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Abstract

We propose a new approach to the analysis of Loopy Belief Propagation (LBP) by
establishing a formula that connects the Hessian of the Bethe free energy with the
edge zeta function. The formula has a number of theoretical implications on LBP.
It is applied to give a sufficient condition that the Hessian of the Bethe free energy
is positive definite, which shows non-convexity for graphs with multiple cycles.
The formula clarifies the relation between the local stability of a fixed point of
LBP and local minima of the Bethe free energy. We also propose a new approach
to the uniqueness of LBP fixed point, and show various conditions of uniqueness.

1 Introduction

Pearl’s belief propagation [1] provides an efficient method for exact computation in the inference
with probabilistic models associated to trees. As an extension to general graphs allowing cycles,
Loopy Belief Propagation (LBP) algorithm [2] has been proposed, showing successful performance
in various problems such as computer vision and error correcting codes.

One of the interesting theoretical aspects of LBP is its connection with the Bethe free energy [3]. It
is known, for example, the fixed points of LBP correspond to the stationary points of the Bethe free
energy. Nonetheless, many of the properties of LBP such as exactness, convergence and stability are
still unclear, and further theoretical understanding is needed.

This paper theoretically analyzes LBP by establishing a formula asserting that the determinant of
the Hessian of the Bethe free energy equals the reciprocal of the edge zeta function up to a positive
factor. This formula derives a variety of results on the properties of LBP such as stability and
uniqueness, since the zeta function has a direct link with the dynamics of LBP as we show.

The first application of the formula is the condition for the positive definiteness of the Hessian of
the Bethe free energy. The Bethe free energy is not necessarily convex, which causes unfavorable
behaviors of LBP such as oscillation and multiple fixed points. Thus, clarifying the region where
the Hessian is positive definite is an importance problem. Unlike the previous approaches which
consider the global structure of the Bethe free energy such as [4, 5], we focus the local structure.
Namely, we provide a simple sufficient condition that determines the positive definite region: if all
the correlation coefficients of the pseudomarginals are smaller than a value given by a characteristic
of the graph, the Hessian is positive definite. Additionally, we show that the Hessian always has a
negative eigenvalue around the boundary of the domain if the graph has at least two cycles.

Second, we clarify a relation between the local stability of a LBP fixed point and the local structure
of the Bethe free energy. Such a relation is not necessarily obvious, since LBP is not the gradient
descent of the Bethe free energy. In this line of studies, Heskes [6] shows that a locally stable fixed
point of LBP is a local minimum of the Bethe free energy. It is thus interesting to ask which local
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minimaof the Bethe free energy are stable or unstable fixed points of LBP. We answer this question
by elucidating the conditions of the local stability of LBP and the positive definiteness of the Bethe
free energy in terms of the eigenvalues of a matrix, which appears in the graph zeta function.

Finally, we discuss the uniqueness of LBP fixed point by developing a differential topological result
on the Bethe free energy. The result shows that the determinant of the Hessian at the fixed points,
which appears in the formula of zeta function, must satisfy a strong constraint. As a consequence,
in addition to the known result on the one-cycle case, we show that the LBP fixed point is unique
for any unattractive connected graph with two cycles without restricting the strength of interactions.

2 Loopy belief propagation algorithm and the Bethe free energy

Throughout this paper,G = (V,E) is a connected undirected graph withV the vertices andE the
undirected edges. The cardinality ofV andE are denoted byN andM respectively.

In this article we focus on binary variables,i.e., xi ∈ {±1}. Suppose that the probability distribution
over the set of variablesx = (xi)i∈V is given by the following factorization form with respect toG:

p(x) =
1

Z

∏
ij∈E

ψij(xi, xj)
∏
i∈V

ψi(xi), (1)

whereZ is a normalization constant andψij andψi are positive functions given byψij(xi, xj) =
exp(Jijxixj) andψi(xi) = exp(hixi) without loss of generality.

In various applications, the computation of marginal distributionspi(xi) :=
∑

x\{xi} p(x) and
pij(xi, xj) :=

∑
x\{xixj} p(x) is required though the exact computation is intractable for large

graphs. If the graph is a tree, they are efficiently computed by Pearl’s belief propagation algorithm
[1]. Even if the graph has cycles, it is empirically known that the direct application of this algorithm,
called Loopy Belief Propagation (LBP), often gives good approximation.

LBP is a message passing algorithm. For each directed edge, a message vectorµi→j(xj) is assigned
and initialized arbitrarily. The update rule of messages is given by

µnew
i→j(xj) ∝

∑
xi

ψji(xj , xi)ψi(xi)
∏

k∈Ni\j

µk→i(xi), (2)

whereNi is the neighborhood ofi ∈ V . The order of edges in the update is arbitrary. In this paper
we considerparallel update, that is, all edges are updated simultaneously. If the messages converge
to a fixed point{µ∞

i→j}, the approximations ofpi(xi) andpij(xi, xj) are calculated by the beliefs,

bi(xi) ∝ ψi(xi)
∏

k∈Ni

µ∞
k→i(xi), bij(xi, xj) ∝ ψij(xi, xj)ψi(xi)ψj(xj)

∏
k∈Ni\j

µ∞
k→i(xi)

∏
k∈Nj\i

µ∞
k→j(xj),

(3)
with normalization

∑
xi
bi(xi) = 1 and

∑
xi,xj

bij(xi, xj) = 1. From (2) and (3), the constraints
bij(xi, xj) > 0 and

∑
xj
bij(xi, xj) = bi(xi) are automatically satisfied.

We introduce the Bethe free energy as a tractable approximation of the Gibbs free energy. The
exact distribution (1) is characterized by a variational problemp(x) = argminp̂ FGibbs(p̂), where
the minimum is taken over all probability distributions on(xi)i∈V andFGibbs(p̂) is theGibbs free
energydefined byFGibbs(p̂) = KL(p̂||p)− logZ. HereKL(p̂||p) =

∫
p̂ log(p̂/p) is the Kullback-

Leibler divergence from̂p to p. Note thatFGibbs(p̂) is a convex function of̂p.

In the Bethe approximation, we confine the above minimization to the distribution of the form
b(x) ∝

∏
ij∈E bij(xi, xj)

∏
i∈V bi(xi)

1−di , wheredi := |Ni| is the degree and the constraints
bij(xi, xj) > 0,

∑
xi,xj

bij(xi, xj) = 1 and
∑

xj
bij(xi, xj) = bi(xi) are satisfied. A set

{bi(xi), bij(xi, xj)} satisfying these constraints is calledpseudomarginals. For computational
tractability, we modify the Gibbs free energy to the objective function calledBethe free energy:

F (b) :=−
∑
ij∈E

∑
xixj

bij(xi, xj) logψij(xi, xj)−
∑
i∈V

∑
xi

bi(xi) logψi(xi)

+
∑
ij∈E

∑
xixj

bij(xi, xj) log bij(xi, xj) +
∑
i∈V

(1− di)
∑
xi

bi(xi) log bi(xi). (4)
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The domain of the objective functionF is the set of pseudomarginals. The functionF does not
necessarily have a unique minimum. The outcome of this modified variational problem is the same
as that of LBP [3]. To put it more precisely, There is a one-to-one correspondence between the set
of stationary points of the Bethe free energy and the set of fixed points of LBP.

It is more convenient if we work with minimal parameters, meanmi = Ebi [xi] and correlation
χij = Ebij [xixj ]. Then we have an effective parametrization of pseudomarginals:

bij(xi, xj) =
1

4
(1 +mixi +mjxj + χijxixj), bi(xi) =

1

2
(1 +mi). (5)

The Bethe free energy (4) is rewritten as

F ({mi, χij}) = −
∑
ij∈E

Jijχij −
∑
i∈V

himi

+
∑
ij∈E

∑
xixj

η
(1+mixi+mjxj+ χijxixj

4

)
+

∑
i∈V

(1− di)
∑
xi

η
(1 +mixi

2

)
, (6)

whereη(x) := x log x. The domain ofF is written as

L(G) :=
{
{mi, χij} ∈ RN+M |1+mixi+mjxj +χijxixj > 0 for all ij ∈ E andxi, xj = ±1

}
.

The Hessian ofF , which consists of the second derivatives with respect to{mi, χij}, is a square
matrix of sizeN +M and denoted by∇2F . This is considered to be a matrix-valued function on
L(G). Note that, from (6),∇2F does not depend onJij andhi.

3 Zeta function and Hessian of Bethe free energy

3.1 Zeta function and Ihara’s formula

For each undirected edge ofG, we make a pair of oppositely directed edges, which form a set of
directed edges⃗E. Thus|E⃗| = 2M . For each directed edgee ∈ E⃗, o(e) ∈ V is theorigin of e and
t(e) ∈ V is theterminusof e. For e ∈ E⃗, the inverse edgeis denoted bȳe, and the corresponding
undirected edge by[e] = [ē] ∈ E.

A closed geodesicin G is a sequence(e1, . . . , ek) of directed edges such thatt(ei) =
o(ei+1) andei ̸= ēi+1 for i ∈ Z/kZ. Two closed geodesics are said to beequivalentif one is
obtained by cyclic permutation of the other. An equivalent class of closed geodesics is called a
prime cycleif it is not a repeated concatenation of a shorter closed geodesic. LetP be the set of
prime cycles ofG. For given weightsu = (ue)e∈E⃗ , theedge zeta function[7, 8] is defined by

ζG(u) :=
∏
p∈P

(1− g(p))−1, g(p) := ue1 · · ·uek for p = (e1, . . . , ek),

whereue ∈ C is assumed to be sufficiently small for convergence. This is an analogue of the
Riemann zeta function which is represented by the product over all the prime numbers.

Example 1. If G is a tree, which has no prime cycles,ζG(u) = 1. For 1-cycle graphCN of
lengthN , the prime cycles are(e1, e2, . . . , eN ) and(ēN , ēN−1, . . . , ē1), and thusζCN (u) = (1 −∏N

l=1 uel)
−1(1−

∏N
l=1 uēl)

−1. Except for these two types of graphs, the number of prime cycles is
infinite.

It is known that the edge zeta function has the following simple determinant formula, which gives
analytical continuation to the wholeC2M . LetC(E⃗) be the set of functions on the directed edges.
We define a matrix onC(E⃗), which is determined by the graphG, by

Me,e′ :=

{
1 if e ̸= ē′ ando(e) = t(e′),

0 otherwise.
(7)

Theorem 1([8], Theorem 3).
ζG(u) = det(I − UM)−1, (8)

whereU is a diagonal matrix defined byUe,e′ := ueδe,e′ .
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We need to show another determinant formula of the edge zeta function, which is used in the proof
of theorem 3. We leave the proof of theorem 2 to the supplementary material.
Theorem 2 (Multivariable version of Ihara’s formula). LetC(V ) be the set of functions onV . We
define two linear operators onC(V ) by

(D̂f)(i) :=
( ∑

e∈E⃗
t(e)=i

ueuē
1− ueuē

)
f(i), (Âf)(i) :=

∑
e∈E⃗

t(e)=i

ue
1− ueuē

f(o(e)), wheref ∈ C(V ).

(9)
Then we have(

ζG(u)
−1 =

)
det(I − UM) = det(I + D̂ − Â)

∏
[e]∈E

(1− ueuē). (10)

If we setue = u for all e ∈ E⃗ , the edge zeta function is called theIhara zeta function[9] and
denoted byζG(u). In this single variable case, theorem 2 is reduced to Ihara’s formula [10]:

ζG(u)
−1 = det(I − uM) = (1− u2)M det(I +

u2

1− u2
D − u

1− u2
A), (11)

whereD is thedegree matrixandA is theadjacency matrixdefined by

(Df)(i) := dif(i), (Af)(i) :=
∑

e∈E⃗,t(e)=i

f(o(e)), f ∈ C(V ).

3.2 Main formula

Theorem 3(Main Formula).The following equality holds at any point ofL(G):(
ζG(u)

−1=
)
det(I − UM) = det(∇2F )

∏
ij∈E

∏
xi,xj=±1

bij(xi, xj)
∏
i∈V

∏
xi=±1

bi(xi)
1−di 22N+4M ,

(12)
wherebij andbi are given by (5) and

ui→j :=
χij −mimj

1−m2
j

. (13)

Proof. (The detail of the computation is given in the supplementary material.)
From (6), it is easy to see that the (E,E)-block of the Hessian is a diagonal matrix given by

∂2F

∂χij∂χkl
= δij,kl

1

4

( 1

1+mi+mj+χij
+

1

1−mi+mj−χij
+

1

1+mi−mj−χij
+

1

1−mi−mj+χij

)
.

Using this diagonal block, we erase (V,E)-block and (E,V)-block of the Hessian. In other words,
we choose a square matrixX such thatdetX = 1 and

XT (∇2F )X =

[
Y 0

0
(

∂2F
∂χij∂χkl

)]
.

After the computation given in the supplementary material, we see that

(Y )i,j =

 1
1−m2

i
+
∑

k∈Ni

(χik−mimk)
2

(1−m2
i )(1−m2

i−m2
k+2mimkχik−χ2

ik)
if i = j,

−Ai,j
χij−mimj

1−m2
i−m2

j+2mimjχij−χ2
ij

otherwise.
(14)

Fromuj→i =
χij−mimj

1−m2
i

, it is easy to check thatIN + D̂ − Â = YW , whereÂ andD̂ is defined in

(9) andW is a diagonal matrix defined byWi,j := δi,j(1−m2
i ). Therefore,

det(I − UM) = det(Y )
∏
i∈V

(1−m2
i )

∏
[e]∈E

(1− ueuē) = R.H.S. of (12)

For the left equality, theorem 2 is used.

Theorem3 shows that the determinant of the Hessian of the Bethe free energy is essentially equal to
det(I−UM), the reciprocal of the edge zeta function. Since the matrixUM has a direct connection
with LBP as seen in section 5, the above formula derives many consequences shown in the rest of
the paper.
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4 Application to positive definiteness conditions

The convexity of the Bethe free energy is an important issue, as it guarantees uniqueness of the fixed
point. Pakzad et al [11] and Heskes [5] derive sufficient conditions of convexity and show that the
Bethe free energy is convex for trees and graphs with one cycle. In this section, instead of such
global structure, we shall focus the local structure of the Bethe free energy as an application of the
main formula.

For given square matrixX, Spec(X) ⊂ C denotes the set of eigenvalues (spectra), andρ(X) the
spectral radius of a matrixX, i.e., the maximum of the modulus of the eigenvalues.
Theorem 4. LetM be the matrix given by (7). For given{mi, χij} ∈ L(G), U is defined by (13).
Then, Spec(UM) ⊂ C \ R≥1 =⇒ ∇2F is a positive definite matrix at{mi, χij}.

Proof. We definemi(t) := mi andχij(t) := tχij + (1 − t)mimj . Then{mi(t), χij(t)} ∈ L(G)
and{mi(1), χij(1)} = {mi, χij}. For t ∈ [0, 1], we defineU(t) and∇2F (t) in the same way by
{mi(t), χij(t)}. We see thatU(t) = tU . SinceSpec(UM) ⊂ C\R≥1, we havedet(I−tUM) ̸= 0
∀t ∈ [0, 1]. From theorem 3,det(∇2F (t)) ̸= 0 holds on this interval. Using (14) andχij(0) =
mi(0)mj(0), we can check that∇2F (0) is positive definite. Since the eigenvalues of∇2F (t) are
real and continuous with respectt, the eigenvalues of∇2F (1) must be positive reals.

We define the symmetrization ofui→j anduj→i by

βi→j = βj→i :=
χij −mimj

{(1−m2
i )(1−m2

j )}1/2
=

Covbij [xi, xj ]

{Varbi [xi]Varbj [xj ]}1/2
. (15)

Thus,ui→juj→i = βi→jβj→i. Sinceβi→j = βj→i, we sometimes abbreviateβi→j asβij . From
the final expression, we see that|βij | < 1. Define diagonal matricesZ andB by (Z)e,e′ :=

δe,e′(1−m2
t(e))

1/2 and(B)e,e′ := δe,e′βe respectively. Then we haveZUMZ−1 = BM, because

(ZUMZ−1)e,e′ = (1−m2
t(e))

1/2ue(M)e,e′(1−m2
o(e))

−1/2 = βe(M)e,e′ .

ThereforeSpec(UM) = Spec(BM).

The following corollary gives a more explicit condition of the region where the Hessian is positive
definite in terms of the correlation coefficients of the pseudomarginals.
Corollary 1. Letα be the Perron Frobenius eigenvalue ofM and defineLα−1(G) := {{mi, χij} ∈
L(G)||βe| < α−1 for all e ∈ E⃗}. Then, the Hessian∇2F is positive definite onLα−1(G).

Proof. Since|βe| < α−1, we haveρ(BM) < ρ(α−1M) = 1 ([12] Theorem 8.1.18). Therefore
Spec(BM) ∩ R≥1 = ϕ.

As is seen from (11),α−1 is the distance from the origin to the nearest pole of Ihara’s zetaζG(u).
From example 1, we see thatζG(u) = 1 for a treeG andζCN

(u) = (1− uN )−2 for a 1-cycle graph
CN . Thereforeα−1 is ∞ and1 respectively. In these cases,Lα−1(G) = L(G) andF is a strictly
convex function onL(G), because|βe| < 1 always holds. This reproduces the results shown in [11].
In general, using theorem 8.1.22 of [12], we havemini∈V di − 1 ≤ α ≤ maxi∈V di − 1.

Theorem 3 is also useful to show non-convexity.
Corollary 2. Let{mi(t) := 0, χij(t) := t} ∈ L(G) for t < 1. Then we have

lim
t→1

det(∇2F (t))(1− t)M+N−1 = −2−M−N+1(M −N)κ(G), (16)

whereκ(G) is the number of spanning trees inG. In particular,F is never convex onL(G) for any
connected graph with at least two linearly independent cycles, i.e.M −N ≥ 1.

Proof. The equation (16) is obtained by Hashimoto’s theorem [13], which gives theu → 1 limit
of the Ihara zeta function. (See supplementary material for the detail.) IfM − N ≥ 1, the right
hand side of (16) is negative. As approaches to{mi = 0, χij = 1} ∈ L(G), the determinant of the
Hessian diverges to−∞. Therefore the Hessian is not positive definite near the point.

Summarizingthe results in this section, we conclude thatF is convex onL(G) if and only ifG is a
tree or a graph with one cycle. To the best of our knowledge, this is the first proof of this fact.
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5 Application to stability analysis

In this section we discuss the local stability of LBP and the local structure of the Bethe free energy
around a LBP fixed point. Heskes [6] shows that a locally stable fixed point of sufficiently damped
LBP is a local minima of the Bethe free energy. The converse is not necessarily true in general, and
we will elucidate the gap between these two properties.

First, we regard the LBP update as a dynamical system. Since the model is binary, each message
µi→j(xj) is parametrized by one parameter, sayηi→j . The state of LBP algorithm is expressed
by η = (ηe)e∈E⃗ ∈ C(E⃗), and the update rule (2) is identified with a transformT on C(E⃗),

ηnew = T (η). Then, the set of fixed points of LBP is{η∞ ∈ C(E⃗)|T (η∞) = η∞}.

A fixed pointη∞ is calledlocally stableif LBP starting with a point sufficiently close toη∞ con-
verges toη∞. The local stability is determined by the linearizionT ′ around the fixed point. As is
discussed in [14],η∞ is locally stable if and only ifSpec(T ′(η∞)) ⊂ {λ ∈ C||λ| < 1}.

To suppress oscillatory behaviors of LBP, damping of updateTϵ := (1 − ϵ)T + ϵI is sometimes
useful, where0 ≤ ϵ < 1 is a damping strength andI is the identity. A fixed point is locally stable
with some damping if and only ifSpec(T ′(η∞)) ⊂ {λ ∈ C|Reλ < 1}.

There are many representations of the linearization (derivative) of LBP update (see [14, 15]), we
choose a good coordinate following Furtlehner et al [16]. In section 4 of [16], they transform mes-
sages asµi→j → µi→j/µ

∞
i→j and functions asψij → bij/(bibj) andψi → bi, whereµ∞

i→j is
the message of the fixed point. This changes only the representations of messages and functions,
and does not affect LBP essentially. This transformation causesT ′(η∞) → P T ′(η∞)P−1 with an
invertible matrixP . Using this transformation, we see that the following fact holds. (See supple-
mentary material for the detail.)

Theorem 5([16], Proposition 4.5).Letui→j be given by (3), (5) and (13) at a LBP fixed pointη∞.
The derivativeT ′(η∞) is similar toUM, i.e.UM = P T ′(η∞)P−1 with an invertible matrixP .

Sincedet(I − T
′
(η∞)) = det(I − UM), the formula in theorem 3 implies a direct link between

the linearizationT
′
(η∞) and the local structure of the Bethe free energy. From theorem 4, we have

that a fixed point of LBP is a local minimum of the Bethe free energy ifSpec(T ′(η∞)) ⊂ C\R≥1.

It is now clear that the condition for positive definiteness, local stability of damped LBP and local
stability of undamped LBP are given in terms of the set of eigenvalues,C \R≥1, {λ ∈ C|Reλ < 1}
and{λ ∈ C||λ| < 1} respectively. A locally stable fixed point of sufficiently damped LBP is a
local minimum of the Bethe free energy, because{λ ∈ C|Reλ < 1} is included inC \ R≥1. This
reproduces Heskes’s result [6]. Moreover, we see the gap between the locally stable fixed points
with some damping and the local minima of the Bethe free energy: ifSpec(T ′(η∞)) is included in
C \ R≥1 but not in{λ ∈ C|Reλ < 1}, the fixed point is a local minimum of the Bethe free energy
though it is not a locally stable fixed point of LBP with any damping.

It is interesting to ask under which condition a local minimum of the Bethe free energy is a stable
fixed point of (damped) LBP. While we do not know a complete answer, for an attractive model,
which is defined byJij ≥ 0, the following theorem implies that if a stable fixed point becomes
unstable by changingJij andhi, the corresponding local minimum also disappears.

Theorem 6. Let us consider continuously parametrized attractive models{ψij(t), ψi(t)}, e.g. t
is a temperature:ψij(t) = exp(t−1Jijxixj) andψi(t) = exp(t−1hixi). For givent, run LBP
algorithm and find a (stable) fixed point. If we continuously changet and see the LBP fixed point
becomes unstable acrosst = t0, then the corresponding local minimum of the Bethe free energy
becomes a saddle point acrosst = t0.

Proof. From (3), we seebij(xi, xj) ∝ exp(Jijxixj + θixi + θjxj) for someθi and θj . From
Jij ≥ 0, we haveCovbij [xi, xj ] = χij −mimj ≥ 0, and thusui→j ≥ 0. When the LBP fixed point
becomes unstable, the Perron Frobenius eigenvalue ofUM goes over1, which meansdet(I−UM)
crosses0. From theorem 3 we see thatdet(∇2F ) becomes positive to negative att = t0.

Theorem6 extends theorem 2 of [14], which discusses only the case of vanishing local fieldshi = 0
and the trivial fixed point (i.e.mi = 0).
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6 Application to uniqueness of LBP fixed point

The uniqueness of LBP fixed point is a concern of many studies, because the property guarantees that
LBP finds the global minimum of the Bethe free energy if it converges. The major approaches to the
uniqueness is to consider equivalent minimax problem [5], contraction property of LBP dynamics
[17, 18], and to use the theory of Gibbs measure [19]. We will propose a different, differential
topological approach to this problem.

In our approach, in combination with theorem 3, the following theorem is the basic apparatus.

Theorem 7. If det∇2F (q) ̸= 0 for all q ∈ (∇F )−1(0) then∑
q:∇F (q)=0

sgn
(
det∇2F (q)

)
= 1, where sgn(x) :=

{
1 if x > 0,

−1 if x < 0.

We call each summand, which is+1 or −1, the index ofF at q.

Note that the set(∇F )−1(0), which is the stationary points of the Bethe free energy, coincides with
the fixed points of LBP. The above theorem asserts that the sum of indexes of all the fixed points
must be one. As a consequence, the number of the fixed points of LBP is always odd. Note also that
the index is a local quantity, while the assertion expresses the global structure of the functionF .

For the proof of theorem 7, we prepare two lemmas. The proof of lemma 1 is shown in the supple-
mentary material. Lemma 2 is a standard result in differential topology, and we refer [20] theorem
13.1.2 and comments in p.104 for the proof.

Lemma 1. If a sequence{qn} ⊂ L(G) converges to a pointq∗ ∈ ∂L(G), then∥∇F (qn)∥ → ∞,
where∂L(G) is the boundary ofL(G) ⊂ RN+M .

Lemma 2. Let M1 andM2 be compact, connected and orientable manifolds with boundaries.
Assume that the dimensions ofM1 andM2 are the same. Letf : M1 → M2 be a smooth map
satisfyingf(∂M1) ⊂ ∂M2. For a regular value ofp ∈M2, i.e.det(∇f(q)) ̸= 0 for all q ∈ f−1(p),
we define the degree of the mapf by deg f :=

∑
q∈f−1(p) sgn(det∇f(q)). Thendeg f does not

depend on the choice of a regular valuep ∈M2.

Sketch of proof.Define a mapΦ : L(G) → RN+M by Φ := ∇F +
(
h
J

)
. Note thatΦ does not

depend onh andJ as seen from (6). Then it is enough to prove∑
q∈Φ−1((hJ))

sgn(det∇Φ(q)) =
∑

q∈Φ−1(0)

sgn(det∇Φ(q)), (17)

becauseΦ−1(0) has a unique element{mi = 0, χij = 0}, at which∇2F is positive definite, and
the right hand side of (17) is equal to one. Define a sequence of manifolds{Cn} by Cn := {q ∈
L(G)|

∑
ij∈E

∑
xi,xj

− log bij ≤ n}, which increasingly converges toL(G). TakeK > 0 andϵ > 0

to satisfyK−ϵ > ∥
(
h
J

)
∥. From lemma 1, for sufficiently largen0, we haveΦ−1(0),Φ−1

(
h
J

)
⊂ Cn0

andΦ(∂Cn0) ∩ B0(K) = ϕ, whereB0(K) is the closed ball of radiusK at the origin. LetΠϵ :
RN+M → B0(K) be a smooth map that is the identity onB0(K − ϵ), monotonically increasing on
∥x∥, andΠϵ(x) =

K
∥x∥x for ∥x∥ ≥ K. We obtain a map̃Φ := Πϵ ◦ Φ : Cn0 → B0(K) such that

Φ̃(∂Cn0) ⊂ ∂B0(K). Applying lemma 2 yields (17).

If we can guarantee that the index of every fixed point is+1 in advance of running LBP, we conclude
that fixed point of LBP is unique. We have the following a priori information forβ.

Lemma 3. Let βij be given by (15) at any fixed point of LBP. Then|βij | ≤ tanh(|Jij |) and
sgn(βij) = sgn(Jij) hold.

Proof. From (3), we see thatbij(xi, xj) ∝ exp(Jijxixj + θixi + θjxj) for some θi and
θj . With (15) and straightforward computation, we obtainβij = sinh(2Jij)(cosh(2θi) +

cosh(2Jij))
−1/2(cosh(2θj)+cosh(2Jij))

−1/2. The bound is attained whenθi = 0 andθj = 0.

Fromtheorem 7 and lemma 3, we can immediately obtain the uniqueness condition in [18], though
the stronger contractive property is proved under the same condition in [18].
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Figure1: Graph of Example 2. Figure2: GraphĜ. Figure3: Two other types.

Corollary 3 ([18]). If ρ(JM) < 1, then the fixed point of LBP is unique, whereJ is a diagonal
matrix defined byJe,e′ = tanh(|Je|)δe,e′ .

Proof. Since|βij | ≤ tanh(|Jij |), we haveρ(BM) ≤ ρ(JM) < 1. ([12] Theorem 8.1.18.) Then
det(I −BM) = det(I −UM) > 0 implies that the index of any LBP fixed point must be+1.

In the proof of the above corollary, we only used the bound of modulus. In the following case of
corollary 4, we can utilize the information of signs. To state the corollary, we need a terminology.
The interactions{Jij , hi} and{J ′

ij , h
′
i} are said to beequivalentif there exists(si) ∈ {±1}V such

thatJ ′
ij = Jijsisj andh′i = hisi. Since an equivalent model is obtained by gauge transformation

xi → xisi, the uniqueness property of LBP for equivalent models is unchanged.

Corollary 4. If the number of linearly independent cycle ofG is two (i.e.M −N +1 = 2), and the
interaction is not equivalent to attractive model, then the LBP fixed point is unique.

The proof is shown in the supplementary material. We give an example to illustrate the outline.

Example 2. Let V := {1, 2, 3, 4} andE := {12, 13, 14, 23, 34}. The interactions are given by
arbitrary{hi} and{−J12, J13, J14, J23, J34} with Jij ≥ 0. See figure 1. It is enough to check that
det(I − BM) > 0 for arbitrary0 ≤ β13, β23, β14, β34 < 1 and−1 < β12 ≤ 0. Since the prime
cycles ofG bijectively correspond to those of̂G (in figure 2), we havedet(I−BM) = det(I−B̂M̂),
whereβ̂e1 = β12β23, β̂e2 = β13, andβ̂e3 = β34. We see thatdet(I − B̂M̂) = (1 − β̂e1 β̂e2 −
β̂e1 β̂e3 − β̂e2 β̂e3 − 2β̂e1 β̂e2 β̂e3)(1− β̂e1 β̂e2 − β̂e1 β̂e3 − β̂e2 β̂e3 +2β̂e1 β̂e2 β̂e3) > 0. In other cases,
we can reduce to the grapĥG or the graphs in figure 3 similarly (see the supplementary material).

For attractive models, the fixed point of the LBP is not necessarily unique.

For graphs with multiple cycles, all the existing results on uniqueness make assumptions that up-
perbound|Jij | essentially. In contrast, corollary 4 applies to arbitrary strength of interactions if the
graph has two cycles and the interactions are not attractive. It is noteworthy that, from corollary 2,
the Bethe free energy is non-convex in the situation of corollary 4, while the fixed point is unique.

7 Concluding remarks

For binary pairwise models, we show the connection between the edge zeta function and the Bethe
free energy in theorem 3, in the proof of which the multi-variable version of Ihara’s formula (theorem
2) is essential. After the initial submission of this paper, we found that theorem 3 is extended to a
more general class of models including multinomial models and Gaussian models represented by
arbitrary factor graphs. We will discuss the extended formula and its applications in a future paper.

Some recent researches on LBP have suggested the importance of zeta function. In the context of the
LDPC code, which is an important application of LBP, Koetter et al [21, 22] show the connection
between pseudo-codewords and the edge zeta function. On the LBP for the Gaussian graphical
model, Johnson et al [23] give zeta-like product formula of the partition function. While these are
not directly related to our work, pursuing covered connections is an interesting future research topic.
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