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Abstract

Given a matrixM of low-rank, we consider the problem of reconstructing it from
noisy observations of a small, random subset of its entries. The problem arises
in a variety of applications, from collaborative filtering (the ‘Netflix problem’)

to structure-from-motion and positioning. We study a low complexity algorithm
introduced in [1], based on a combination of spectral techniques and manifold
optimization, that we call here &XSPACE. We prove performance guarantees
that are order-optimal in a number of circumstances.

1 Introduction

Spectral techniques are an authentic workhorse in machine learning, statistics, numerical analysis,
and signal processing. Given a matfiX, its largest singular values —and the associated singular
vectors— ‘explain’ the most significant correlations in the underlying data source. A low-rank ap-
proximation of M can further be used for low-complexity implementations of a number of linear
algebra algorithms [2].

In many practical circumstances we have access only to a sparse subset of the entries>ofhan
matrix M. It has recently been discovered that, if the mafvixhas rankr, and unless it is too
‘structured’, a small random subset of its entries allow to reconstrexadtly. This result was first
proved by Canés and Recht [3] by analyzing a convex relaxation indroduced by Fazel [4]. A tighter
analysis of the same convex relaxation was carried out in [5]. A number of iterative schemes to solve
the convex optimization problem appeared soon thereafter [6, 7, 8] (also see [9] for a generalization).

In an alternative line of work, the authors of [1] attacked the same problem using a combination
of spectral techniques and manifold optimization: we will refer to their algorithm RESEACE.
OPTSPACE is intrinsically of low complexity, the most complex operation being computisg-

gular values and the corresponding singular vectors of a spargen matrix. The performance
guarantees proved in [1] are comparable with the information theoretic lower bound: roughly
nr max{r,logn} random entries are needed to reconstiucexactly (here we assume of or-

dern). A related approach was also developed in [10], although without performance guarantees for
matrix completion.

The above results crucially rely on the assumption thats exactly a rankr matrix. For many
applications of interest, this assumption is unrealistic and it is therefore important to investigate
their robustness. Can the above approaches be generalized when the underlying data is ‘well ap-
proximated’ by a rank matrix? This question was addressed in [11] within the convex relaxation
approach of [3]. The present paper proves a similar robustness resulPfi@P@CE. Remark-

ably the guarantees we obtain are order-optimal in a variety of circumstances, and improve over the
analogus results of [11].
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1.1 Model definition

Let M be anm x n matrix of rankr, that is
M=UxvVT, (1)

whereU has dimensions: x r, V' has dimensiona x r, andX is a diagonal x r matrix. We
assume that each entry 8f is perturbed, thus producing an ‘approximately’ low-rank maf¥ix
with

Nij = M;; + Zij, (2)
where the matrixZ will be assumed to be ‘small’ in an appropriate sense.

Out of them x n entries of N, a subsefy C [m] x [n] is revealed. We lelN ¥ be them x n matrix
that contains the revealed entries’df and is filled with0’s in the other positions

g_ | Ny ift(i,j)ekE,
Nij = { 0 otherwise. ®)

The setF will be uniformly random given its sizgz)|.

1.2 Algorithm

For the reader’s convenience, we recall the algorithm introduced in [1], which we will analyze here.
The basic idea is to minimize the cost functiBiX, Y'), defined by

F(X,Y) =  min F(X,Y,5), 4)
e TXT
1

FX,Y,8) = > (Vi = (XSYT))%. (5)
(i,7)€E

HereX € R"*",Y € R™*" are orthogonal matrices, normalized 8 X = m1,Y?Y = nl.

Minimizing F(X,Y) is ana priori difficult task, sinceF is a non-convex function. The key insight

is that the singular value decomposition (SVDY%F provides an excellent initial guess, and that the
minimum can be found with high probability by standard gradient descent after this initialization.
Two caveats must be added to this decriptioh) In general the matrixV ¥ must be ‘trimmed’

to eliminate over-represented rows and colun{@s;For technical reasons, we consider a slightly

modified cost function to be denoted BY.X, Y).

OPTSPACE( matrix N7 )

1: Trim N¥, and letN'® be the output; N

2:  Compute the rank-projection of N ¥, T,.(N*) = X(S,Y";

3:  Minimize F(X,Y’) through gradient descent, with initial conditioX, Y5).

We may note here that the rank of the matkik if not known, can be reliably estimated fraw.
We refer to the journal version of this paper for further details.

The various steps of the above algorithm are defined as follows.

Trimming. We say that a row is ‘over-represented’ if it contains more &|&/m revealed entries

(i.e. more than twice the average number of revealed entries). Analogously, a column is over-
represented if it contains more thape|/n revealed entries. The trimmed mati&E is obtained

from NE by setting to0 over-represented rows and columne.? and ZZ are defined similarly.
Hence,NZ = ME + ZE.

Rank-r projection. Let

min(m,n)

NE = Z O-ixiyiTv (6)

=1



be the singular value decomposmoanE with singular vectorg; > oo > .... We then define

T 0;T 1y;T‘ (7)
|E| Z

Apart from an overall normalizatioﬁjr(NE) is the best rank-approximation taVZ in Frobenius
norm.

Minimization. The modified cost functiof is defined as
F(X,Y) = F(X,Y)+pG(X,Y) (8)

e () ke (3.

where X ) denotes theé-th row of X, andY () the j-th row of Y. See Section 1.3 below for the
definition of 4. The functionG; : RT™ — R is such thatGi(z) = 0if 2 < 1 andG4(z) =

¢(==D* _ 1 otherwise. Further, we can chogse= O(ne).

Let us stress that the regularization term is mainly introduced for our proof technique to work (and
a broad family of functiongs; would work as well). In numerical experiments we did not find any
performance loss in setting= 0.

One important feature of BXSPACE is that F(X,Y) and F(X,Y") are regarded as functions of
the r-dimensional subspaces Bf"* andR™ generated (respectively) by the columnsXofandY'.
This interpretation is justified by the fact tha{ X,Y) = F(X A, Y B) for any two orthogonal
matricesA, B € R"*" (the same property holds fd@f). The set ofr dimensional subspaces Bf"

is a differentiable Riemannian manifofe(m, ) (the Grassman manifold). The gradient descent
algorithm is applied to the functioR : M(m,n) = G(m,r) x G(n,r) — R. For further details on
optimization by gradient descent on matrix manifolds we refer to [12, 13].

1.3 Main results

Our first result shows that, in great generality, the raneojection of NZ provides a reasonable
approximation of\/. Throughout this paper, without loss of generality, we assumem/n > 1.

Theorem 1.1. Let N = M + Z, where M hasrank r and | M, ;| < My for all (i, j) € [m] x [n],
and assume that the subset of revealed entries £ C [m] x [n] is uniformly random with size | E|.
Then there exists numerical constants C and C’ such that

~ nra3/? nyroa  ~
M = T, (NP)] [ < C M () Lo ™Iz, (10)

1
——|
vmn |E| |E|

with probability larger than 1 — 1/n3.

Projection onto rank-matrices through SVD is pretty standard (although trimming is crucial for
achieving the above guarantee). The key point here is that a much better approximation is obtained

by minimizing the cos#'(X,Y") (step 3 in the pseudocode above), providédsatisfies an appro-
priate incoherence condition. L7 = UX V7’ be a low rank matrix, and assume, without loss of
generality,UTU = m1 andVTV = nl. We say thatV is (u, i1 )-incoherent if the following
conditions hold.

Al. Foralli € [m], j € [n]we have", _, UZ < por, > pq Vi3 < por.

A2. There existg:; such thal >, Ui (Sk/S1)Vik| < part/2.

Theorem 1.2. Let N = M + Z, where M isa (uo, p1)-incoherent matrix of rank r, and assume
that the subset of revealed entries E C [m] x [n] is uniformly random with size |E|. Further, let

Ymin = 21 < o0 < 80 = Tax With X0y /Sin = k. Let M bethe output of OPTSPACE on
input N, Then there exists numerical constants C and C such that if

|E| > Cnyar? max{porvalogn; pgrioas; pir’as’} | (11



then, with probability at least 1 — 1/n3,
1 — ny/ar
—— ||M — M||r < C" k2| ZF||,. 12
| lr < 0w 2512511 (12)
provided that the right-hand side is smaller than X2,,;,, .
Apart from capturing the effect of additive noise, these two theorems improve over the work of [1]

even in the noiseless case. Indeed they provide quantitative bounds in finite dimensions, while the
results of [1] were only asymptotic.

1.4 Noise models

In order to make sense of the above results, it is convenient to consider a couple of simple models
for the noise matrixzZ:

Independent entries model. We assume thd’s entries are independent random variables, with zero
meanE{Z;;} = 0 and sub-gaussian tails. The latter means that

12
P{|Zi;| > 2} < 2e 27, (13)
for some bounded constast.

Worst case model. In this modelZ is arbitrary, but we have an uniform bound on the size of its
entries:|Z;;| < Zmax-

The basic parameter entering our main results is the operator not¥ pfvhich is bounded as
follows.

Theorem 1.3. If Z is a random matrix drawn according to the independent entries model, then
thereisa constant C' such that,

B 1/2
|ZEMf§CU(VGJﬂk%u;> , (14)

n
with probability at least 1 — 1/n3.
If Z isamatrix from the worst case model, then
2|E|
ny/«a

HZEHQ < Zmaxa (15)

for any realization of E.

Note that for|E| = Q(nlogn) , no row or column is over-represented with high probability. It
follows that in the regime ofE| for which the conditions of Theorem 1.2 are satisfied, we have
Z¥ = ZF . Then, among the other things, this result implies that for the independent entries model
the right-hand side of our error estimate, Eq. (12), is with high probability smallerXhan if

|E| > Cra®/?nlogn k*(o/Smin)?. For the worst case model, the same statement is tetig.if <
Zmin/C’\/Fn2.

Due to space constraints, the proof of Theorem 1.3 will be given in the journal version of this paper.

1.5 Comparison with related work

Let us begin by mentioning that a statement analogous to our preliminary Theorem 1.1 was proved
in [14]. Our result however applies to any number of revealed entries, while the one of [14] requires
|E| > (81ogn)*n (which forn < 5 - 10% is larger tham?).

As for Theorem 1.2, we will mainly compare our algorithm with the convex relaxation approach
recently analyzed in [11]. Our basic setting is indeed the same, while the algorithms are rather
different.
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Figure 1: Root mean square error achieved byISPACE for reconstructing a random rankrBatrix, as a
function of the number of observed entrids|, and of the number of line minimizations. The performance of
nuclear norm minimization and an information theory lower bound are also shown.

Figure 1 compares the average root mean square error for the two algorithms as a fundipn of
HereM is a random rank = 2 matrix of dimensionn = n = 600, generated by letting/ = UV 7™

with U;;,V;; i.i.d. N(0,20/4/n). The noise is distributed according to the independent entries
model withZ;; ~ N(0,1). This example is taken from [11] Figure 2, from which we took the
data for the convex relaxation approach, as well as the information theory lower bound. After one
iteration, QPTSPACE has a smaller root mean square error than [11], and in about 10 iterations it
becomes indistiguishable from the information theory lower bound.

Next let us compare our main result with the performance guarantee in [11], Theorem 7. Let us
stress that we require some bound on the condition numbeghile the analysis of [11, 5] requires
a stronger incoherence assumption. As far as the error bound is concerned, [11] proved

1 —~ n 2
— |IM - M|p <7, — ||ZF —1ZF|~. 16
o=l le <7y [ 1251 + == 125 (16)

(The constant in front of the first term is in fact slightly smaller tffan [11], but in any case larger
than4/2).

Theorem 1.2 improves over this result in several respéejsiVe do not have the second term on
the right hand side of (16), that actually increases with the number of observed efityi€r
error decreases as/|E| rather than(n/|FE|)'/2; (3) The noise enters Theorem 1.2 through the
operator norm| Z¥||, instead of its Frobenius norf\Z || > ||Z¥||». For E uniformly random,
one expect$ ZZ|| - to be roughly of ordef|Z¥||21/n. For instance, within the intependent entries
model with bounded variance, ||ZZ||r = O(y/|E|) while ||ZF||, is of order\/|E|/n (up to
logarithmic terms).

2 Some notations

The matrix M to be reconstructed takes the form (1) whéres R™*", V. € R"*". We write

U = [uy,ug,...,u-]andV = [vy,ve,...,v,] for the columns of the two factors, withu;|| = /m,
llvil| = v/n, andulu; = 0, vI'v; = 0fori # j (there is no loss of generality in this, since
normalizations can be absorbed by redefifif)g



We shall writeX = diag(%4,...,%,) with 3y > 35 > .-+ > ¥, > 0. The maximum and mini-
mum singular values will also be denoted By,,, = ¥; andX,,;, = X,. Further, the maximum
size of an entry of\/ is M,ax = max;; |M;;]|.

Probability is taken with respect to the uniformly random sulis€t [m] x [n] given|E| and (even-
tually) the noise matrixZ. Definee = |E|//mn. In the case whem = n, ¢ corresponds to the
average number of revealed entries per row or column. Then it is convenient to work with a model in
which each entry is revealed independently with probability’mn. Since, with high probability

|E| € [ev/an — Ay/nlogn,ei/an + Ay/nlogn|, any guarantee on the algorithm performances
that holds within one model, holds within the other model as well if we allow for a vanishing shift
in e. We will useC, C’ etc. to denote universal numerical constants.

Given a vector: € R™, ||z|| will denote its Euclidean norm. For a mati € R™*", || X||z is
its Frobenius norm, andX||, its operator norm (i.e|| X ||z = sup,, ., || Xu[|/|[u]|). The standard
scalar product between vectors or matrices will sometimes be indicated pyor (X, Y'), respec-
tively. Finally, we use the standard combinatorics notatiéh= {1,2,..., N} to denote the set of
first V integers.

3 Proof of Theorem 1.1

As explained in the introduction, the crucial idea is to consider the singular value decomposition

of the trimmed matrixV'Z instead of the original matritv ®. Apart from a trivial rescaling, these
singular values are close to the ones of the original matfix

Lemma 3.1. There exists a numerical constant C' such that, with probability greater than 1 — 1/n?,

laa 1, ~
S CMmax ; + g||ZEH2 ) (17)

whereit is understood that 3, = 0 for ¢ > 7.

g
q
2y,
€

Proof. For any matrix A, let,(A) denote thegth singular value ofd. Then,o,(A+B) < 04(A)+
o1(B), whence
%4 5

. 0g(MP)/e = 2| +01(Z7) /¢

jlaa 1, ~
< OMmax z+z||ZE||2’

where the second inequality follows from the following Lemma as shown in [1].

IN

q

Lemma 3.2 (Keshavan, Montanari, Oh, 2009 [1]There exists a numerical constant C' such that,

with probability larger than 1 — 1/n3,
L7 = YR RTE ) < O My [ (18)
€ 2 €
O]

Jmm

We will now prove Theorem 1.1.
Proof. (Theorem 1.1) For any matrix of rank at mos®r, ||A||r < v/2r||A||2, whence

1 ~ V2 vV ~
=M =T (NO)lp < S || = Y (NE S i)
vmn vmn € i>r+1

\V2r

A

2

< I (|l R L 4 Y
mn € 2 € €
< 20 Mpaxy/20r /e + (2v/2r/€) || 27|
oM (nra3/2>1/2 23 (n ra) 12|
S max + 2 -
|E| |E|
This proves our claim. O



4 Proof of Theorem 1.2

Recall that the cost function is defined over the Riemannian mariiféld, n) = G(m, r) x G(n, r).
The proof of Theorem 1.2 consists in controlling the behavidr af a neighborhood ofi = (U, V)
(the point corresponding to the matr{ to be reconstructed). Throughout the proof weklgt:)
be the set of matrix coupldsy,Y) € R™*" x R™*" such that| X ®||> < ur, ||[Y||? < pr for
all i, j

4.1 Preliminary remarks and definitions

Givenx; = (X1,Y7) andxs = (X3,Y2) € M(m,n), two points on this manifold, their distance
is defined asi(x;,x2) = \/d(Xl,X2)2 +d(Y1,Y2)?, where, letting(cos 1, ...,cosf,) be the
singular values o X, /m,

d(X1, X2) = [|6]]2 . (19)

Given S achieving the minimum in Eq. (4), it is also convenient to introduce the notations

d-(x,u) = /22, d0xw)? + 1S — SI[2, (20)

min

A (3, m) = /22,0, )2 + IS — S [2 (21)

4.2 Auxiliary lemmas and proof of Theorem 1.2
The proof is based on the following two lemmas that generalize and sharpen analogous bounds in
[1] (for proofs we refer to the journal version of this paper).

Lemma 4.1. There exists numerical constants Cy, C, C5 such that the following happens. Assume
€ > Copory/a max{logn; porv/a(Smin/Smax)? } and 6 < Xpin/(CoXmax). Then,

F(x)—F(u) > Cineyad_(x,u)* — Cinyral|ZP|2dy (x,u), (22)
F(x)—F(u) < Coneya¥?, d(x,u)?+ Convra||Z¥||ads (x,u), (23)

for all x € M(m,n) N K(4uo) such that d(x,u) < §, with probability at least 1 — 1/n*. Here
S € R™*" isthe matrix realizing the minimumin Eqg. (4).

Corollary 4.2. There exist a constant C' such that, under the hypotheses of Lemma 4.1
r
15— llr < Tl w) + OV 1275 (24)

Further, for an appropriate choice of the constants in Lemma 4.1, we have

Umax(S) g 2Emax + Cg ||ZEH27 (25)
1 r
Guin(8) 2 3T~ OV |27l (26)

Lemma 4.3. There exists numerical constants Cy, C, C5 such that the following happens. Assume
€ 2 C()/J,()’I"\/a (Emauc/zmin)2 max{ logn; /JJO’r\/a(Zmax/Emin)4 } and 0 S Zmin/(C’OEmaX)-
Then,

2
\/Fzmax ||ZE||2

3
EZrnin Emin +

|lgrad F(x)||?> > C1ne? 2L, |d(x,u) — Co

min

(27)

for all x € M(m,n) N K(4po) such that d(x,u) < 4, with probability at least 1 — 1/n*. (Here
[a]+ = max(a,0).)

We can now turn to the proof of our main theorem.



Proof. (Theorem 1.2). Let = X,,in/CoXmax With Cy large enough so that the hypotheses of
Lemmas 4.1 and 4.3 are verified.

Call {xx}r>0 the sequence of paifsXy,Y:) € M(m,n) generated by gradient descent. By as-
sumption, the following is true with a large enough constént

1251 < 5= (52) S (28)
Cyr \ Emax
Further, by using Corollary 4.2 in Egs. (22) and (23) we get
F(x)—F(u) > Cinevasi; {d(x,u)®— 5(2)7_} , (29)
F(x) = F(u) < ConevaXy  {d(x,u)*+455 .}, (30)
where
nosorge T mesorge T @

By Eq. (28), we can assumdg . < dp.— < ¢/10.
Fore > Cap2r?(Emax/Smin)* @s per our assumptions, using Eq. (28) in Theorem 1.1, together
with the boundi(u, x¢) < ||[M — XoSY{ || r/nyv/a%min, We get

d(u,x0) (32)

< —.
— 10

We make the following claims :

1. xi € K(4po) for all k.

Indeed without loss of generality we can assumes K(3u0) (because otherwise we can
rescale those lines ofy, Y that violate the constraint). Therefof&(xo) = F(xo) <
402”6%&21211&)(62/100. On the other hand(x) > p(e'/? — 1) for x & K(4puo).

Since F(x) is a non-increasing sequence, the thesis follows provided we gake
CQHE\/&Z?mn.

2. d(xp,u) < 46/10 for all k.
Assuminge > Capir?(Zmax/Smin)®, We haved(xg,u)? < (X2,,/C'%2 )(5/10)%
Also assuming Eq. (28) with large enoughwe can show the following. For ai;, such
thatd(xy,u) € [0/10,6], we haveF'(x) > F(x) > F(xo). This contradicts the mono-

tonicity of F'(x), and thus proves the claim.

Since the cost function is twice differentiable, and because of the above, the sedugha®n-
verges to

Q = {x € K(4po) "M(m,n) : d(x,u) < §,grad F(x) =0 . (33)
By Lemma 4.3 for ank € (2,
ﬁzmax ||ZEH2
< oY Zmex 02 112 4
d(X7 U) - ¢ EEmin Emin (3 )
which implies the thesis using Corollary 4.2. O
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