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Abstract

We study pool-based active learning in the presence of noise, i.e. the agnostic set-
ting. Previous works have shown that the effectiveness of agnostic active learning
depends on the learning problem and the hypothesis space. Although there are
many cases on which active learning is very useful, it is also easy to construct
examples that no active learning algorithm can have advantage. In this paper, we
propose intuitively reasonable sufficient conditions under which agnostic active
learning algorithm is strictly superior to passive supervised learning. We show
that under some noise condition, if the Bayesian classification boundary and the
underlying distribution are smooth to a finite order, active learning achieves poly-
nomial improvement in the label complexity; if the boundary and the distribution
are infinitely smooth, the improvement is exponential.

1 Introduction

Active learning addresses the problem that the algorithm is given a pool of unlabeled data drawn
i.i.d. from some underlying distribution. The algorithm can then pay for the label of any example

in the pool. The goal is to learn an accurate classifier by requesting as few labels as possible. This
is in contrast with the standard passive supervised learning, where the labeled examples are chosen
randomly.

The simplest example that demonstrates the potential of active learning is to learn the optimal thresh-
old on an interval. If there exists a perfect threshold separating the two classes (i.e. there is no noise),
then binary search only need¥In 1) labelsto learn ane-accurate classifier, while passive learn-

ing requiresO(%) labels.Another encouraging example is to learn a homogeneous linear separator

for data uniformly distributed on the unit sphere®f. In this case active learning can still give
exponential savings in the label complexity [Das05].

However, there are also very simple problems that active learning does not help at all. Suppose the
instances are uniformly distributed ¢i 1], and the positive class could be any interval[@n].

Any active learning algorithms need)s(%) labelrequests to learn anaccurate classifier [Han07].

There is no improvement over passive learning. All above are noise-free (realizable) problems. Of
more interest and more realistic is the agnostic setting, where the class labels can be noisy so that
the best classifier in the hypothesis space has a non-zeraseffor agnostic active learning, there

is no active learning algorithm that can always reduce label requests due to a Iowemqémtﬂor
thelabel complexity [Kaa06].

It is known that whether active learning helps or not depends on the distribution of the instance-label
pairs and the hypothesis space. Thus a natural question would be that under what conditions is active
learning guaranteed to require fewer labels than passive learning.



In this paper we propose intuitively reasonable sufficient conditions under which active learning
achieves lower label complexity than that of passive learning. Specifically, we focus d? tile
gorithm [BALO6] which works in the agnostic setting. Earlier work has discovered that the label
complexity of A% can be upper bounded by a parameter of the hypothesis space and the data dis-
tribution calleddisagreement coefficiefitan07]. This parameter often characterizes the intrinsic
difficulty of the learning problem. By an analysis of the disagreement coefficient we show that, un-
der some noise condition, if the Bayesian classification boundary and the underlying distribution are
smooth to a finite order, theA? gives polynomial savings in the label complexity; if the boundary
and the distribution are infinitely smootA? gives exponential savings.

1.1 Related Works

Our work is closely related to [CNO7], in which the authors proved sample complexity bounds for
problems with smooth classification boundary under Tsybakov's noise condition [Tsy04]. They also
assumed that the distribution of the instances is bounded from above and below. The main difference
to our work is that their analysis is for the membership-query setting [Ang88], in which the learning
algorithm can choose any point in the instance space and ask for its label; while the pool-based
model analyzed here assumes the algorithm can only request labels of the instances it observes.

Another related work is due to Friedman [Fri09]. He introduced a different notion of smoothness
and showed that this guarantees exponential improvement for active learning. But his work focused
on the realizable case and does not apply to the agnostic setting studied here.

Soon afterd?, Dasgupta, Hsu and Monteleoni [DHMO07] proposed an elegant agnostic active learn-
ing algorithm. It reduces active learning to a series of supervised learning problems. If the hy-
pothesis space has a finite VC dimension, it has a better label complexitylthadowever, this
algorithm relies on th@ormalizeduniform convergence bound for the VC class. It is not known
whether it holds for more general hypothesis space such as the smooth boundary class analyzed in
this paper. (For recent advances on this topic, see [GKWO03].) It is left as an open problem whether
our results apply to this algorithm by refined analysis of the normalized bounds.

2 Preliminaries

Let X be an instance spacP, a distribution ovetXY x {—1,1}. Let’H be the hypothesis space, a
set of classifiers fron¥’ to {+1}. DenoteDy the marginal ofD over X'. In our active learning
model, the algorithm has access to a pool of unlabeled examplesiganfor any unlabeled point
x, the algorithm can ask for its labg| which is generated from the conditional distributionzat
The error of a hypothesis according tdD is erp(h) = Pr(, ) ~p(h(z) # y). The empirical error
on a finite samples is ers(h) = I«%\ > (zyyes Lh(z) # yl, wherel is the indicator function. We
useh* denote the best classifier . That is,h* = argminpey erp(h). Lety = erp(h*). Our
goal is to learn & € H with error rate at most + ¢, wheree is a predefined parameter.

A? is the first rigorous agnostic active learning algorithm. A description of the algorithm is given
in Fig.1. It was shown thati? is never much worse than passive learning in terms of the label
complexity. The key observation tha# can be superior to passive learning is that, since our goal is
to choose at such thatrp(h) < erp(h*) + €, we only need teomparethe errors of hypotheses.
Therefore we can just request labels of thesen which the hypotheses under consideration have
disagreement.

To do this, the algorithm keeps track of two spaces. One is the current versionigpacasisting
of hypotheses that with statistical confidence are not too bad compared o achieve such a
statistical guarantee, the algorithm must be provided with a uniform convergence bound over the
hypothesis space. That is, with probability at lekst § over the draw of sampl§ according taD,
LB(S,h,d) <erp(h) <UB(S,h,d),

hold simultaneously for allk € H, where the lower bound.B(S,h,d) and upper bound
UB(S, h,d) can be computed from the empirical erkors(h). The other space is the region of
disagreemenDIS(V;), which is the set of all: € X for which there are hypotheses W that
disagree on:. Formally, for anyV C H,

DIS(V)={x e X :3h,h €V, h(zx)#N(z)}.



Input: concept spacet, accuracy parameterc (0, 1), confidence parametére (0, 1);

Output: classifieh € H;
Letn = 2(2log, 2 +In$)log, 2 (A depend®nH and the problem, see Theorem 5
Letd =d/n;
Vo« H,So « 0,7 0,j; <0,k «1;
while A(V;')(Hlinhevi [].B(S27 h, (S/) — minhevi LB(SZ, h, 6/)) > edo
Vier < {h € V; : LB(S:, h,8') < minpcv. UB(S;, b, )}
7 «—it+1;
if A(Vi) < $A(V;,) then
k—k+1;j, « 1
end
S! + Rejection sample~—7+ samples: from D satisfyingz € DIS(V;);
S; — {(z,y = label(x)) : x € S};
end

Returnh= argmin,cy, U B(S;, h, §").

Algorithm 1: The A2 algorithm (this is the version in [Han07])

The volume ofDIS(V) is denoted byA(V) = Prx..p, (X € DIS(V)). Requesting labels of
the instances fronD15(V;) allows A2 require fewer labels than passive learning. Hence the key
issue is how fast\(V;) reduces. This process, and in turn the label complexityigfare nicely
characterized by the disagreement coefficteimtroduced in [Han07].

Definition 1 Letp(-, ) be the pseudo-metric on a hypothesis spicaduced byDy. That is, for
h,h' € H, p(h,h') = Prxp, (h(X) # W (X)). LetB(h,r) = {h' € H: p(h,h’) < r}. The
disagreement coefficiefife) is

0(e) — sup XD (X € DIS(B(, 1)) W

r>e€ T

whee h* = arg minpep erp(h).

Note thaty depends ofi{ andD, and1 < f(e) < 1.

3 Main Results

As mentioned earlier, whether active learning helps or not depends on the distribution and the hy-
pothesis space. There are simple examples such as learning intervals for which active learning has
no advantage. However, these negative examples are more or less “artificial”. It is important to
understand whether problems with practical interest are actively learnable or not. In this section we
provide intuitively reasonable conditions under which #fealgorithm is strictly superior to passive
learning. Our main results (Theorem 11 and Theorem 12) show that if the learning problem has a
smooth Bayes classification boundary, and the distribuflgnhas a density bounded by a smooth
function, then under some noise conditidh saves label requests. It is a polynomial improvement

for finite smoothness, and exponential for infinite smoothness.

In Section 3.1 we formally define the smoothness and introduce the hypothesis space, which contains
smooth classifiers. We show a uniform convergence bound of @¥@er'/2) for this hypothesis

space. This bound determin€s3(S, h, §) andLB(S, h, §) in A2, Section 3.2 is the main technical

part, where we give upper bounds for the disagreement coefficient of smooth problems. In Section
3.3 we show that under some noise condition, there is a sharper bound for the label complexity in
terms of the disagreement coefficient. These lead to our main results.



3.1 Smoothness

Let f be a function defined oft C R?. For any vectok = (ki,-- - , kq) of d nonnegative integers,
let k| = 3¢, k;. Define thek -norm as

DX f(z) — D¥f(z")

fllx := max sup|D¥f(z)|+ max sup 2)
171 |k\SK—1weQ‘ @)l IK|=K 14,2 €0 [l — || ’
where

okl

D=
8k31£1...8k3dxd’

is the differential operator.

Definition 2 (Finite Smooth Functions) A functiory is said to beKth order smooth with respect
to a constant, if || f||x < C. The set of<'th order smooth functions is defined as

FE ={f:|Ifllx <C}. ®3)

ThusKth order smooth functions have uniformly bounded partial derivatives up to érdet, and
the K — 1th order partial derivatives are Lipschitz.

Definition 3 (Infinitely Smooth Functions) A functiory is said to be infinitely smooth with respect
to a constanC, if || f||x < C for all nonnegative integer&”. The set of infinitely smooth functions
is denoted byFg°.

With the definitions of smoothness, we introduce the hypothesis space we uselihalgorithm.

Definition 4 (Hypotheses with Smooth Boundarip# set of hypotheses X defined o0, 1]4+!
is said to haveith order smooth boundaries, if for evelye H5, the classification boundary is
a Kth order smooth function of), 1]¢. To be precise, let = (z!,22%,..., 2%1) € [0,1]¢FL. The
classification boundary is the graph of functiefi** = f(z1,... 2¢), wheref € FX. Similarly,
a hypothesis spacgl( is said to have infinitely smooth boundaries, if for evéry= H the
classification boundary is the graph an infinitely smooth functiofioh]®.

Previous results on the label complexity 4 assumes the hypothesis space has finite VC di-
mension. The goal is to ensureyn~'/2) uniform convergence bound so th&t3(S, h, §) —
LB(S,h,8) = O(n~'/?). The hypothesis spade¢’ andHg do not have finite VC dimensions.
Compared with the VC clas$/Z and 2 are exponentially larger in terms of the covering num-
bers [vdVW96]. But uniform convergence bound still holds#6¥ and#g’ under a broad class of
distributions. The following theorem is a consequence of some known results in empirical processes.

Theorem 5 For any distributionD over [0, 1]9t! x {—1, 1}, whose marginal distributio®x on
[0, 1]%*! has a density upper bounded by a constihtand anyd < § < d, (dy is a constant), with
probability at leastl — § over the draw of the training s&t of n examples,

lerp(Rh) — ers(h)| < A bi , 4)

|

holdssimultaneously for alk € HE providedK > d (or K = oc). Here\ is a constant depending
only ond, K, C and M.

Proof It can be seen, from Corollary 2.7.3 in [vdVW96] that theacketing numbersv;; of HE
satisfiedog Nj (e, HE, L»(Dx)) = O((1)¥). SinceK > d, then there exist constants, ¢ such
that
nt?
Pp | sup ler(h) —ers(h)| >t <ciexp|——
heHE C2

for all nt> > t,, wheret, is some constant (see Theorem 5.11 and Lemma 5.10 of [vdGO00]). Let
0 = cpexp (—%2) the theorem followsll



Now we can determiné/B(S, h,d) and LB(S, h,d) for A% by simply lettingU B(S, h,§) =
ers(h) + A % andLB(S, h,68) = ers(h) — A "3 wheres is of sizen.

n

3.2 Disagreement Coefficient

The disagreement coefficieitplays an important role for the label complexity of active learning
algorithms. In fact previous negative examples for which active learning does not work are all the
results of large). For instance the interval learning problefti¢) = % which leads to the same

label complexity as passive learning. In the following two theorems we show that the disagreement
coefficientd(e) for smooth problems is small.

Theorem 6 Let the hypothesis space B&S . If the distributionDx has a density(z?, ..., z9+1!)
such that there exists &th order smooth functiog(x!,...,z%*!) and two constant < o <
B such thatag(z?, ..., z9) < p(at,...,29H) < Bg(at,... 241 for all (z!,... 29! €

[0, 1]%+1, thend(e) = O ((g)ﬁd).

Theorem 7 Let the hypothesis space B€Y. If the distributionDx has a density(z?, ..., z4+1!)
such that there exist an infinitely smooth functigm', . . ., 2¢) and two constants < o < 3 such
thatag(z!, ..., z%) < p(zt, ..., 29 < Bg(zt, ..., 2% forall (z!,... 29*+1) € [0,1]9F!, then
6(e) = O(log”(1)).

The key points in the theorems are: the classification boundaries are smooth; and the density is
bounded from above and below by constants times a smooth function. These two conditions include
a large class of learning problems. Note that the density itself is not necessarily smooth. We just
require the density does not change too rapidly.

The intuition behind the two theorems above is as follows. fl.etx) and f; (x) be the classification
boundaries oh* andh, and suppose(h, h*) is small, wherep(h, h*) = Pryp, (h(z) # h*(x))

is the pseudo metric. If the classification boundaries and the density are all smooth, then the two
boundaries have to be close to each other everywhere. Th#t(s) — f/- ()| is small uniformly

for all z. Hence only the points close to the classification boundaty @lan be inDIS(B(h*,€)),

which leads to a small disagreement coefficient.

The proofs of Theorem 6 and Theorem 7 rely on the following two lemmas.

Lemma 8 Let ® be a function defined of, 1]¢ and f[m]d |®(z)|dx < r. If there exists ath

order smooth functio® and0 < a < 3 such thata|®(z)| < |®(z)| < 5|®(z)| for all z € [0,1]%,
then|| o = O(r=51) = O(r - (1)), where|[ @ = supyc(o 1)« ()]
Lemma 9 Let® be a function defined dn, 1]¢ andf[o_”d |®(x)|dz < r. If there exists an infinitely

smooth functiomp and0 < a < (3 such thata|®(z)| < |®(x)| < B|®(x)| for all z € [0,1]%, then
[@]|oc = O(r - log™(%))

We will briefly describe the ideas of the proofs of these two lemmas in the Appendix. The formal
proofs are given in the supplementary file.

Proof of Theorem 6 First of all, since we focus on binary classificatidn/S(B(h*,r)) can be
written equivalently as

DIS(B(h*,r)) = {z € X, 3h € B(h*,1), s.t. h(z) # h*(z)}.

Consider anys € B(h*,r). Let fy, fn- € FX be the corresponding classification boundaries of
andh* respectively. Ifr is sufficiently small, we must have

fh(ml"“axd)
/ p(zt, ..., xd T ded L]

X~Dx fre (@1 zd)

p(h,h*) = Pr (h(X)#h*(X)) = /dxl...dxd
[

0,1]¢



Denote

fu(zt,..z)

Oy (xt, ... 2% = / p(xt, ... 2?1 dad
Frx (2t zd)

We assert that there is/th order smooth functiod, (z, ..., 2%) and two constant8 < u < v

such thatu|®,| < |®,| < v|®,|. To see this, remember th# and f,- are Kth order smooth

functions; and the density is upper and lower bounded by constants timdsth order smooth

~ 1 d
functiong(z?, ..., z%*!); and note that, (2, ..., z%) = f}fh(:" =) gt 28t dedt s

nx (Tl z)

a K'th order smooth function. The latter is easy to check by taking derivatives. By Lemma 8, we have
|Pr]lce = O(r - (1)%@), since [ |®,,| = p(h, h*) < r. Because this holds for all € B(h*,r),

we havesup,c pepe ) [@nlloo = O(r - (2)%57).
Now consider the region of disagreementi®fh*, r). Clearly DIS(B(h*,r)) = Upeph=miT
h(z) # h*(z)}. Hence

Pr (2 € DIS(B( 1) = Pr (v € Unepge e s hz) £ 1 (2)})

1 =t
<2 o [ et =o(r (D)),
heBh.r) Jo)e ;

Thetheorem follows by the definition @f(e). B
Theorem? can be proved similarly by using Lemma 9.

3.3 Label Complexity

It was shown in [Han07] that the label complexity 4% is

2
O (92 (1/2 + 1) polylog (1> In (15) , (5)
€ €

wherev = minpey erp(h). Whene > v, our previous results on the disagreement coefficient
already imply polynomial or exponential improvements for. However, where < v, the label
complexity becomeé)(éiz), the same as passive learning whate¥és. In fact, without any as-

sumption on the noise, th@ (=) resultis inevitable due to thé)(‘e’—;) lower bound of agnostic
active learning [Kaa06].

Recently, there has been considerable interest in how noise affects the learning rate. A remarkable
notion is due to Tsybakov [Tsy04], which was first introduced for passive learningn(kgt=
P(Y = 1|X = z). Tsybakov’s noise condition assumes that for seme0, 0 < o < co
- <t) <ect™®
5 (n(X) =1/2[ <t) < ct™, (6)

forall 0 < t < to, wheretq is some constant. (6) implies a connection between the pseudo distance
p(h, h*) and the excess risk'p (h) — erp(h*):

p(h,h*) < ¢ (erp(h) — erp(h*))"/", @)

whereh* is the Bayes classifiet; is some finite constant. Here= 1%‘" > 1 is called the noise
exponent.x = 1 is the optimal case, where the problem has bounded neise;l correspond to
unbounded noise.

Castro and Nowak [CNOQ7] noticed that Tsybakov’s noise condition is also important in active learn-
ing. They proved label complexity bounds in terms:dbr the membership-query setting. A notable

fact is thatO((%)%JQ) (v > 1) is both an upper and a lower bound for membership-query in the
minimax sense. It is important to point out that the lower bound automatically applies to pool-based
model, since pool makes weaker assumptions than membership-query. Hence far, lacgiee

learning has very limited improvement over passive learning whatever other factors are.

Recently, Hanneke [Han09] obtained similar label complexity for pool-based model. He showed the
labels requested byt? is O(6% In L In §) for the bounded noise case, i.= 1. Here we slightly



generalizeHanneke’s result to unbounded noise by introducing the following noise condition. We
assume there exist, co > 0 andT, > 0 such that

1
_ < _ < l*CQT
Do () =172 < 1) < ere, ®)

forall T > T,. Itis not difficult to show that (8) implies

*\ * 1
p(h,h*) =0 <(er(h) er(h*))In o) —er() er(h*))) . 9)
This condition assumes unbounded noise. Under this noise conditfohas a better label com-
plexity.

Theorem 10 Assume that the learning problem satisfies the noise condition (8Pankas a den-

sity upper bounded by a constahf. For any hypothesis spade that has aO(n~'/2) uniform
convergence bound, if the Bayes classifieis in 7, then with probability at least — §, A% outputs

h € Hwith erp(h) < erp(h*) + ¢, and the number of labels requested by the algorithm is at most
O(6%(e) - In § - polylog(?)).

Proof As the proof of [Han07], one can show that with probability- 5 we never remové™ from
Vi, and for anyh, b’ € V; we must haveA(V;)(er;(h) — er;(h')) = erp(h) — erp(h’), where

er;(h) is the error rate of conditioned onDIS(V;). These guaranteesp(h) < erp(h*) + €.

If A(V;) < 2¢6(e), due to theD(n~1/2) uniform convergence boun@(6?(e) In 1) labelssuffices
to makeA(V;)(UB(S;, h,d") — LB(S;, h,¢")) < eforall h € DIS(V;) and the algorithm stops.
Hence we next consideh(V;) > 2¢0(e). Note that there are at moét(In 1) times A(V;) <
1A(V;,) occurs. So below we bound the number of labels needed to naé) < 1A(V;,)

occurs.By the definition off(¢), if p(h, h*) < AQ((X’;)) forall h € V;, thenA(V;) < 2A(V;,). Let

~v(h) = erp(h) — erp(h*). By the noise assumption (9) we have that if
1 A(V;)
h)ln— <c LEA 10
TRSG = 0(e) 4o
then A(V;) < 1A(V;,). Here and below is appropriate constant but may be different from
line to line. Note that (10) holds (k) < cg(ﬁ(%, and in turn ify(h) < c(f((;/ljkl since
€ HWM) €)n

A(V;,) > A(V;) > 2¢e0(e). But to have the last inequality, the algorithm only needs to label
O(6%(e)In® L In 1) instancesrom DIS(V;). So the total number of labels requested 4 is
O(6%(e) In 5 In® %) |

Now we give our main label complexity bounds for agnostic active learning.

Theorem 11 Let the instance space i@ 1]¢*!. Let the Hypothesis space B&, whereK > d.
Assume that the Bayes classifiérof the learning problem is ifiX ; the noise condition (8) holds;
and Dy has a density bounded byth order smooth function as in Theorem 6. Then #fe

algorithm outputsh with error rateerp (h) < erp(h*) + € and the number of labels requested is at
mostO ((%)m In %) , where inO we hide thepolylog (1) term.

€

Proof Note that the densit$ » is upper bounded by a smooth function implies that it is also upper
bounded by a constaitf. Combining Theorem 5, 6 and 10 the theorem follolis.

CombiningTheorem 5, 7 and 10 we can show the following theorem.

Theorem 12 Let the instance space b, 1]%*1. Let the Hypothesis space B&¥. Assume that
the Bayes classifiek* of the learning problem is ifi{g?; the noise condition (8) holds; antx

has a density bounded by an infinitely smooth function as in Theorem 7. Thel? thigorithm
outputsh with error rate erp(h) < erp(h*) + e and the number of labels requested is at most

0] (polylog (%) In %)



4 Conclusion

We show that if the Bayesian classification boundary is smooth and the distribution is bounded by a
smooth function, then under some noise condition active learning achieves polynomial or exponen-
tial improvement in the label complexity than passive supervised learning according to whether the
smoothness is of finite order or infinite.

Although we assume that the classification boundary is the graph of a function, our results can be
generalized to the case that the boundaries are a finite number of functions. To be precise, consider
N functionsf; (x) < --- < fn(x), forallx € [0, 1]¢. Let fo(x) = 0, fy+1(x) = 1. The positive (or
negative) set defmed by these functiong s, ) foi(X) < 2 < faip1(X), i =0,1,.

Ourtheorems still hold in this case. In addition, by techniques in [Dud99] (page 259) our results
may generalize to problems which have intrinsic smooth boundaries (not only graphs of functions).

Appendix

In this appendix we describe very briefly the ideas to prove Lemma 8 and Lemma 9. The formal
proofs can be found in the supplementary file.

Ideas to Prove Lemma 8First consider thel = 1 case. Note that if € F, then|f(K—1(z) —
FED(2")| < Clz — 2’| forall 7,2’ € [0, 1]. Itis not difficult to see that we only need to show for
any f such that /1) () —f D ()| < Cla—a'|,if [y |f(x)|dx = r, then| f]l = O(r7+7).

To show this, note that in order thif||.. achieves the maximum whilg |f| = r, the derivatives
of f must be as large as possible. Indeed, it can be shown that (one of) the gptsmdithe form

Llz—¢X  0<a<g,
0 E<x <1

Thatis,|f5 =V (z) — fE-D(2')| = C|z — /| (i.e. theK — 1 order derivatives reaches the upper
bound of the Lipschitz constant.) for adl:r € [0,¢], where¢ is determined b)jo x)dx =r. It
is then easy to check thf||.c = O(rx+1 R ).

For the generall > 1 case, we relax the constraint. Note that/l 1th order partial derivatives
are Lipschitz implies that alK — 1th orderdirectionalderivatives are Lipschitz too. Under the latter
constraint, (one of) the optimgl has the form

Szl - €% o< x| <€,
0 £ < |z

fz) = 11)

€Tr) =

where¢ is determined by, , . | f(x)|dz = r. This implies|| ||« = O(r=+7).

Ideasto Prove Lemma 9 Similar to the proof of Lemma 8, we only need to show that for any
f e FE,if [[o yal f(@)da = r, then||f[lc = O(r - log?(1)).

Sincef is |nf|n|tely smooth, we can choos€ large and depending an For thed = 1 case, let
K41=_l%8x . We know that the optimaf is of the form of Eq.(11). (Actually this choice éf

log log
is approxmately the largedt such that Eq.(11) is still the optimal form. K is larger than this§
will be out of [0, 1].) Sinlcefo1 |f(z)] = r, we havesK+1 = (KT“)' Now, || flleo = 5&X. Note
loglog?

that(1)K+1 = (1) =+ =log 1. By Stirling’s formula we can shoyf||. = O(r - log 1).

For thed > 1 case, lefk +d = lololg - . By similar arguments we can shdW||.. = O(r-log® 1.
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