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Abstract

We study pool-based active learning in the presence of noise, i.e. the agnostic set-
ting. Previous works have shown that the effectiveness of agnostic active learning
depends on the learning problem and the hypothesis space. Although there are
many cases on which active learning is very useful, it is also easy to construct
examples that no active learning algorithm can have advantage. In this paper, we
propose intuitively reasonable sufficient conditions under which agnostic active
learning algorithm is strictly superior to passive supervised learning. We show
that under some noise condition, if the Bayesian classification boundary and the
underlying distribution are smooth to a finite order, active learning achieves poly-
nomial improvement in the label complexity; if the boundary and the distribution
are infinitely smooth, the improvement is exponential.

1 Introduction

Active learning addresses the problem that the algorithm is given a pool of unlabeled data drawn
i.i.d. from some underlying distribution. The algorithm can then pay for the label of any example
in the pool. The goal is to learn an accurate classifier by requesting as few labels as possible. This
is in contrast with the standard passive supervised learning, where the labeled examples are chosen
randomly.

The simplest example that demonstrates the potential of active learning is to learn the optimal thresh-
old on an interval. If there exists a perfect threshold separating the two classes (i.e. there is no noise),
then binary search only needsO(ln 1

ε ) labelsto learn anε-accurate classifier, while passive learn-
ing requiresO( 1

ε ) labels.Another encouraging example is to learn a homogeneous linear separator
for data uniformly distributed on the unit sphere ofRd. In this case active learning can still give
exponential savings in the label complexity [Das05].

However, there are also very simple problems that active learning does not help at all. Suppose the
instances are uniformly distributed on[0, 1], and the positive class could be any interval on[0, 1].
Any active learning algorithms needsO( 1

ε ) labelrequests to learn anε-accurate classifier [Han07].
There is no improvement over passive learning. All above are noise-free (realizable) problems. Of
more interest and more realistic is the agnostic setting, where the class labels can be noisy so that
the best classifier in the hypothesis space has a non-zero errorν. For agnostic active learning, there
is no active learning algorithm that can always reduce label requests due to a lower boundΩ(ν2

ε2 ) for
thelabel complexity [Kaa06].

It is known that whether active learning helps or not depends on the distribution of the instance-label
pairs and the hypothesis space. Thus a natural question would be that under what conditions is active
learning guaranteed to require fewer labels than passive learning.
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In this paper we propose intuitively reasonable sufficient conditions under which active learning
achieves lower label complexity than that of passive learning. Specifically, we focus on theA2 al-
gorithm [BAL06] which works in the agnostic setting. Earlier work has discovered that the label
complexity ofA2 can be upper bounded by a parameter of the hypothesis space and the data dis-
tribution calleddisagreement coefficient[Han07]. This parameter often characterizes the intrinsic
difficulty of the learning problem. By an analysis of the disagreement coefficient we show that, un-
der some noise condition, if the Bayesian classification boundary and the underlying distribution are
smooth to a finite order, thenA2 gives polynomial savings in the label complexity; if the boundary
and the distribution are infinitely smooth,A2 gives exponential savings.

1.1 Related Works

Our work is closely related to [CN07], in which the authors proved sample complexity bounds for
problems with smooth classification boundary under Tsybakov’s noise condition [Tsy04]. They also
assumed that the distribution of the instances is bounded from above and below. The main difference
to our work is that their analysis is for the membership-query setting [Ang88], in which the learning
algorithm can choose any point in the instance space and ask for its label; while the pool-based
model analyzed here assumes the algorithm can only request labels of the instances it observes.

Another related work is due to Friedman [Fri09]. He introduced a different notion of smoothness
and showed that this guarantees exponential improvement for active learning. But his work focused
on the realizable case and does not apply to the agnostic setting studied here.

Soon afterA2, Dasgupta, Hsu and Monteleoni [DHM07] proposed an elegant agnostic active learn-
ing algorithm. It reduces active learning to a series of supervised learning problems. If the hy-
pothesis space has a finite VC dimension, it has a better label complexity thanA2. However, this
algorithm relies on thenormalizeduniform convergence bound for the VC class. It is not known
whether it holds for more general hypothesis space such as the smooth boundary class analyzed in
this paper. (For recent advances on this topic, see [GKW03].) It is left as an open problem whether
our results apply to this algorithm by refined analysis of the normalized bounds.

2 Preliminaries

Let X be an instance space,D a distribution overX × {−1, 1}. LetH be the hypothesis space, a
set of classifiers fromX to {±1}. DenoteDX the marginal ofD overX . In our active learning
model, the algorithm has access to a pool of unlabeled examples fromDX . For any unlabeled point
x, the algorithm can ask for its labely, which is generated from the conditional distribution atx.
The error of a hypothesish according toD is erD(h) = Pr(x,y)∼D(h(x) 6= y). The empirical error
on a finite sampleS is erS(h) = 1

|S|
∑

(x,y)∈S I[h(x) 6= y], whereI is the indicator function. We
useh∗ denote the best classifier inH. That is,h∗ = arg minh∈H erD(h). Let ν = erD(h∗). Our
goal is to learn âh ∈ H with error rate at mostν + ε, whereε is a predefined parameter.

A2 is the first rigorous agnostic active learning algorithm. A description of the algorithm is given
in Fig.1. It was shown thatA2 is never much worse than passive learning in terms of the label
complexity. The key observation thatA2 can be superior to passive learning is that, since our goal is
to choose an̂h such thaterD(ĥ) ≤ erD(h∗) + ε, we only need tocomparethe errors of hypotheses.
Therefore we can just request labels of thosex on which the hypotheses under consideration have
disagreement.

To do this, the algorithm keeps track of two spaces. One is the current version spaceVi, consisting
of hypotheses that with statistical confidence are not too bad compared toh∗. To achieve such a
statistical guarantee, the algorithm must be provided with a uniform convergence bound over the
hypothesis space. That is, with probability at least1− δ over the draw of sampleS according toD,

LB(S, h, δ) ≤ erD(h) ≤ UB(S, h, δ),
hold simultaneously for allh ∈ H, where the lower boundLB(S, h, δ) and upper bound
UB(S, h, δ) can be computed from the empirical errorerS(h). The other space is the region of
disagreementDIS(Vi), which is the set of allx ∈ X for which there are hypotheses inVi that
disagree onx. Formally, for anyV ⊂ H,

DIS(V ) = {x ∈ X : ∃h, h′ ∈ V, h(x) 6= h′(x)}.
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Input: concept spaceH, accuracy parameterε ∈ (0, 1), confidence parameterδ ∈ (0, 1);
Output: classifier̂h ∈ H;
Let n̂ = 2(2 log2

λ
ε + ln 1

δ ) log2
2
ε (λ dependsonH and the problem, see Theorem 5) ;

Let δ′ = δ/n̂ ;
V0 ← H, S0 ← ∅, i ←0, j1 ←0, k ←1 ;
while ∆(Vi)(minh∈Vi

UB(Si, h, δ′)−minh∈Vi
LB(Si, h, δ′)) > ε do

Vi+1 ← {h ∈ Vi : LB(Si, h, δ′) ≤ minh′∈Vi UB(Si, h
′, δ′)};

i ←i+1;
if ∆(Vi) < 1

2∆(Vjk
) then

k ← k + 1; jk ← i;
end
S′i ← Rejection sample2i−jk samplesx from D satisfyingx ∈ DIS(Vi);
Si ← {(x, y = label(x)) : x ∈ S′i};

end
Returnĥ= argminh∈Vi

UB(Si, h, δ′).

Algorithm 1: TheA2 algorithm (this is the version in [Han07])

The volume ofDIS(V ) is denoted by∆(V ) = PrX∼DX (X ∈ DIS(V )). Requesting labels of
the instances fromDIS(Vi) allowsA2 require fewer labels than passive learning. Hence the key
issue is how fast∆(Vi) reduces. This process, and in turn the label complexity ofA2, are nicely
characterized by the disagreement coefficientθ introduced in [Han07].

Definition 1 Let ρ(·, ·) be the pseudo-metric on a hypothesis spaceH induced byDX . That is, for
h, h′ ∈ H, ρ(h, h′) = PrX∼DX (h(X) 6= h′(X)). Let B(h, r) = {h′ ∈ H: ρ(h, h′) ≤ r}. The
disagreement coefficientθ(ε) is

θ(ε) = sup
r≥ε

PrX∼DX (X ∈ DIS(B(h∗, r)))
r

, (1)

whereh∗ = arg minh∈H erD(h).

Note thatθ depends onH andD, and1 ≤ θ(ε) ≤ 1
ε .

3 Main Results

As mentioned earlier, whether active learning helps or not depends on the distribution and the hy-
pothesis space. There are simple examples such as learning intervals for which active learning has
no advantage. However, these negative examples are more or less “artificial”. It is important to
understand whether problems with practical interest are actively learnable or not. In this section we
provide intuitively reasonable conditions under which theA2 algorithm is strictly superior to passive
learning. Our main results (Theorem 11 and Theorem 12) show that if the learning problem has a
smooth Bayes classification boundary, and the distributionDX has a density bounded by a smooth
function, then under some noise conditionA2 saves label requests. It is a polynomial improvement
for finite smoothness, and exponential for infinite smoothness.

In Section 3.1 we formally define the smoothness and introduce the hypothesis space, which contains
smooth classifiers. We show a uniform convergence bound of orderO(n−1/2) for this hypothesis
space. This bound determinesUB(S, h, δ) andLB(S, h, δ) in A2. Section 3.2 is the main technical
part, where we give upper bounds for the disagreement coefficient of smooth problems. In Section
3.3 we show that under some noise condition, there is a sharper bound for the label complexity in
terms of the disagreement coefficient. These lead to our main results.
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3.1 Smoothness

Let f be a function defined onΩ ⊂ Rd. For any vectork = (k1, · · · , kd) of d nonnegative integers,
let |k| = ∑d

i=1 ki. Define theK-norm as

‖f‖K := max
|k|≤K−1

sup
x∈Ω

|Dkf(x)|+ max
|k|=K−1

sup
x,x′∈Ω

Dkf(x)−Dkf(x′)
‖x− x′‖ , (2)

where

Dk =
∂|k|

∂k1x1 · · · ∂kdxd
,

is the differential operator.

Definition 2 (Finite Smooth Functions) A functionf is said to beKth order smooth with respect
to a constantC, if ‖f‖K ≤ C. The set ofKth order smooth functions is defined as

FK
C := {f : ‖f‖K ≤ C}. (3)

ThusKth order smooth functions have uniformly bounded partial derivatives up to orderK−1, and
theK − 1th order partial derivatives are Lipschitz.

Definition 3 (Infinitely Smooth Functions) A functionf is said to be infinitely smooth with respect
to a constantC, if ‖f‖K ≤ C for all nonnegative integersK. The set of infinitely smooth functions
is denoted byF∞C .

With the definitions of smoothness, we introduce the hypothesis space we use in theA2 algorithm.

Definition 4 (Hypotheses with Smooth Boundaries) A set of hypothesesHK
C defined on[0, 1]d+1

is said to haveKth order smooth boundaries, if for everyh ∈ HK
C , the classification boundary is

a Kth order smooth function on[0, 1]d. To be precise, letx = (x1, x2, . . . , xd+1) ∈ [0, 1]d+1. The
classification boundary is the graph of functionxd+1 = f(x1, . . . , xd), wheref ∈ FK

C . Similarly,
a hypothesis spaceH∞C is said to have infinitely smooth boundaries, if for everyh ∈ H∞C the
classification boundary is the graph an infinitely smooth function on[0, 1]d.

Previous results on the label complexity ofA2 assumes the hypothesis space has finite VC di-
mension. The goal is to ensure aO(n−1/2) uniform convergence bound so thatUB(S, h, δ) −
LB(S, h, δ) = O(n−1/2). The hypothesis spaceHK

C andH∞C do not have finite VC dimensions.
Compared with the VC class,HK

C andH∞C are exponentially larger in terms of the covering num-
bers [vdVW96]. But uniform convergence bound still holds forHK

C andH∞C under a broad class of
distributions. The following theorem is a consequence of some known results in empirical processes.

Theorem 5 For any distributionD over [0, 1]d+1 × {−1, 1}, whose marginal distributionDX on
[0, 1]d+1 has a density upper bounded by a constantM , and any0 < δ ≤ δ0 (δ0 is a constant), with
probability at least1− δ over the draw of the training setS of n examples,

|erD(h)− erS(h)| ≤ λ

√
log 1

δ

n
, (4)

holdssimultaneously for allh ∈ HK
C providedK > d (or K = ∞). Hereλ is a constant depending

only ond, K, C andM .

Proof It can be seen, from Corollary 2.7.3 in [vdVW96] that thebracketing numbersN[ ] of HK
C

satisfieslog N[ ](ε,HK
C , L2(DX )) = O(( 1

ε )
2d
K ). SinceK > d, then there exist constantsc1, c2 such

that

PD

(
sup

h∈HK
C

|er(h)− erS(h)| ≥ t

)
≤ c1 exp

(
−nt2

c2

)

for all nt2 ≥ t0, wheret0 is some constant (see Theorem 5.11 and Lemma 5.10 of [vdG00]). Let

δ = c1 exp
(
−nt2

c2

)
, the theorem follows.
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Now we can determineUB(S, h, δ) and LB(S, h, δ) for A2 by simply lettingUB(S, h, δ) =

erS(h) + λ

√
ln 1

δ

n andLB(S, h, δ) = erS(h)− λ

√
ln 1

δ

n , whereS is of sizen.

3.2 Disagreement Coefficient

The disagreement coefficientθ plays an important role for the label complexity of active learning
algorithms. In fact previous negative examples for which active learning does not work are all the
results of largeθ. For instance the interval learning problem,θ(ε) = 1

ε , which leads to the same
label complexity as passive learning. In the following two theorems we show that the disagreement
coefficientθ(ε) for smooth problems is small.

Theorem 6 Let the hypothesis space beHK
C . If the distributionDX has a densityp(x1, . . . , xd+1)

such that there exists aKth order smooth functiong(x1, . . . , xd+1) and two constants0 < α ≤
β such thatαg(x1, . . . , xd+1) ≤ p(x1, . . . , xd+1) ≤ βg(x1, . . . , xd+1) for all (x1, . . . , xd+1) ∈
[0, 1]d+1, thenθ(ε) = O

((
1
ε

) d
K+d

)
.

Theorem 7 Let the hypothesis space beH∞C . If the distributionDX has a densityp(x1, . . . , xd+1)
such that there exist an infinitely smooth functiong(x1, . . . , xd) and two constants0 < α ≤ β such
that αg(x1, . . . , xd) ≤ p(x1, . . . , xd+1) ≤ βg(x1, . . . , xd) for all (x1, . . . , xd+1) ∈ [0, 1]d+1, then
θ(ε) = O(logd( 1

ε )).

The key points in the theorems are: the classification boundaries are smooth; and the density is
bounded from above and below by constants times a smooth function. These two conditions include
a large class of learning problems. Note that the density itself is not necessarily smooth. We just
require the density does not change too rapidly.

The intuition behind the two theorems above is as follows. Letfh∗(x) andfh(x) be the classification
boundaries ofh∗ andh, and supposeρ(h, h∗) is small, whereρ(h, h∗) = Prx∼DX (h(x) 6= h∗(x))
is the pseudo metric. If the classification boundaries and the density are all smooth, then the two
boundaries have to be close to each other everywhere. That is,|fh(x)− ff∗(x)| is small uniformly
for all x. Hence only the points close to the classification boundary ofh∗ can be inDIS(B(h∗, ε)),
which leads to a small disagreement coefficient.

The proofs of Theorem 6 and Theorem 7 rely on the following two lemmas.

Lemma 8 Let Φ be a function defined on[0, 1]d and
∫
[0,1]d

|Φ(x)|dx ≤ r. If there exists aKth

order smooth functioñΦ and0 < α ≤ β such thatα|Φ̃(x)| ≤ |Φ(x)| ≤ β|Φ̃(x)| for all x ∈ [0, 1]d,

then‖Φ‖∞ = O(r
K

K+d ) = O(r · ( 1
r )

d
K+d ), where‖Φ‖∞ = supx∈[0,1]d |Φ(x)|.

Lemma 9 LetΦ be a function defined on[0, 1]d and
∫
[0,1]d

|Φ(x)|dx ≤ r. If there exists an infinitely

smooth functioñΦ and0 < α ≤ β such thatα|Φ̃(x)| ≤ |Φ(x)| ≤ β|Φ̃(x)| for all x ∈ [0, 1]d, then
‖Φ‖∞ = O(r · logd( 1

r ))

We will briefly describe the ideas of the proofs of these two lemmas in the Appendix. The formal
proofs are given in the supplementary file.

Proof of Theorem 6 First of all, since we focus on binary classification,DIS(B(h∗, r)) can be
written equivalently as

DIS(B(h∗, r)) = {x ∈ X , ∃h ∈ B(h∗, r), s.t. h(x) 6= h∗(x)}.
Consider anyh ∈ B(h∗, r). Let fh, fh∗ ∈ FK

C be the corresponding classification boundaries ofh
andh∗ respectively. Ifr is sufficiently small, we must have

ρ(h, h∗) = Pr
X∼DX

(h(X) 6= h∗(X)) =
∫

[0,1]d

dx1 . . . dxd

∣∣∣∣∣
∫ fh(x1,...,xd)

fh∗ (x1,...,xd)

p(x1, . . . , xd+1)dxd+1

∣∣∣∣∣ .
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Denote

Φh(x1, . . . , xd) =
∫ fh(x1,...,xd)

fh∗ (x1,...,xd)

p(x1, . . . , xd+1)dxd+1.

We assert that there is aKth order smooth functioñΦh(x1, . . . , xd) and two constants0 < u ≤ v

such thatu|Φ̃h| ≤ |Φh| ≤ v|Φ̃h|. To see this, remember thatfh andfh∗ areKth order smooth
functions; and the densityp is upper and lower bounded by constants times aKth order smooth

functiong(x1, . . . , xd+1); and note that̃Φh(x1, . . . , xd) =
∫ fh(x1,...,xd)

fh∗ (x1,...,xd)
g(x1, . . . , xd+1)dxd+1 is

aKth order smooth function. The latter is easy to check by taking derivatives. By Lemma 8, we have
‖Φh‖∞ = O(r · ( 1

r )
d

K+d ), since
∫ |Φh| = ρ(h, h∗) ≤ r. Because this holds for allh ∈ B(h∗, r),

we havesuph∈B(h∗,r) ‖Φh‖∞ = O(r · ( 1
r )

d
K+d ).

Now consider the region of disagreement ofB(h∗, r). ClearlyDIS(B(h∗, r)) = ∪h∈B(h∗,r){x :
h(x) 6= h∗(x)}. Hence

Pr
X∼DX

(x ∈ DIS(B(h∗, r))) = Pr
X∼DX

(
x ∈ ∪h∈B(h∗,r){x : h(x) 6= h∗(x)})

≤ 2 sup
h∈B(h∗,r)

∫

[0,1]d
‖Φh‖∞dx1 . . . dxd = O

(
r ·

(
1
r

) d
K+d

)
.

Thetheorem follows by the definition ofθ(ε).

Theorem7 can be proved similarly by using Lemma 9.

3.3 Label Complexity

It was shown in [Han07] that the label complexity ofA2 is

O

(
θ2

(
ν2

ε2
+ 1

)
polylog

(
1
ε

)
ln

1
δ

)
, (5)

whereν = minh∈H erD(h). Whenε ≥ ν, our previous results on the disagreement coefficient
already imply polynomial or exponential improvements forA2. However, whenε < ν, the label
complexity becomesO( 1

ε2 ), the same as passive learning whateverθ is. In fact, without any as-

sumption on the noise, theO( 1
ε2 ) result is inevitable due to theΩ(ν2

ε2 ) lower bound of agnostic
active learning [Kaa06].

Recently, there has been considerable interest in how noise affects the learning rate. A remarkable
notion is due to Tsybakov [Tsy04], which was first introduced for passive learning. Letη(x) =
P (Y = 1|X = x). Tsybakov’s noise condition assumes that for somec > 0, 0 < α ≤ ∞

Pr
X∼DX

(|η(X)− 1/2| ≤ t) ≤ ct−α, (6)

for all 0 < t ≤ t0, wheret0 is some constant. (6) implies a connection between the pseudo distance
ρ(h, h∗) and the excess riskerD(h)− erD(h∗):

ρ(h, h∗) ≤ c′ (erD(h)− erD(h∗))1/κ
, (7)

whereh∗ is the Bayes classifier,c′ is some finite constant. Hereκ = 1+α
α ≥ 1 is called the noise

exponent.κ = 1 is the optimal case, where the problem has bounded noise;κ > 1 correspond to
unbounded noise.

Castro and Nowak [CN07] noticed that Tsybakov’s noise condition is also important in active learn-
ing. They proved label complexity bounds in terms ofκ for the membership-query setting. A notable
fact is thatÕ(( 1

ε )
2κ−2

κ ) (κ > 1) is both an upper and a lower bound for membership-query in the
minimax sense. It is important to point out that the lower bound automatically applies to pool-based
model, since pool makes weaker assumptions than membership-query. Hence for largeκ, active
learning has very limited improvement over passive learning whatever other factors are.

Recently, Hanneke [Han09] obtained similar label complexity for pool-based model. He showed the
labels requested byA2 is O(θ2 ln 1

ε ln 1
δ ) for the bounded noise case, i.e.κ = 1. Here we slightly
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generalizeHanneke’s result to unbounded noise by introducing the following noise condition. We
assume there existc1, c2 > 0 andT0 > 0 such that

Pr
X∼DX

(|η(X)− 1/2| ≤ 1
T

) ≤ c1e
−c2T , (8)

for all T ≥ T0. It is not difficult to show that (8) implies

ρ(h, h∗) = O

(
(er(h)− er(h∗)) ln

1
(er(h)− er(h∗))

)
. (9)

This condition assumes unbounded noise. Under this noise condition,A2 has a better label com-
plexity.

Theorem 10 Assume that the learning problem satisfies the noise condition (8) andDX has a den-
sity upper bounded by a constantM . For any hypothesis spaceH that has aO(n−1/2) uniform
convergence bound, if the Bayes classifierh∗ is inH, then with probability at least1−δ, A2 outputs
ĥ ∈ H with erD(ĥ) ≤ erD(h∗) + ε, and the number of labels requested by the algorithm is at most
O(θ2(ε) · ln 1

δ · polylog( 1
ε )).

Proof As the proof of [Han07], one can show that with probability1− δ we never removeh∗ from
Vi, and for anyh, h′ ∈ Vi we must have∆(Vi)(eri(h) − eri(h′)) = erD(h) − erD(h′), where
eri(h) is the error rate ofh conditioned onDIS(Vi). These guaranteeserD(ĥ) ≤ erD(h∗) + ε.

If ∆(Vi) ≤ 2εθ(ε), due to theO(n−1/2) uniform convergence bound,O(θ2(ε) ln 1
δ ) labelssuffices

to make∆(Vi)(UB(Si, h, δ′) − LB(Si, h, δ′)) ≤ ε for all h ∈ DIS(Vi) and the algorithm stops.
Hence we next consider∆(Vi) > 2εθ(ε). Note that there are at mostO(ln 1

ε ) times ∆(Vi) <
1
2∆(Vjk

) occurs. So below we bound the number of labels needed to make∆(Vi) < 1
2∆(Vjk

)

occurs.By the definition ofθ(ε), if ρ(h, h∗) ≤ ∆(Vjk
)

2θ(ε) for all h ∈ Vi, then∆(Vi) < 1
2∆(Vjk

). Let
γ(h) = erD(h)− erD(h∗). By the noise assumption (9) we have that if

γ(h) ln
1

γ(h)
≤ c

∆(Vjk
)

2θ(ε)
, (10)

then ∆(Vi) < 1
2∆(Vjk

). Here and below,c is appropriate constant but may be different from

line to line. Note that (10) holds ifγ(h) ≤ c
∆(Vjk

)

θ(ε) ln
θ(ε)

∆(Vjk
)

, and in turn ifγ(h) ≤ c
∆(Vjk

)

θ(ε) ln 1
ε

since

∆(Vjk
) ≥ ∆(Vi) > 2εθ(ε). But to have the last inequality, the algorithm only needs to label

O(θ2(ε) ln2 1
ε ln 1

δ ) instancesfrom DIS(Vi). So the total number of labels requested byA2 is
O(θ2(ε) ln 1

δ ln3 1
ε )

Now we give our main label complexity bounds for agnostic active learning.

Theorem 11 Let the instance space be[0, 1]d+1. Let the Hypothesis space beHK
C , whereK > d.

Assume that the Bayes classifierh∗ of the learning problem is inHK
C ; the noise condition (8) holds;

andDX has a density bounded by aKth order smooth function as in Theorem 6. Then theA2

algorithm outputŝh with error rateerD(ĥ) ≤ erD(h∗) + ε and the number of labels requested is at

mostÕ
((

1
ε

) 2d
K+d ln 1

δ

)
, where inÕ we hide thepolylog

(
1
ε

)
term.

Proof Note that the densityDX is upper bounded by a smooth function implies that it is also upper
bounded by a constantM . Combining Theorem 5, 6 and 10 the theorem follows.

CombiningTheorem 5, 7 and 10 we can show the following theorem.

Theorem 12 Let the instance space be[0, 1]d+1. Let the Hypothesis space beH∞C . Assume that
the Bayes classifierh∗ of the learning problem is inH∞C ; the noise condition (8) holds; andDX
has a density bounded by an infinitely smooth function as in Theorem 7. Then theA2 algorithm
outputsĥ with error rate erD(ĥ) ≤ erD(h∗) + ε and the number of labels requested is at most
O

(
polylog

(
1
ε

)
ln 1

δ

)
.
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4 Conclusion

We show that if the Bayesian classification boundary is smooth and the distribution is bounded by a
smooth function, then under some noise condition active learning achieves polynomial or exponen-
tial improvement in the label complexity than passive supervised learning according to whether the
smoothness is of finite order or infinite.

Although we assume that the classification boundary is the graph of a function, our results can be
generalized to the case that the boundaries are a finite number of functions. To be precise, consider
N functionsf1(x) ≤ · · · ≤ fN (x), for all x ∈ [0, 1]d. Letf0(x) ≡ 0, fN+1(x) ≡ 1. The positive (or
negative) set defined by these functions is{(x, xd+1) : f2i(x) ≤ x ≤ f2i+1(x), i = 0, 1, . . . , N

2 }.
Our theorems still hold in this case. In addition, by techniques in [Dud99] (page 259), our results
may generalize to problems which have intrinsic smooth boundaries (not only graphs of functions).

Appendix

In this appendix we describe very briefly the ideas to prove Lemma 8 and Lemma 9. The formal
proofs can be found in the supplementary file.

Ideas to Prove Lemma 8First consider thed = 1 case. Note that iff ∈ FK
C , then|f (K−1)(x) −

f (K−1)(x′)| ≤ C|x− x′| for all x, x′ ∈ [0, 1]. It is not difficult to see that we only need to show for
anyf such that|f (K−1)(x)−f (K−1)(x′)| ≤ C|x−x′|, if

∫ 1

0
|f(x)|dx = r, then‖f‖∞ = O(r

K
K+1 ).

To show this, note that in order that‖f‖∞ achieves the maximum while
∫ |f | = r, the derivatives

of f must be as large as possible. Indeed, it can be shown that (one of) the optimalf is of the form

f(x) =





C
K! |x− ξ|K 0 ≤ x ≤ ξ,

0 ξ < x ≤ 1.
(11)

That is,|f (K−1)(x)− f (K−1)(x′)| = C|x− x′| (i.e. theK − 1 order derivatives reaches the upper
bound of the Lipschitz constant.) for allx, x′ ∈ [0, ξ], whereξ is determined by

∫ 1

0
f(x)dx = r. It

is then easy to check that‖f‖∞ = O(r
K

K+1 ).

For the generald > 1 case, we relax the constraint. Note that allK − 1th order partial derivatives
are Lipschitz implies that allK−1th orderdirectionalderivatives are Lipschitz too. Under the latter
constraint, (one of) the optimalf has the form

f(x) =





C
K! |‖x‖ − ξ|K 0 ≤ ‖x‖ ≤ ξ,

0 ξ < ‖x‖.
whereξ is determined by

∫
[0,1]d

|f(x)|dx = r. This implies‖f‖∞ = O(r
K

K+d ).

Ideas to Prove Lemma 9Similar to the proof of Lemma 8, we only need to show that for any
f ∈ F∞C , if

∫
[0,1]d

|f(x)|dx = r, then‖f‖∞ = O(r · logd( 1
r )).

Sincef is infinitely smooth, we can chooseK large and depending onr. For thed = 1 case, let

K + 1 = log 1
r

log log 1
r

. We know that the optimalf is of the form of Eq.(11). (Actually this choice ofK

is approximately the largestK such that Eq.(11) is still the optimal form. IfK is larger than this,ξ
will be out of [0, 1].) Since

∫ 1

0
|f(x)| = r, we haveξK+1 = (K+1)!

C . Now, ‖f‖∞ = C
K!ξ

K . Note

that( 1
r )K+1 = ( 1

r )
log log 1

r
log 1

r = log 1
r . By Stirling’s formula we can show‖f‖∞ = O(r · log 1

r ).

For thed > 1 case, letK +d = log 1
r

log log 1
r

. By similar arguments we can show‖f‖∞ = O(r · logd 1
r ).
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