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Abstract

We propose a new approach to the analysis of Loopy Belief Propagation (LBP) by
establishing a formula that connects the Hessian of the Bethe free energy with the
edge zeta function. The formula has a number of theoretical implications on LBP.
Itis applied to give a sufficient condition that the Hessian of the Bethe free energy
is positive definite, which shows non-convexity for graphs with multiple cycles.
The formula clarifies the relation between the local stability of a fixed point of
LBP and local minima of the Bethe free energy. We also propose a hew approach
to the uniqueness of LBP fixed point, and show various conditions of uniqueness.

1 Introduction

Pearl’s belief propagation [1] provides an efficient method for exact computation in the inference
with probabilistic models associated to trees. As an extension to general graphs allowing cycles,
Loopy Belief Propagation (LBP) algorithm [2] has been proposed, showing successful performance
in various problems such as computer vision and error correcting codes.

One of the interesting theoretical aspects of LBP is its connection with the Bethe free energy [3]. It

is known, for example, the fixed points of LBP correspond to the stationary points of the Bethe free
energy. Nonetheless, many of the properties of LBP such as exactness, convergence and stability are
still unclear, and further theoretical understanding is needed.

This paper theoretically analyzes LBP by establishing a formula asserting that the determinant of
the Hessian of the Bethe free energy equals the reciprocal of the edge zeta function up to a positive
factor. This formula derives a variety of results on the properties of LBP such as stability and
uniqueness, since the zeta function has a direct link with the dynamics of LBP as we show.

The first application of the formula is the condition for the positive definiteness of the Hessian of
the Bethe free energy. The Bethe free energy is not necessarily convex, which causes unfavorable
behaviors of LBP such as oscillation and multiple fixed points. Thus, clarifying the region where
the Hessian is positive definite is an importance problem. Unlike the previous approaches which
consider the global structure of the Bethe free energy such as [4, 5], we focus the local structure.
Namely, we provide a simple sufficient condition that determines the positive definite region: if all
the correlation coefficients of the pseudomarginals are smaller than a value given by a characteristic
of the graph, the Hessian is positive definite. Additionally, we show that the Hessian always has a
negative eigenvalue around the boundary of the domain if the graph has at least two cycles.

Second, we clarify a relation between the local stability of a LBP fixed point and the local structure
of the Bethe free energy. Such a relation is not necessarily obvious, since LBP is not the gradient
descent of the Bethe free energy. In this line of studies, Heskes [6] shows that a locally stable fixed
point of LBP is a local minimum of the Bethe free energy. It is thus interesting to ask which local



minimaof the Bethe free energy are stable or unstable fixed points of LBP. We answer this question
by elucidating the conditions of the local stability of LBP and the positive definiteness of the Bethe
free energy in terms of the eigenvalues of a matrix, which appears in the graph zeta function.

Finally, we discuss the uniqueness of LBP fixed point by developing a differential topological result
on the Bethe free energy. The result shows that the determinant of the Hessian at the fixed points,
which appears in the formula of zeta function, must satisfy a strong constraint. As a consequence,
in addition to the known result on the one-cycle case, we show that the LBP fixed point is unique
for any unattractive connected graph with two cycles without restricting the strength of interactions.

2 Loopy belief propagation algorithm and the Bethe free energy

Throughout this papet; = (V, E) is a connected undirected graph withthe vertices and” the
undirected edges. The cardinalityWdfand £’ are denoted bV and M respectively.

In this article we focus on binary variables., «; € {+1}. Suppose that the probability distribution
over the set of variables = (z;);cv is given by the following factorization form with respect@b

1
T) = = I i i) T i), 1)
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whereZ is a normalization constant angj; and; are positive functions given by;;(z;, z;) =
exp(Ji;xix;) andy;(z;) = exp(h;x;) without loss of generality.
In various applications, the computation of marginal distributipf(s;;) := Zm\{wi}p(m) and
Pij (i, T5) = D o (w,a;1 P(®) IS required though the exact computation is intractable for large
graphs. If the graph is a tree, they are efficiently computed by Pearl’s belief propagation algorithm
[1]. Even if the graph has cycles, it is empirically known that the direct application of this algorithm,
called Loopy Belief Propagation (LBP), often gives good approximation.

LBP is a message passing algorithm. For each directed edge, a messagg;vedtey) is assigned
and initialized arbitrarily. The update rule of messages is given by

:u?iv; mj Zlﬁﬂ l'ja 11)1 mz H /"Lk‘*)l xz (2)
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whereN; is the neighborhood af € V. The order of edges in the update is arbitrary. In this paper
we consideparallel update, that is, all edges are updated simultaneously. If the messages converge
to a fixed point{1{°, ; }, the approximations af; (x;) andp;; (w;, ;) are calculated by the beliefs,
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with normalization ", bi(z;) = 1and}_, . bij(2;,2;) = 1. From (2) and (3), the constraints

bij(zi, ;) >0 andzmi bij(zi, ;) = b;(x;) are automatically satisfied.

We introduce the Bethe free energy as a tractable approximation of the Gibbs free energy. The
exact distribution (1) is characterized by a variational probjgm) = argmin, Fgins(p), where

the minimum is taken over all probability distributions 0&y);cv and Fipps (D ) is theGibbs free
energydefined byFGius (p) = K L(p||p) — log Z. HereK'L(p||p) = | plog(p/p) is the Kullback-
Leibler divergence fronp to p. Note thatFgu,s () is a convex function op.

In the Bethe approximation, we confine the above minimization to the distribution of the form
b(x) o< [1;jep bij(zi ;) [Tiey bi(x:)' =% , whered; := |N;| is the degree and the constraints
bij(xi,xj) > 0, Zflji,fljj bij(a:i,a:j) = 1 and ij bij(l‘i,l‘j) = bl(l‘l) are satisfied. A set
{bi(z;),bi5(z;, z;)} satisfying these constraints is callpdeudomarginals For computational
tractability, we modify the Gibbs free energy to the objective function calietthe free energy:

Z Zb” (i, 25) log ¥y (x4, ;) ZZb (z;) log ¥ (x;)

ijeE xiT; i€V x;
+ Y0 big(wi,wg) logbig(wi,x) + > (1= di) Y bi(ws) logbi(w).  (4)
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The domain of the objective functio®’ is the set of pseudomarginals. The functiBrdoes not
necessarily have a unique minimum. The outcome of this modified variational problem is the same
as that of LBP [3]. To put it more precisely, There is a one-to-one correspondence between the set
of stationary points of the Bethe free energy and the set of fixed points of LBP.

It is more convenient if we work with minimal parameters, mean = E,,[z;] and correlation
Xij = Ep,, [ziz;]. Then we have an effective parametrization of pseudomarginals:

1 1
bij(:vi, CCj) = Z(l +m;x; + m;T; + xijxixj), bl(l‘l) = 5(1 + mz) (5)

The Bethe free energy (4) is rewritten as

F({mi,xig}) = = Y Jigxis — Y him
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n Z Zn<1+mfi$i+m,i$j+xijl‘i$j) +Z(1 —di)zn(l +;n¢xi)7 (6)
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wheren(z) := zlogz. The domain ofF is written as

L(G) := {{mi,x,;j} € RNJFMH +m;x; +mjzy + xijeiey; > 0forallij € Eandx;, x; = :I:l}.

The Hessian of", which consists of the second derivatives with respedtitg, x;;}, is a square
matrix of sizeV + M and denoted b2 F. This is considered to be a matrix-valued function on
L(G). Note that, from (6)V2F does not depend o#; andh;.

3 Zeta function and Hessian of Bethe free energy

3.1 Zeta function and lhara’s formula

For each undirected edge 6f we make a pair of oppositely directed edges, which form a set of
directed edge&’. Thus|E| = 2M. For each directed edgec E, o(e) € V is theorigin of e and

t(e) € V is theterminusof e. Fore € E, theinverse edgés denoted by, and the corresponding
undirected edge bl] = [€] € E.

A closed geodesidn G is a sequencegey,...,e;) of directed edges such thate;) =

o(ei+1) ande; # e; ;1 fori € Z/kZ. Two closed geodesics are said to dmguivalentif one is
obtained by cyclic permutation of the other. An equivalent class of closed geodesics is called a
prime cycleif it is not a repeated concatenation of a shorter closed geodesicP betthe set of

prime cycles of. For given weightas = (u. ), 3, theedge zeta functiofv, 8] is defined by

CG(U) = H(l—g(p)>_1, g(p) = Uey vt Uey, forp:(ela""ek)a

peP
whereu, € C is assumed to be sufficiently small for convergence. This is an analogue of the
Riemann zeta function which is represented by the product over all the prime numbers.
Example 1. If G is a tree, which has no prime cycleg:(u) = 1. For 1-cycle graptCy of
length N, the prime cycles aréey, es,...,en) and(én, en—1,...,€1), and thugc, (u) = (1 —
Hl]\il Ue,) " H(1 — Hf\il ug, )~ L. Except for these two types of graphs, the number of prime cycles is
infinite.
It is known that the edge zeta function has the following simple determinant formula, which gives
analytical continuation to the whol@?. Let C(E) be the set of functions on the directed edges.
We define a matrix o@'(E), which is determined by the gragh, by

1 if e # e’ ando(e) = t(e'),
Meer = {O otherwise. 0
Theorem 1([8], Theorem 3)
Ca(u) = det(I —UM)™, (8)

wherel/ is a diagonal matrix defined by, ./ := ucde .



We need to show another determinant formula of the edge zeta function, which is used in the proof
of theorem 3. We leave the proof of theorem 2 to the supplementary material.
Theorem 2 (Multivariable version of Ihara’s formula)Let C'(V') be the set of functions dii. We
define two linear operators ofi (V') by
A . Uele . 2 N Ue
ONG) = (X 7250 )10, (AN6) = 3 ;= flole)),  whee e (V).

ecE ecE
t(e)=i t(e)=i

)
Then we have
(gg(u)*l - ) det(I —UM) = det(I +D — A) ] (1 veue). (10)

le]eE

If we setu, = uforalle € E , the edge zeta function is called thera zeta functior{9] and

denoted by (u). In this single variable case, theorem 2 is reduced to lhara’s formula [10]:
2
-1 _ B (1 _.2\M u o u
Co(u)™ =det(I —uM) = (1 —u”)™ det(I + . u2D T uQA)7 (11)
whereD is thedegree matrixand.A is theadjacency matrixdefined by

(DF)@) = dif (i), (Af)(@D):= D flole)), [feC(V).

eCE t(e)=i

3.2 Main formula

Theorem 3(Main Formula). The following equality holds at any point 6{G):
(gc(u)*:) det(I —UM) = det(V2F) [] [T bos(wivay) [T T bilaa)' % 22V+4M,

ijJER xi,xj==%1 €V x;==%1
12)
whereb;; andb; are given by (5) and
Ui = Xij — MMy
’L—)] L 72
1-— m;

(13)

Proof. (The detail of the computation is given in the supplementary material.)
From (6), it is easy to see that the (E,E)-block of the Hessian is a diagonal matrix given by

’F 1 1 1 1 1
OxijOxk ij'kli(l-f-mi-i-mj +Xij * 1—mi+m; —xij * 1+mi —mj; —xij * 1—m;—my; +Xij).

Using this diagonal block, we erase (V,E)-block and (E,V)-block of the Hessian. In other words,
we choose a square mattk such thatlet X = 1 and

Y 0
o°F .
0 (8Xi_7‘anl )

After the computation given in the supplementary material, we see that

XT(V?F)X =

(xix—mimy)?

_1
(V)i = {1—7"? T ZkeN?ﬂ (A=m2)(I—mZ—mZ+2mimeXik—X2,)
i =

if 1 =3, 14
A Xij—mim; otherwise. (14)

25 17m?7m?+2m,;m.jx,;jfxfj

Fromu,_,; = X4—"™" jtjs easy to check thaty + D — A = YW, whereA andD is defined in

1—m?
i

(9) andW is a diagonal matrix defined BY; ; := &; ;(1 — m?2). Therefore,
det(I —UM) = det(Y) [[(1 =m?) ] (1 - ucue) = RH.S. of (12)
eV le]eE
For the left equality, theorem 2 is used. O

Theorem3 shows that the determinant of the Hessian of the Bethe free energy is essentially equal to
det(I—UM), the reciprocal of the edge zeta function. Since the matiA has a direct connection

with LBP as seen in section 5, the above formula derives many consequences shown in the rest of
the paper.



4 Application to positive definiteness conditions

The convexity of the Bethe free energy is an important issue, as it guarantees uniqueness of the fixed
point. Pakzad et al [11] and Heskes [5] derive sufficient conditions of convexity and show that the
Bethe free energy is convex for trees and graphs with one cycle. In this section, instead of such
global structure, we shall focus the local structure of the Bethe free energy as an application of the
main formula.

For given square matriX, Spec(X) C C denotes the set of eigenvalues (spectra), @dd) the
spectral radius of a matriX, i.e., the maximum of the modulus of the eigenvalues.

Theorem 4. Let M be the matrix given by (7). For givefm;, x;;} € L(G), U is defined by (13).
Then, SpecUM) c C\Rs>; = V?Fisapositive definite matrix gtm;, x;; }-

Proof. We definem;(t) := m; andy;;(t) := tx;; + (1 — t)m;m;. Then{m;(t), x;;(t)} € L(G)
and{m; (1), x;;(1)} = {mi,x;;}. Fort € [0,1], we define/(t) andV>F(t) in the same way by
{m;(t), x:;(t)}. We see thal/(t) = tU. SinceSpec(UM) C C\R>q, we havelet(I —tUM) # 0
Yt € [0,1]. From theorem 3det(V2F(t)) # 0 holds on this interval. Using (14) ang;(0) =
m;(0)m;(0), we can check tha??F(0) is positive definite. Since the eigenvalues\etF(t) are
real and continuous with respegthe eigenvalues 672 F(1) must be positive reals. O

We define the symmetrization of_,; andu;_,; by
Xij — MM Covbij [xi’ xj]

Pios = Bicrt 3= A )1 = md) 72~ (Vars, [ax] Ve, [25]] 2 (19
Thus,u;—juj—; = Bi—;Bi—i. Sinces;—; = B;—i, we sometimes abbreviatg_,; asf;;. From
the final expression, we see that;| < 1. Define diagonal matrice§ and B by (2).. =
Seer (1 — mf(e))l/2 and(B)..er := d o B respectively. Then we haBU/ M Z~1 = BM, because

(ZUMZ ) eor = (1= mF ) Puc(M)eer (1= m2 )72 = Be(M)eer.
ThereforeSpec(Ud M) = Spec(BM).

The following corollary gives a more explicit condition of the region where the Hessian is positive
definite in terms of the correlation coefficients of the pseudomarginals.

Corollary 1. Leta be the Perron Frobenius eigenvalue/fof and definel,-: (G) := {{m, xi;} €
L(G)||8.] < a~*forall e € E}. Then, the Hessiakr2F is positive definite o1 (G).

Proof. Since|8.| < o™, we havep(BM) < p(a=*M) = 1 ([12] Theorem 8.1.18). Therefore
Spec(BM) NR>1 = ¢. O

As is seen from (11)q~! is the distance from the origin to the nearest pole of Ihara’'s ggta).
From example 1, we see thii(u) = 1 for a treeG and{c,, (u) = (1 — «™)~2 for a 1-cycle graph
Cy. Thereforea™! is co and1 respectively. In these cases, 1 (G) = L(G) and F is a strictly
convex function orL(G), becausés.| < 1 always holds. This reproduces the results shown in [11].
In general, using theorem 8.1.22 of [12], we havie,cy d; — 1 < o < max;ey d; — 1.

Theorem 3 is also useful to show non-convexity.

Corollary 2. Let{m;(t) := 0, x;;(t) :=t} € L(G) for t < 1. Then we have
lim det(V2F(t))(1 — )MTN=1 = o= M=N+1(pr — N)k(G), (16)
e

wherex(G) is the number of spanning treesdh In particular, F' is never convex o (G) for any
connected graph with at least two linearly independent cyclesM.e- N > 1.

Proof. The equation (16) is obtained by Hashimoto’s theorem [13], which gives the 1 limit
of the Ihara zeta function. (See supplementary material for the detailj # N > 1, the right
hand side of (16) is negative. As approache§itg = 0, x;; = 1} € L(G), the determinant of the
Hessian diverges te co. Therefore the Hessian is not positive definite near the point. O

Summarizinghe results in this section, we conclude thais convex onL(G) if and only if G is a
tree or a graph with one cycle. To the best of our knowledge, this is the first proof of this fact.



5 Application to stability analysis

In this section we discuss the local stability of LBP and the local structure of the Bethe free energy
around a LBP fixed point. Heskes [6] shows that a locally stable fixed point of sufficiently damped
LBP is a local minima of the Bethe free energy. The converse is not necessarily true in general, and
we will elucidate the gap between these two properties.

First, we regard the LBP update as a dynamical system. Since the model is binary, each message
wi—j(z;) is parametrized by one parameter, sy ;. The state of LBP algorithm is expressed

byn = (ne).c5 € C(E), and the update rule (2) is identified with a transfoffron C(E),
n"°¥ = T'(n). Then, the set of fixed points of LBP {>° € C(E)|T'(n>) = n°°}.

A fixed pointn is calledlocally stableif LBP starting with a point sufficiently close 9> con-
verges ton>. The local stability is determined by the lineariziéh around the fixed point. As is
discussed in [14]p*° is locally stable if and only iSpec(7”(n*>°)) C {A € C||A| < 1}.

To suppress oscillatory behaviors of LBP, damping of update= (1 — ¢)T + eI is sometimes
useful, where) < e < 1 is a damping strength andis the identity. A fixed point is locally stable
with some damping if and only Bpec(T’(n*°)) C {X € C|Re) < 1}.

There are many representations of the linearization (derivative) of LBP update (see [14, 15]), we
choose a good coordinate following Furtlehner et al [16]. In section 4 of [16], they transform mes-
sages ag—; — MHJ/MH and functions asy;; — b;;/(bib;) andy; — b;, WhereuH is

the message of the fixed pomt This changes only the representauons of messages and functions,
and does not affect LBP essentially. This transformation califes®) — PT"(n>)P~! with an
invertible matrix P. Using this transformation, we see that the following fact holds. (See supple-
mentary material for the detail.)

Theorem 5([16], Proposition 4.5) Letw;_,; be given by (3), (5) and (13) at a LBP fixed paiit.
The derivativel” (n>°) is similar tod M, i.e. UM = PT'(n>) P~ with an invertible matrixP.

Sincedet(I — T' (n°°)) = det(I — UM), the formula in theorem 3 implies a direct link between

the Iinearizatiorﬂ“/(noo) and the local structure of the Bethe free energy. From theorem 4, we have
that a fixed point of LBP is a local minimum of the Bethe free energgjplec(7”(n>°)) C C\R>;.

It is now clear that the condition for positive definiteness, local stability of damped LBP and local
stability of undamped LBP are given in terms of the set of eigenvali&®R >4, {\ € C|ReX < 1}

and{\ € C||A| < 1} respectively. A locally stable fixed point of sufficiently damped LBP is a
local minimum of the Bethe free energy, becafidec C|ReX < 1} isincluded inC \ R>;. This
reproduces Heskes's result [6]. Moreover, we see the gap between the locally stable fixed points
with some damping and the local minima of the Bethe free ener@pedt (7’ (n>°)) is included in

C\ R>; but notin{\ € C|ReX < 1}, the fixed point is a local minimum of the Bethe free energy
though it is not a locally stable fixed point of LBP with any damping.

It is interesting to ask under which condition a local minimum of the Bethe free energy is a stable
fixed point of (damped) LBP. While we do not know a complete answer, for an attractive model,
which is defined by/;; > 0, the following theorem implies that if a stable fixed point becomes
unstable by changing;; andh;, the corresponding local minimum also disappears.

Theorem 6. Let us consider continuously parametrized attractive modéls(¢), ¥;(¢)}, e.g. ¢

is a temperature:;;(t) = exp(t—'J;x;z;) andy;(t) = exp(t~'h;z;). For givent, run LBP
algorithm and find a (stable) fixed point. If we continuously changed see the LBP fixed point
becomes unstable across= t;, then the corresponding local minimum of the Bethe free energy
becomes a saddle point acrass: .

Proof. From (3), we seé;;(x;,z;) o« exp(Ji;jz;x; + 0,2, + 0;x;) for somed; andf;. From
Jl‘j >0, we haV@OVbij [l‘i, .%‘j] = Xij — Mim; > 0, and thumHj > 0. When the LBP fixed point
becomes unstable, the Perron Frobenius eigenvaldééfgoes oveil, which meanslet (I —UM)
crosse$). From theorem 3 we see thadt(V2F) becomes positive to negativetat to. O

Theoremb extends theorem 2 of [14], which discusses only the case of vanishing locaFfjelds
and the trivial fixed point (i.em; = 0).



6 Application to uniqueness of LBP fixed point

The uniqueness of LBP fixed point is a concern of many studies, because the property guarantees that
LBP finds the global minimum of the Bethe free energy if it converges. The major approaches to the
uniqueness is to consider equivalent minimax problem [5], contraction property of LBP dynamics
[17, 18], and to use the theory of Gibbs measure [19]. We will propose a different, differential
topological approach to this problem.

In our approach, in combination with theorem 3, the following theorem is the basic apparatus.
Theorem 7. If det V2F(q) # 0 for all ¢ € (VF)~1(0) then

1 ifz>0,

2 _ . —
z sgn (det V2F(q)) =1, wheresgn(z) := {1 i< 0.

¢:VF(q)=0

We call each summand, which+d or —1, the index off" at q.

Note that the sefV F') ~1(0), which is the stationary points of the Bethe free energy, coincides with
the fixed points of LBP. The above theorem asserts that the sum of indexes of all the fixed points
must be one. As a consequence, the number of the fixed points of LBP is always odd. Note also that
the index is a local quantity, while the assertion expresses the global structure of the féfiction

For the proof of theorem 7, we prepare two lemmas. The proof of lemma 1 is shown in the supple-
mentary material. Lemma 2 is a standard result in differential topology, and we refer [20] theorem
13.1.2 and comments in p.104 for the proof.

Lemma 1. If a sequencdq,} C L(G) converges to a poin. € OL(G), then||VF(q,)|| — oo,
wheredL(G) is the boundary of (G) C RN *+M,

Lemma 2. Let M; and M, be compact, connected and orientable manifolds with boundaries.
Assume that the dimensions f; and M, are the same. Lef : M; — M, be a smooth map
satisfyingf (0M;) C M. For aregular value op € Mo, i.e.det(Vf(q)) # Oforall g € f~1(p),

we define the degree of the m@py deg f := quf,l(p) sgn(det V f(q)). Thendeg f does not
depend on the choice of a regular valpe M;.

Sketch of proofDefine a mapd : L(G) — RN*M py & := VF + (). Note that® does not
depend orh andJ as seen from (6). Then it is enough to prove

Z segn(det V®(q)) = Z sgn(det V&(q)), a7)

qe@=1((%) qe®~1(0)

becauseb—!(0) has a unique elemetin; = 0, y;; = 0}, at whichV?F is positive definite, and
the right hand side of (17) is equal to one. Define a sequence of manffoldsby C,, := {q €
L(G) Xoijep 2ou; 25 log bij < n}, which increasingly converges fo(G). TakeK > 0 ande > 0
to satisfyK —e > ||(%)||. From lemma 1, for sufficiently large,, we haved=(0), &~ (%) c Cy,
and®(0C,,,) N Bo(K) = ¢, whereB(K) is the closed ball of radiuf’ at the origin. Lefll, :
RN+M s B, (K) be a smooth map that is the identity 89( /K — ¢), monotonically increasing on
|||, andIl (z) = £ for ||z|| > K. We obtain ama@ := II. o & : C,,, — By(K) such that

e

®(9C,,,) C dBy(K). Applying lemma 2 yields (17). O

If we can guarantee that the index of every fixed poirtisn advance of running LBP, we conclude
that fixed point of LBP is unique. We have the following a priori informationgor

Lemma 3. Let 3;; be given by (15) at any fixed point of LBP. Thigh;| < tanh(|J;;|) and
sgn(B;;) = sgn(J;;) hold.

Proof. From (3), we see thab;;(z;,z;) o« exp(Jix;xz; + 6,2, + 0;x;) for somed; and
;. With (15) and straightforward computation, we obtaiy = sinh(2J;;)(cosh(26;) +
cosh(2.J;;))~1/2(cosh(26;) +cosh(2.J;;))~'/2. The bound is attained whél = 0 andd; = 0. O

Fromtheorem 7 and lemma 3, we can immediately obtain the uniqueness condition in [18], though
the stronger contractive property is proved under the same condition in [18].
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Figurel: Graph of Example 2. Figure2: GraphG. Figure3: Two other types.

Corollary 3 ([18]). If p(JM) < 1, then the fixed point of LBP is unique, whefeis a diagonal
matrix defined byJ, ., = tanh(]J.|)dc e -

Proof. Since|8;;| < tanh(].J;;]), we havep(BM) < p(JM) < 1. ([12] Theorem 8.1.18.) Then
det(I — BM) = det(I —UM) > 0 implies that the index of any LBP fixed point mustbé. O

In the proof of the above corollary, we only used the bound of modulus. In the following case of
corollary 4, we can utilize the information of signs. To state the corollary, we need a terminology.
The interactiong J;;, h;} and{.J;, h;} are said to bequivalenif there exists(s;) € {+1}" such
thatJ;; = J;;sis; andh; = h;s;. Since an equivalent model is obtained by gauge transformation
T; — L 85, the uniqueness property of LBP for equivalent models is unchanged.

Corollary 4. If the number of linearly independent cyclet®fs two (i.e.M — N + 1 = 2), and the
interaction is not equivalent to attractive model, then the LBP fixed point is unique.

The proof is shown in the supplementary material. We give an example to illustrate the outline.

Example 2. Let V := {1,2,3,4} and F := {12,13,14,23,34}. The interactions are given by
arbitrary{h;} and{—Ji2, J13, J1a, Jo3, J34} With J;; > 0. See figure 1. It is enough to check that
det(I — BM) > 0 for arbitrary0 < i3, o3, f14, 834 < L and—1 < 12 < 0. Since the prime
cycles ofG bijectively correspond to those 6f(in figure 2), we haveet(I— BM) = det( —BM),
whereS,, = Biafs, Be, = Brs, andfe, = Bsa. We see thatlet(I — BM) = (1 — B, B, —
BeyBes — BezBes — 2561562563)( — BeyrBes — Bey Bey — BeaBes + 2Be, Bey Bey) > 0. In other cases,

we can reduce to the graghor the graphs in figure 3 similarly (see the supplementary material).

For attractive models, the fixed point of the LBP is not necessarily unique.

For graphs with multiple cycles, all the existing results on uniqgueness make assumptions that up-
perboundJ;;| essentially. In contrast, corollary 4 applies to arbitrary strength of interactions if the
graph has two cycles and the interactions are not attractive. It is noteworthy that, from corollary 2,
the Bethe free energy is non-convex in the situation of corollary 4, while the fixed point is unique.

7 Concluding remarks

For binary pairwise models, we show the connection between the edge zeta function and the Bethe
free energy in theorem 3, in the proof of which the multi-variable version of Ihara’s formula (theorem
2) is essential. After the initial submission of this paper, we found that theorem 3 is extended to a
more general class of models including multinomial models and Gaussian models represented by
arbitrary factor graphs. We will discuss the extended formula and its applications in a future paper.

Some recent researches on LBP have suggested the importance of zeta function. In the context of the
LDPC code, which is an important application of LBP, Koetter et al [21, 22] show the connection
between pseudo-codewords and the edge zeta function. On the LBP for the Gaussian graphical
model, Johnson et al [23] give zeta-like product formula of the partition function. While these are
not directly related to our work, pursuing covered connections is an interesting future research topic.
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