2

B(1− ncs

2 ; λcs)

λ
( ncs

2 −1)
cs

(4)

p(x | ξ2) =
det(Σ−1

c )
1
2

(2π)
nc
2

B(1− nc

2 ; λc)

λ
( nc

2 −1)
c

det(Σ−1
s )

1
2

(2π)
ns
2

B(1− ns

2 ; λs)

λ
( ns

2 −1)
s

(5)

where B is the modified Bessel function of the second kind, and λcs =
√

x>Σ−1
cs x.

2.2 Learning

The parameters to be estimated are the covariance matrices (Σcs, Σc, Σs) and the prior probability
(k) that center and surround share the same pool; we use a Generalized Expectation Maximization
algorithm, specifically Multi Cycle EM [38], where a full EM cycle is divided into three subcycles,
each involving a full E-step and a partial M-step performed only on one covariance matrix.

E-step: In the E-step we compute an estimate, Q, of the posterior distribution over the assignment
variable, given the filter activations and the previous estimates of the parameters, namely kold and
Θold .=

{
Σc,Σs,Σcs

}
. This is obtained via Bayes rule:

Q(ξ1) = p(ξ1 |x,Θold) ∝ kold p(x | ξ1,Θold) (6)

Q(ξ2) = p(ξ2 |x,Θold) ∝ (1− kold) p(x | ξ2,Θold) (7)

M-step: In the M-step we increase the complete–data Log Likelihood, namely:

f = Q(ξ1) log [k p(x | ξ1,Θ)] +Q(ξ2) log [(1− k)p(x | ξ2,Θ)] (8)

Solving ∂f/∂k = 0, we obtain k? .= arg maxk [f ] = Q(ξ1). The other terms cannot be solved an-
alytically, and a numerical procedure must be adopted to maximize f w.r.t. the covariance matrices.
This requires an explicit form for the gradient:

∂f

∂Σ−1
cs

= Q(ξ1)
(Σcs

2
− 1

2λcs

B(−ncs

2 ; λcs)
B(1− ncs

2 ; λcs)
xx>

)
(9)

Similar expressions hold for the other partial derivatives. In practice, we add the constraint that the
covariances of the surround filters are spatially symmetric.

2.3 Inference: patch–by–patch assignment and model neural unit

Upon convergence of EM, the covariance matrices and prior k over the assignment are found. Then,
for a new image patch, the probability p(ξ1 |x) that the surround shares a common mixer with the
center is inferred. The output of the center group is taken to be the estimate (for the present, we
consider just the mean) of the Gaussian component E [gc |x], which we take to be our model neural
unit response. To estimate the normalized response of the center filter, we need to compute the
following expected value under the full model:

E [gc |x] =
∫
dgc gc p(gc |x) = p(ξ1 |x)E [gc |x , ξ1] + p(ξ2 |x)E [gc |xc , ξ2] (10)

the r.h.s., obtained by a straightforward calculation applying Bayes rule and the conditional indepen-
dence of xs from xc,gc given ξ2, is the sum of the expected value of gc in the two configurations,
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Figure 1: (a) Graphical model for the two components of the mixture of GSMs, where the center fil-
ter is (ξ1; left) or is not (ξ2; right) normalized by the surround filters; (b) joint conditional histogram
of two linear filters activations, showing the typical bowtie shape due to the variance dependency, as
well as a tilt due to linear dependencies between the two filters; (c) marginal distribution of linear ac-
tivations in black, estimated Gaussian component in blue, and ideal Gaussian in red. The estimated
distribution is closer to a Gaussian than that of the original filter.

weighted by their posterior probabilities. The explicit form for the estimate of the i-th component
(corresponding in the implementation to a given orientation and phase) of gc under ξ1 is:

E
[
gi

c |x , ξ1
]

= sign(xi
c)
√
|xi

c|

√
|xi

c|
λcs

B( 1
2 −

ncs

2 ; λcs)
B(1− ncs

2 ; λcs)
(11)

and a similar expression holds under ξ2, replacing the subscript cs by c. Note that in either con-
figuration, the mixer variable’s effect on this is a form of divisive normalization or gain control,
through λ (including for stability, as in [30], an additive constant set to 1 for the λ values; we omit
the formulæ to save space). Under ξ1, but not ξ2, this division is influenced by the surround1. Note
also that, due to the presence of the inverse covariance matrix in λcs =

√
x>Σ−1

cs x, the gain control
signal is reduced when there is strong covariance, which in turn enhances the neural unit response.

3 Cortical neurophysiology simulations

To simulate neurophysiological experiments, we consider the following filter configuration: 3 × 3
spatial positions separated by 6 pixels, 2 phases (quadrature pair), and one orientation (vertical),
plus 3 additional orientations in the central position to allow for cross–orientation gain control. We
first learn the parameters of the model for 25000 patches from an ensemble of 5 standard scenes
(Einstein, Goldhill, and so on). We take as our model neuron the absolute value of the complex
activation composed by the non–linear responses (eq. (11)) of two phases of the central vertical
filter.

We characterize the neuron’s basic properties with a procedure that is common in physiology exper-
iments focusing on contextual non–linear modulation. First, we measure the so-called Area Sum-
mation curve, namely the response to gratings that are optimal in orientation and spatial frequency,
as a function of size. Cat and monkey experiments have shown striking non–linearities, with the
peak response at low contrasts being for significantly larger diameters than at high contrasts (Figure
2a). We obtain the same behavior in the model (Figure 2b; see also [33]). This behavior is due to the
assignment: for small grating sizes, center and surround have a higher posterior probability at high
contrast than at low contrast, and therefore the surround exerts stronger gain control. In a reduced
model with no assignment, we obtain a much weaker effect (Figure 2c).

We then assess the modulatory effect of a surround grating on a fixed, optimally–oriented central
grating, as a function of their relative orientations (Figure 3a). As is common, we determine the
spatial extent of the center and surround stimuli based on the area summation curves (see [4]). The
model simulations (Figure 3b), as in the data, exhibit the most reduced responses when the center
and surround have similar orientation (but note the ”blip” when they are exactly equal in Figure
3a;b, which arises in the model from the covariance of the Gaussian; see also [31]). In addition,

1To ensure that the mixer follows the same distribution under ξ1 and ξ2, after training with natural images
we rescale vc — and therefore gc — so that their values span the same range in both configurations; since the
assignment is made at a higher level in the hierarchy, such a rescaling is equivalent to downstream normalization
processes that make the estimates of gc comparable under ξ1 and ξ2.
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Figure 2: Area summation curves show the normalized firing rate of a neuron in response to optimal
gratings of increasing size. (a) a V1 neuron, after [4]; (b) the model neuron described in Sec. 3; (c)
a reduced model assuming that the surround filters are always in the gain pool of the center filter.

Figure 3: Orientation tuning of the surround. (a) and (b): normalized firing rate in response to a
stimulus composed by an optimal central grating surrounded by an annular grating of varying ori-
entation, for (a) a V1 neuron, after [3]; and (b) the model neuron described in Sec. 3 (c) Probability
that the surround normalizes the center as a function of the relative orientation of the annular grating.

as the orientation difference between center and surround grows, the response increases and then
decreases, an effect that arises from the assignments. In the model simulations, we find that the
strength of this behavior depends on contrast, being larger at low contrasts, an effect of which there
are hints in the neurophysiology experimental data (using contrasts of 0.2 to 0.4) but which has yet
to be systematically explored. Figure 3c shows the posterior assignment probability for the same
two contrasts as in figure 3b, as a function of the surround orientation. These remain close to 1 at all
orientations at high contrast, but fall off more rapidly at low contrast.

Note that a previous GSM population model assumed (but did not learn) this form of fall off of the
posterior weights of of figure 3c, and showed that it is a basis for explaining the so-called direct
and indirect biases in the tilt illusion; i.e., repulsion and attraction in the perception of a center
stimulus orientation in the presence of a surround stimulus [34]. Figure 4 compares the GSM model
of [34] designed with parameters matched to perceptual data, to the result of our learned model. The
qualitative shape (although not the quantitative strength) of the effects are similar.

4 Salience popout and contour integration simulations

To address perceptual salience effects, we need a population model of oriented units. We consider
one distinct group of filters – arranged as for the model neuron in Sec. 3 – for each of four orienta-
tions (0, 45, 90, 135 deg, sampling more coarsely than [1]). We compute the non–linear response of
each model neuron as in Sec. 3, and take the maximum across the four orientations as the population
output, as in standard population decoding. This is performed at each pixel of the input image, and
the result is interpreted as a saliency map.

We first consider the popout of a target that differs from a background of distractors by a single
feature (eg. [8]), in our case orientation. Input image and output saliency map (the brighter, the
more salient) are shown in Fig. 5. As in [1], the target pops out since it is less suppressed by its own,
orthogonally-oriented neighbors than the surround bars are by their parallel ones; here, this emerges
straight from normative inference. [8] quantified relative target saliency above detection threshold
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Figure 4: The tilt illusion. (a) Comparison of the learned GSM model (black, solid line with filled
squares), with the GSM model in [34] (blue, solid line; parameters set to account for the illusion
data of [39]), and the model in [34] with parameters modified to match the learned model (blue,
dashed line). The response of each neuron in the population is plotted as a function of the differ-
ence between the surround stimulus orientation and the preferred center stimulus orientation. We
assume all oriented neurons have identical properties to the learned vertical neuron (i.e., ignoring
the oblique effect). The model of [34] includes idealized tuning curves. The learned model is as in
the previous section, but with filters of narrower orientation tuning (because of denser sampling of
16 orientations in the pyramid), which results in an earlier point on the x axis of maximal response.
Model simulations are normalized to a maximum of 1. (b) Simulations of the tilt illusion using the
model in [34], based on parameters matched to the learned model (dashed line) versus parameters
matched to the data of [39] (solid line).

as a function of the difference in orientation between target and distractors using luminance (Fig.
5b). Fig. 5c plots saliency from the model; it exhibits non–linear saturation for large orientation
contrast, an effect that not all saliency models capture (see [17] for discussion). The shape of the
saturation is different for neural (Fig. 2a-b) versus perceptual (Fig. 5b-c) data, in both experiment
and model; for the latter, this arises from differences in stimuli (gratings versus bars, how the center
and surround extents were determined).

The second class of saliency effects involves collinear facilitation. One example is the so called
border effect, shown in figure 6a – one side of the border, whose individual bars are collinear, is
more salient than the other (e.g. [1], but see also [40]). The middle and right plots in figure 6a depict
the saliency map for the full model and a reduced model that uses a diagonal covariance matrix.
Notice that the reduced model also shows an enhancement of the collinear side of the border vs the
parallel, due to the partial overlap of the linear receptive fields; but, as explained in Sec. 2.3, the
higher covariance between collinear filters in the full model, strengthens the effect. To quantify the
difference, we report also the ratio between the salience values on the collinear and parallel sides
of the border, after subtracting the saliency value of the homogeneous regions: the lower value for
the reduced model (1.28; versus 1.74 for the full model) shows that the full model enhances the
collinear relative to the parallel side. The ratio for the full model increases if we rescale the off–
diagonal terms of the covariance matrix relative to the diagonal (2.1 for a scaling factor of 1.5; 2.73
for a factor of 2). Rescaling would come from more reasonably dense spatial sampling. Fig. 6b
provides another, stronger example of the collinear facilitation.

5 Discussion

We have extended a standard GSM generative model of scene statistics to encompass contextual
effects. We modeled the covariance between the Gaussian components associated with neighboring
locations, and suggested a simple, approximate, process for choosing whether or not to pool such
locations under the same mixer. Using parameters learned from natural scenes, we showed that
this model provides a promising account of neurophysiological data on area summation and center-
surround orientation contrast, and perceptual data on the saliency of image elements. This form of
model has previously been applied to the tilt illusion [34], but had just assumed the assignments of
figure 3c, in order to account for the indirect tilt illusion. Here, this emerged from first principles.
This model therefore unifies a wealth of data and ideas about contextual visual processing. To our
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Figure 5: (a) An example of the stimulus and saliency map computed by the model. (b) Perceptual
data reproduced after [8], and (c) model output, of the saliency of the central bar as a function of the
orientation contrast between center and surround.

Figure 6: (a) Border effect: the collinear side of the border is more salient than the parallel one; the
center plot is the saliency map for the full model, right plot is for a reduced model with diagonal
covariance matrix. (b) Another example of collinear facilitation: the center row of bars is more
salient, relative to the background, when the bars are collinear (left) rather than when they are
parallel (right). In both (a) and (b), Col/Par is the ratio between the salience values on the collinear
and parallel sides of the border, after subtracting the saliency value of the homogeneous regions.

knowledge, there have only been few previous attempts of this sort; one notable example is the
extensive salience work of [17]; here we go further in terms of simulating neural non–linearities,
and making connections with the contour integration and illusion literature: phenomena that have
previously been addressed only individually, if at all.

Our model is closely related to a number of suggestions in the literature. Previous bottom-up models
of divisive normalization, which were the original inspiration for the application by [22] of the GSM,
can account for some neural non–linearities by learning divisive weights instead of assignments
(e.g., [33]). However they do not incorporate linear correlations, and they fix the divisive weights
a priori rather than on a image–by–image basis such as in our model. Non-parametric statistical
alternatives to divisive normalization, e.g. non-linear ICA [41], have also been proposed, but have
been applied only to the orientation masking nonlinearity, therefore not addressing spatial context.

There are also various top-down models based on related principles. Compared with previous GSM
modelling [30], we have built a more computationally straightforward, and neurobiologically cred-
ible, approximate assignment mechanism. Other recent generative statistical models that capture
the statistical dependencies of the filters in slightly different ways (notably [31, 35]), might also be
able to encompass the data we have presented here. However, [35] has been applied only to the
image processing domain, and the model of [31] has not been tied to the perceptual phenomena we
have considered, nor to contrast data. There are also quantitative differences between the models,
including issues of soft versus hard assignment (see discussion in [30]); the assumption about the
link to data (here we adopted the mean of the Gaussian component of the GSM which incorporates
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an explicit gain control, in contrast to the approach in [31]); and the richness of assignment versus
approximation in the various models (here we have purposely taken an approximate version of a full
assignment model).

There are also many models devoted to saliency. We showed that our assignment process, and the
normalization that results, is a good match for (and thus a normative justification of) at least some of
the results that [1, 15] captured in a dynamical realization of the V1 saliency hypothesis. However,
our model achieves suppression in regions of statistical homogeneity divisively rather than subtrac-
tively. The covariance between the Gaussian components captures some aspects of the long range
excitatory effects in that model, which permit contour integration. However, some of the collinear
facilitation arises just from receptive field overlap; and the structure of the covariance in natural
scenes seems rather impoverished compared with that implied by the association field [42], and
merits further examination with higher order statistics (see also [10, 26]). Note also that dynamical
models have not previously been applied to the same range of data (such as the tilt illusion).

Open theoretical issues include quantifying carefully the effect of the rather coarse assignment ap-
proximation, as well as the differences between the learned model and the idealized population
model of the tilt illusion [34]. Other important issues include characterizing the nature and effect of
uncertainty in the distributions of g and v rather than just the mean. This is critical to characterize
psychophysical results on contrast detection in the face of noise and also orientation acuity, and also
raises the issues aired by [31] as to how neural responses convey uncertainties. Open experimental
issues include a range of other contextual effects as to salience, contour integration, and even per-
ceptual crowding. Contextual effects are equally present at multiple levels of neural processing. An
important future generalization would be to higher neural areas, and to mid and high level vision
(which themselves exhibit gain-control related phenomena, see e.g. [43]). More generally, context
is pervasive in time as well as space. The parallels are underexplored, and so pressing.
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