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Abstract

We study minimax rates for estimating high-dimensional pgzametric regression mod-
els with sparse additive structure and smoothness comistraiMore precisely, our goal
is to estimate a functiorf* : R? — R that has an additive decomposition of the form
fr( X, Xp) = 30,e5 hj(X;), where each component functidrj lies in some class

H of “smooth” functions, and C {1,...,p} is an unknown subset with cardinality= |S]|.
Givenn i.i.d. observations of “(X) corrupted with additive white Gaussian noise where the
covariate vector§X;, X, X3, ..., X,) are drawn with i.i.d. components from some distribu-
tion P, we determine lower bounds on the minimax rate for estirgdtie regression function
with respect to squarefi?(IP) error. Our main result is a lower bound on the minimax rate

that scales amax (%, se2(H)). The first term reflects the sample size required for
performingsubset selectigrand is independent of the function claqs The second term
se2(H) is ans-dimensional estimatioterm corresponding to the sample size required for
estimating a sum of univariate functions, each chosen from the function clés depends
linearly on the sparsity indexbut is independent of the global dimensjarAs a special case,

if H corresponds to functions that aretimes differentiable (am:t"-order Sobolev space),
then thes-dimensional estimation term takes the fosed (H) < s n=2™/m+1)_ Either of
the two terms may be dominant in different regimes, dependimthe relation between the
sparsity and smoothness of the additive decomposition.

1 Introduction

Many problems in modern science and engineering involvh-Hignensional data, by which we mean that the
ambient dimensiomp in which the data lies is of the same order or larger than thapkasizen. A simple
example is parametric linear regression under high-dimeas scaling, in which the goal is to estimate a
regression vectof* € RP based om samples. In the absence of additional structure, it is irsipdes to
obtain consistent estimators unless the ratle converges to zero which precludes the regipne> n. In
many applications, it is natural to impose sparsity condii such as requiring that have at most non-zero
parameters for some< p. The method of; -regularized least squares, also known as the Lasso dgoflt4],

has been shown to have a number of attractive theoreticpepies for such high-dimensional sparse models
(e.g., [1, 19, 10)).

Of course, the assumption of a parametric linear model magpdeestrictive for some applications. Accord-

ingly, a natural extension is the non-parametric regressiodely = f*(x1, ..., z,)+w, wherew ~ N (0, o%)

is additive observation noise. Unfortunately, this geheoa-parametric model is known to suffer severely from
the “curse of dimensionality”, in that for most natural ftioo classes, the sample sizeequired to achieve

a given estimation accuracy grows exponentially in the disien. This challenge motivates the use of addi-
tive non-parametric models (see the book [6] and referetimaein), in which the functiorf* is decomposed

additively as a sunf*(z1, z2, ..., xp) = Zgzl h’(x;) of univariate functions:;. A natural sub-class of these



models are theparse additive modelstudied by Ravikumar et. al [12], in which

f(x1, 22, xp) = Zh;(xj), (1)
jes
whereS C {1,2,...,p} is someunknownsubset of cardinalityS| = s.

A line of past work has proposed and analyzed computatipefficient algorithms for estimating regression
functions of this form. Just a -based relaxations such as the Lasso have desirable pespfnt sparse
parametric models, simildh -based approaches have proven to be successful. Raviktialaf}2] propose a
back-fitting algorithm to recover the component functibpsind prove consistency in both subset recovery and
consistency in empirical.?(P,,) norm. Meier et al. [9] propose a method that involves a spassnoothness
penalty term, and also demonstrate consistencyZP) norm. In the special case that is a reproducing
kernel Hilbert space (RKHS), Koltchinskii and Yuan [7] aywd a least-squares estimator based on imposing
an/; — {y-penalty. The analysis in these paper demonstrates that gedtain conditions on the covariates,
such regularized procedures can yield estimators thatomsstent in the.?(P)-norm even whem < p.

Of complementary interest to the rates achievable by malathethods are the fundamental limits of the esti-
mating sparse additive models, meaning lower bounds thwdy &pany algorithm. Although such lower bounds
are well-known under classical scaling (whereemains fixed independent o, to the best of our knowledge,

lower bounds for minimax rates on sparse additive models hat been determined. In this paper, our main

result is to establish a lower bound on the minimax raté3fiP) norm that scales asax (Sk%(p/s), SefL(H)).

The first term% is asubset selection ternindependent of the univariate function sp&g¢en which
the additive components lie, that reflects the difficulty afifng the subse$. The second terme? () in an
s-dimensional estimation termvhich depends on the low dimensierbut not the ambient dimensign and
reflects the difficulty of estimating the sum ofinivariate functions, each drawn from function classEither
the subset selection grdimensional estimation term dominates, depending ondlative sizes oh, p, and

s as well asH. Importantly, our analysis applies both in the low-dimensil setting ¢ > p) and the high-
dimensional settingp(>> n) provided thatr, p ands are going toco. Our analysis is based on information-
theoretic techniques centered around the use of metrio@ntmutual information and Fano’s inequality in
order to obtain lower bounds. Such techniques are standdng ianalysis of non-parametric procedures under
classical scaling [5, 2, 17], and have also been used magatigdo develop lower bounds for high-dimensional
inference problems [16, 11].

The remainder of the paper is organized as follows. In thé seption, the results are stated including appropri-
ate preliminary concepts, notation and assumptions. Itid&e8, we state the main results, and provide some
comparisons to the rates achieved by existing algorithmsSelction 4, we provide an overview of the proof.
We discuss and summarize the main consequences in Section 5.

2 Background and problem formulation

In this paper, we consider a non-parametric regression hvaitte random design, meaning that we make
observations of the form , 4 .

YD = H(XD) 4@, fori=1,2,...,n. 2)
Here the random vectorX () € R? are the covariates, and have eIeme]ﬁﬁé) drawn i.i.d. from some un-
derlying distributionP. We assume that the noise variable$) ~ N(0,02) are drawn independently, and

independent of alX ()'s. Given a base clagq of univariate functions with nornj - ||,;, consider the class of
functionsf : R? — R that have an additive decomposition:

p
Fi={f:R SR | flxr,22,....2p) = Y _hj(x;), and |hllx<1 Vj=1,...p}
j=1

Given some integes € {1,...,p}, we define the function clas’(s), which is a union of(*) s-dimensional
subspaces af, given by
b
Fols):={f €F | Y Ih; #0) < s}. (3)
j=1

Theminimax rateof estimation overF(s) is defined by the quantihylinfmaxf*ffo(s) EHf_f* HQLZ(P)’ where
the expectation is taken over the noiseand randomness in the sampling, ghchnges over all (measurable)



functions of the observationgy(?, X()}7_,. The goal of this paper is to determine lower bounds on this
minimax rate.

2.1 Inner products and norms

Given a univariate functioh; € H, we define the usudl?(P) inner product

(o B 12 p) = /]R hy (@) () dP(z).

(With a slight abuse of notation, we u#eto refer to the measure ov&” as well as the induced marginal
measure in each direction defined o®gr Without loss of generality (re-centering the functiossiaeded), we
may assume

Bl (X)] = [ hyla) aP(a) =0,

for all h; € H. As a consequence, we hallgf (X, ..., X,)] = 0 for all functionsf € Fy(s). Given our
assumption that the covariate vector= (X1, ..., X,) has independent components, ftiéP) inner product
on F has the additive decompositidif, f') > = Zle (hj, h}) 2. (Note that if independence were not
assumed th&?(PP) inner product over- would involve cross-terms.)

2.2 Kullback-Leibler divergence

Since we are using information theoretic techniques, wibgilsing the Kullba(:Nk—LeibIer (KL) divergence as a
measure of “distance” between distributions. For a givéngfdunctions f and f, consider the:-dimensional
vectorsf(X) = (f(XM), F(XP),..., f(X)" and f(X) = (F(XD), F(XP),.... F(X™))". Since

Y[f(X) ~ N(f(X),0%Lnxn) andY | f(X) ~ N(F(X), 020 ),
DY |f(X) | Y]f(X)) = %I\f(X) - fX)|3. (4)

We also use the notatiaB(f || f) to mean the average K-L divergence between the distribsitib” induced
by the functionsf and f respectively. Therefore we have the relation

D(fIF) = Ex[DYIf(X)IYIF(X))]
= 55 lf = - 5)

This relation between average K-L divergence and squaféBl) distance plays an important role in our proof.

2.3 Metric entropy for function classes

In this section, we define the notion of metric entropy, whicbvides a way in which to measure the relative
sizes of different function classes with respect to someimgt More specifically, central to our results is the
metric entropy ofF,(s) with respect to the.?(P) norm.

Definition 1 (Covering and packing numbersfonsider a metric space consisting of a Seand a metric
p:SExS =Ry

(@) An e-covering ofS in the metricp is a collection{f!,..., f} c S such that for allf € S, there
exists some € {1,..., N} with p(f, f*) < e. Thee-covering numbem, (e) is the cardinality of the
smallest-covering.

(b) An e-packing ofS in the metricp is a collection{ f*,.... fM} c S such thatp(f, f7) > ¢ for all
i # j. Thee-packing numbei/,(¢) is the cardinality of the largestpacking.

The covering and packing entropy (denoteddyy N, (¢) andlog M, (¢) respectively) are simply the logarithms
of the covering and packing numbers, respectively. It cashmvn that for any convex set, the quantities
log N, (¢) andlog M, (€) are of the same order (within constant factors independest o



In this paper, we are interested in packing (and coveringdats of the function clasg (s) in the L?(P) metric,
and so drop the subscriptfrom here onwards. En route to characterizing the metrioegtof 7, (s), we need
to understand the metric entropy of the unit balls of our anate function clasg/—namely, the sets

By (1) :={h e H | [[Allx <1}.

The metric entropy (both covering and packing entropy) fangnclasses of functions are known. We provide
some concrete examples here:

(i) Consider the clas${ = {hs : R — R | hg(z) = Sz} of all univariate linear functions with the norm
[lhgll# = |B]. Then itis known [15] that the metric entropy Bf,(1) scales asog M (e; H) ~ log(1/€).

(i) Consider the clasgt = {h : [0,1] — [0,1] | |h(z) — h(y)| < |z — y|} of all 1-Lipschitz func-
tions on|0, 1] with the norm||h|| = sup,¢(o 1) [R(z)]. In this case, it is known [15] that the metric entropy
scales asog M™(e;’H) ~ 1/e. Compared to the previous example of linear models, notettigametric
entropy grows much faster as— 0, indicating that the class of Lipschitz functions is muathsr.

(iii) Consider the class of Sobolev spadés™ for m > 1, consisting of all functions that have derivatives,
and them!" derivative is bounded if?(P) norm. In this case, it is known thatg M (e; H) ~ € (e.9., [3]).
Clearly, increasing the smoothness constrairieads to smaller classes. Such Sobolev spaces are a garticul
class of functions whose packing/covering entropy grovesrate polynomial int.

In our analysis, we require that the metric entropBef(1) satisfy the following technical condition:

Assumption 1. Usinglog M (¢; H) to denote the packing entropy of the unit b, (1) in the L?(P)-norm,
assume that there exists some (0, 1) such that

. log M(ae;H)

elg»% log M (¢;H) > 1
The condition is required to ensure theg M (ce)/log M (€) can be made arbitrarily small or large uniformly
over smalle by changing-, so that a bound due to Yang and Barron [17] can be applied sHtisfied for most
non-parametric classes, including (for instance) thedhfig and Sobolev classes defined in Examples (ii) and
(iii) above. It may fail to hold for certain parametric class such as the set of linear functions considered
in Example (i); however, we can use an alternative techntqueerive bounds for the parametric case (see
Corollary 2).

3 Main result and some consequences

In this section, we state our main result and then developesafiits consequences. We begin with a theorem
that covers the function clasg (s) in which the univariate function classgshave metric entropy that satisfies
Assumption 1. We state a corollary for the special cases ivhtiate classes{ with metric entropy growing
polynomial in(1/¢), and also a corollary for the special case of sparse lingaession.

Consider the observation model (2) where the covariat@vebiave i.i.d. elements; ~ P, and the regression
function f* € Fy(s). Suppose that the univariate function cl&sshat underliesFy(s) satisfies Assumption 1.
Under these conditions, we have the following result:

Theorem 1. Givenn i.i.d. samples from the sparse additive mo@®)} the minimax risk in squared?(P)
norm is lower bounded as

~ 2slog(p/s) s
. EIF— £112, 0 > T 508\P/S) 5 2gy 6
mflnf*rélfa?(s) I = 7z e 2 max 32n ’ 166"( )| ©)

where, for a fixed constant the quantity,, (H) = ¢, > 0 is largest positive number satisfying the inequality

2
n

3

€

L <log M(cey). (7)

[\

g

For the case wher# has an entropy that is growing to at a polynomial rate as — 0—saylog M (e; H) =
O(e~1/™) for somem > % we can compute the rate for tealimensional estimation term explicitly.

4



Corollary 1. For the sparse additive mod€R) with univariate function spacé{ such that such that
log M (e; H) = ©(e~ /™), we have
Zs1 2 _om
min max E||f I ||L2 > max o°slog(p/s) Cs (0-7)27714»1 7 ®)

)

7 freFols) 32n n
for someC > 0.

3.1 Some consequences

In this section, we discuss some consequences of our results

Effect of smoothnesdzocusing on Corollary 1, for spaces with bounded derivatives (i.e., functions in the

Sobolev spacél’), the minimax rate is:~ T (for details, see e.g. Stone [13]). Clearly, faster rates ar
obtained for larger smoothness indicas and asm — oo, the rate approaches the parametric rate of.
Since we are estimating over ardimensional space (under the assumption of independemeaye effectively
estimatings univariate functions, each lying within the function spé¢eTherefore the uni-dimensional rate is
multiplied by s.

Smoothness versus sparsiltyis worth noting that depending on the relative scalings, efandp and the metric
entropy ofH, it is possible for either the subset selection terns-giimensional estimation term to dominate
the lower bound. In general, ifg(fl’—/s) = o(€2(H)), the s-dimensional estimation term dominates, and vice
versa (at the boundary, either term determines the minirage).r In the case of a univariate function cléss
with polynomial entropy as in Corollary 1, it can be seen foat: = o((log(p/s))?™*1), the s-dimensional
estimation term dominates while far= Q((log(p/s))?>™*1), the subset selection term dominates.

Rates for linear modeldJsing an alternative proof technique (not the one used gghper), it is possible [11]
to derive the exact minimax rate for estimation in iparse linear regression modéh which we observe

y O =33 x0 @, fori=1,2,..,n 9)
jES

Note that this is a special case of the general model (2) iclwHicorresponds to the class of univariate linear
functions (see Example (i)).

Corollary 2. For sparse linear regression mod@), the the minimax rate scales asix (M 23,

n

In this case, we see clearly the subset selection term ddéesiriarp — oo, meaning the subset selection
problem is always “harder” (in a statistical sense) than #kiddmensional estimation problem. As shown
by Bickel et al. [1], the rate achieved Hy-regularized methods iél’;ﬂ under suitable conditions on the
covariatesX .

Upper bounds:To show that the lower bounds are tight, upper bounds thamatehing need to be derived.
Upper bounds (matching up to constant factors) can be dkviea classical information-theoretic approach
(e.g., [5, 2]), which involves constructing an estimatosdih on a covering set and bounding the covering
entropy of Fy(s). While this estimation approach does not lead to an impleaidatalgorithm, it is a simple
theoretical device to demonstrate that lower bounds ahé. tiye turn our focus on implementable algorithms
in the next point.

Comparison to existing bound$Ve now provide a brief comparison of the minimax lower bouwith upper
bounds on rates achieved by existing implementable algostprovided by past work [12, 7, 9]. Ravikumar
et al. [12] propose a back-fitting algorithm to minimize thadt-squares objective with a sparsity constraint on
the the functionf. The rates derived in Koltchinskii and Yuan [7] do not mathhl tower bounds derived in
Theorem 1. Further, it is difficult to directly compare théesain Ravikumar et al. [12] and Meier et al. [9] with
our minimax lower bounds since their analysis does not eitglitrack the sparsity index. We are currently

in the process of conducting a thorough comparison with fow@-mentioned, -based methods.

4 Proof outline

In this section, we provide an outline of the proof of Theorgndue to space constraints, we defer some of
the technical details to the full-length version. The probased on a combination of information-theoretic



techniques and the concepts of packing and covering entaspgiefined previously in Section 2.3. First, we
provide a high-level overview of the proof. The basic idetisarefully choose two subseis andT; of the
function classF,(s) and lower bound the minimax rates over these two subsetsedtich 4.1, application of
the generalized Fano method—a technique based on Fanoisalitgg-to the sefl’ defined in equation (10)
yields a lower bound on the subset selection term. In Sedtidnwe apply an alternative method for obtaining
lower bounds over a second $gt defined in equation (11) that captures the difficulty of eating the sum
of s univariate functions.. The second technique also explt®’s inequality but uses a more refined upper
bound on the mutual information developed by Yang and Bdit@h
Before procedding, we first note that for afiyC F(s), we have
min f*gl;lﬁs)EHf - f*||2L2(IP>) 2 mfin ?}FEL}T(EHJC - f*||2L2(IP)'
Moreover, for any subsefs,, 7> C Fy(s), we have
i ax E||f — £*||22m > max(min max E||f — f*||22p, min max E||f — £2 ,
m%nf*rélff(s) If=f HLZ(]P’) Z m X(mflnﬁle% If=f HL2(]P’) Hl%nfr}}ej)% If = ||L2(1P))

since the bound holds for each of the two terms. We apply ¢liet bound using the subsé&tsandT; defined
in equations (10) and (11).

4.1 Bounding the complexity of subset selection

For part of the proof, we use the generalized Fano’s methpdvdich we state below without proof. Given
some parameter space, weddie a metric on it.

Lemma 1. (Generalized Fano Method)or a given integer > 2, consider a collectiooM,. = {Py,...,P,.}
of r probability distributions such that
d(0(P:),0(P;)) > v forall i # j,
and the pairwise KL divergence satisfies
D(P; ||P;) < B, foralli,j=1,...,r.
Then the minimax risk over the family is lower bounded as

~ Q. By + log 2
. : > — _— .
m]aXE]d(H(IP’]), ) > 5 (1 oz T )

The proof of Lemma 1 involves applying Fano’s inequality rotree discrete set of parametérs O indexed
by the set of distributiong1,.. Now we construct the s&f; which creates the set of probability distributions
M,.

Let g be an arbitrary function ift{ such that|g||.2») = § W. The setl; is defined as

p
T :{f : f(XlaX27"~7X;D) = chg(Xj)vcj € {_15071} ‘ ”C”O = 3} (10)
j=1

T may be viewed as a hypercube&f(s) and will lead to the lower bound for the 'subset selectionteThis
hypercube construction is often used to prove lower bouseks Yu [18]). Next, we require a further reduction
of the setl} to a setA (defined in Lemma 2) to ensure that elementsiaire well-separated ih?(P) norm.
The construction ofd is as follows:

L_emma 2. There exists a subsdt C T4 such that:

(i) log |A] > §slog(p/s),

H 0'2( S

W) [1f = F/120p) > 2582 Y f, f' € A, and

(iii)y D(f I f') < gslog(p/s) Vf, f' € A.

The proof involves using a combinatoric argument to comstiite setd. For an argument on how the set is
constructed, seeiin [8]. Forslog £ > 8log 2, applying the Generalized Fano Method (Lemma 1) together
with Lemma 2 yields the bound

azslog(p/s).

. E T2 > mi E £ o2 >
m%nf*ren;a_sc(s) \f—r ||L2(P)7In],cl\n}r}2‘i§ If =2 = 39n

This completes the proof for the subset selection teﬁclfi%@) in Theorem 1.



4.2 Bounding the complexity ofs-dimensional estimation

Next we derive a bound for thedimensional estimation term by determining a lower bouvet @3. Let .S be
an arbitrary subset of integers in{1, 2, .., p}, and define the sefs as

Ty:=Fs:={feF : f(X)=) hi(X (11)

jeSs

Clearly Fs C Fy(s) meaning that

min max [E > min maX E
in | mox BN~/ 3age) 2 min max B~ /e

We use a technique used in Yang and Barron [17] to lower bo@drtinimax rate ovefFs. The idea is to
construct a maximad,,-packing set forFs and a minimale, -covering set forFg, and then to apply Fano’s
inequality to a carefully chosen mixture distribution itwiag the covering and packing sets (see the full-length
version for details). Following these steps yields thedfelhg result:

Lemma 3.

E > n
m;nfmeag IF = £*132)

52 (1 _log N(en; Fs) +nep /20% + log2>
pu— 4 .

log M (6y; Fs)

Now we have a bound with expressions involving the coverimdj@acking entropies of thedimensional space
Fs. The following Lemma allows bounds dog M (e; Fs) andlog N (¢; Fg) in terms of the unidimensional
packing and covering entropies respectively:

Lemma 4. LetH be function space with a packing entrojpyg, M (¢; H) that satisfies Assumption 1. Then we
have the bounds

log M (e; Fs) > slog M(e//s;H), and log N(e; Fs) < slog N(e/v/s;H).

The proof involves constructin%— packing set and covering sets in each of gtdimensions and displaying

that these are-packing and coverings sets ifis (respectively). Combining Lemmas 3 and 4 leads to the
inequality

~ 52 slog N(en/v/s;H) + ne2 /202 + log 2
. _rx2 >7n _ n ) n
min max S = /liae) = 5 (1 slog M(6,/v/5: H) (12)
Now we choose,, andd,, to meet the following constraints:

%ei < slogN(e—\/"g;H), and (13a)

€n 5n

4log N(—=; < logM(——;H). 1

og (i) < logM( i) (130)

Combining Assumption 1 with the well-known relatiokg M (2¢; H) < log N(2¢; H) < log M (e;H), we
conclude that in order to satisfy inequalities (13a) and}18 is sufficient to choose, = ¢d,, for a constant,
2

and then require thatlog JVI(”‘S—n~H) s = 4, then this inequality can

be re-expressed asg M(céNn) > "5n . For 57 €2 > log 2, using inequalities (13a) and (13b) together with
equation (12) yields the desired rate

min max E||f — £*[|22p > —_
7 fers 1f= £z (P)
thereby completing the proof.

5 Discussion

In this paper, we have derived lower bounds for the minimsk in squared.?(P) error for estimating sparse
additive models based on the sum of univariate functions: feofunction clas${. The rates show that the
estimation problem effectively decomposes inteudbset selection probleand ans-dimensional estimation



problem and the “harder” of the two problems (in a statistical s@¢rietermines the rate of convergence.

More concretely, we demonstrated that the subset seletdiom scales aw, depending linearly on
the number of componentsand only logarithmically in the ambient dimensipnThis subset selection term is
independent of the univariate function sp&¢eOn the other hand, thedimensional estimation term depends
on the “richness” of the univariate function class, meagimeits metric entropy; it scales linearly withand is
independent op. Ongoing work suggests that our lower bounds are tight inyngases, meaning that the rates
derived in Theorem 1 are minimax optimal for many functiosssles.

There are a number of ways in which the work can be extende. i@plicit and strong assumption in our
analysis was that the covariat&s, j = 1,2, ..., p are independent. It would be interesting to investigateése
when the random variables are endowed with some correlstiionture. One would expect the rates to change,
particularly if many of the variables are collinear. It wdwlso be interesting to develop a more complete
understanding of whether computationally efficient aldporis [7, 12, 9] based on regularization achieve the
lower bounds on the minimax rate derived in this paper.
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