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Abstract

The principles by which spiking neurons contribute to the astounding computa-
tional power of generic cortical microcircuits, and how spike-timing-dependent
plasticity (STDP) of synaptic weights could generate and maintain this compu-
tational function, are unknown. We show here that STDP, in conjunction with
a stochastic soft winner-take-all (WTA) circuit, induces spiking neurons to gen-
erate through their synaptic weights implicit internal models for subclasses (or
“causes”) of the high-dimensional spike patterns of hundreds of pre-synaptic neu-
rons. Hence these neurons will fire after learning whenever the current input best
matches their internal model. The resulting computationalfunction of soft WTA
circuits, a common network motif of cortical microcircuits, could therefore be
a drastic dimensionality reduction of information streams, together with the au-
tonomous creation of internal models for the probability distributions of their in-
put patterns. We show that the autonomous generation and maintenance of this
computational function can be explained on the basis of rigorous mathematical
principles. In particular, we show that STDP is able to approximate a stochastic
online Expectation-Maximization (EM) algorithm for modeling the input data. A
corresponding result is shown for Hebbian learning in artificial neural networks.

1 Introduction

It is well-known that synapses change their synaptic efficacy (“weight”) w in dependence of the
differencetpost − tpre of the firing times of the post- and presynaptic neuron according to variations
of a generic STDP rule (see [1] for a recent review). However,the computational benefit of this
learning rule is largely unknown [2, 3]. It has also been observed that local WTA-circuits form a
common network-motif in cortical microcircuits [4]. However, it is not clear how this network-motif
contributes to the computational power and adaptive capabilities of laminar cortical microcircuits,
out of which the cortex is composed. Finally, it has been conjectured for quite some while, on the
basis of theoretical considerations, that the discovery and representation of hidden causes of their
high-dimensional afferent spike inputs is a generic computational operation of cortical networks of
neurons [5]. One reason for this belief is that the underlying mathematical framework, Expectation-
Maximization (EM), arguably provides the most powerful approach to unsupervised learning that
we know of. But one has so far not been able to combine these three potential pieces (STDP, WTA-
circuits, EM) of the puzzle into a theory that could help us tounravel the organization of computation
and learning in cortical networks of neurons.

We show in this extended abstract that STDP in WTA-circuits approximates EM for discovering
hidden causes of large numbers of input spike trains. We firstdemonstrate this in section 2 in an
application to a standard benchmark dataset for the discovery of hidden causes. In section 3 we
show that the functioning of this demonstration can be explained on the basis of EM for simpler
non-spiking approximations to the spiking network considered in section 2.

1



2 Discovery of hidden causes for a benchmark dataset

We applied the network architecture shown in Fig. 1A to handwritten digits from the MNIST dataset
[6].1 This dataset consists of70, 000 28 × 28-pixel images of handwritten digits2, from which we
picked the subset of20, 868 images containing only the digits0, 3 and4. Training examples were
randomly sampled from this subset with a uniform distribution of digit classes.

0

0

t
post

 − t
pre

∆ 
w

ki

 

 

c · e−wki -1

σ

-1

Simple STDP curve
Complex STDP curve

A B

Figure 1:A) Architecture for learning with STDP in a WTA-network of spiking neurons.B) Learn-
ing curve for the two STDP rules that were used (withσ = 10ms). The synaptic weightwki is
changed in dependence of the firing timestpre of the presynaptic neuronyi andtpost of the post-
synaptic neuronzk. If zk fires at timet without a firing ofyi in the interval[t − σ, t + 2σ], wki is
reduced by1. The resulting weight change is in any case multiplied with the current learning rateη,
which was chosen in the simulations according to the variance tracking rule7.

Pixel valuesxj were encoded through population coding by binary variablesyi (spikes were pro-
duced for each variableyi by a Poisson process with a rate of40 Hz for yi = 1, and0 Hz for yi = 0,
at a simulation time step of1ms, see Fig. 2A). Every training examplex was presented for50ms.
Every neuronyi was connected to allK = 10 output neuronsz1, . . . , z10. A Poisson process caused
firing of one of the neuronszk on average every5ms (see [8] for a more realistic firing mechanism).
The WTA-mechanism ensured that only one of the output neuronscould fire at any time step. The
winning neuron at time stept was chosen from the soft-max distribution

p(zk fires at timet|y) =
euk(t)

∑K

l=1 eul(t)
, (1)

whereuk(t) =
∑n

i=1 wkiỹi(t) + wk0 represents the current membrane potential of neuronzk (with
ỹi(t) = 1 if yi fired within the time interval[t − 10ms, t], elseỹi(t) = 0).3

STDP with the learning curves shown in Fig. 1B was applied to all synapseswki for an input consist-
ing of a continuous sequence of spike encodings of handwritten digits, each presented for50ms (see

1A similar network of spiking neurons had been applied successfully in [7]to learn with STDP the classi-
fication of symbolic (i.e., not handwritten) characters. Possibly our theoretical analysis could also be used to
explain their simulation result.

2Pixels were binarized to black/white. All pixels that were black in less than5% of the training examples
were removed, leavingm = 429 external variablesxj , that were encoded byn = 858 spiking neuronsyi. Our
approach works just as well for external variablesxj that assume any finite number of values, provided that
they are presented to the network through population coding with one variable yi for every possible value of
xj . In fact, the approach appears to work also for the commonly considered population coding of continuous
external variables.

3This amounts to a representation of the EPSP caused by a firing of neuronyi by a step function, which facil-
itates the theoretical analysis in section 3. Learning with the spiking network works just as well for biologically
realistic EPSP forms.
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Figure 2: Unsupervised classification learning and sparsification of firing of output neurons after
training. For testing we presented three examples from an independent test set of handwritten digits
0, 3, 4 from the MNIST dataset, and compared the firing of the output-neurons before and after
learning. A) Representation of the three handwritten digits0, 3, 4 for 50ms each by858 spiking
neuronsyi. B) Response of the output neurons before training.C) Response of the output neurons
after STDP (according to Fig. 1B) was applied to their weights wki for a continuous sequence of
spike encodings of4000 randomly drawn examples of handwritten digits0, 3, 4, each represented
for 50ms (like in panel A). The three output neuronsz4, z9, z6 that respond have generated internal
models for the three shown handwritten digits according to Fig. 3C.

Fig. 2A).4 The learning rateη was chosen locally according to the variance tracking rule7. Fig. 2C
shows that for subsequent representations of new handwritten samples of the same digits only one
neuron responds during each of the50ms while a handwritten digit is shown. The implicit internal
models which the output neuronsz1, . . . , z10 had created in their weights after applying STDP are
made explicit in Fig. 3B and C. Since there were more output neurons than digits, several output
neurons created internal models for different ways of writing the same digit. When after applying
STDP to2000 random examples of handwritten digits0 and3 also examples of handwritten digit
4 were included in the next2000 examples, the internal models of the10 output neurons reorga-
nized autonomously, to include now also two internal modelsfor different ways of writing the digit
4. The adaptation of the spiking network to the examples shownso far is measured in Fig. 3A by
the normalized conditional entropyH(L|Z)/H(L,Z), whereL denotes the correct classification of
each handwritten digity, andZ is the random variable which denotes the cluster assignmentwith
p(Z = k|y) = p(zk = 1|y), the firing probabilities at the presentation of digity, see (1).

Since after training by STDP each of the output neurons fire preferentially for one digit, we can
measure the emergent classification capability of the network. The resulting weight-settings achieve
a classification error of2.19% on the digits0 and3 after 2000 training steps and3.68% on all three
digits after 4000 training steps on independent test sets of10,000 new samples each.

3 Underlying theoretical principles

We show in this section that one can analyze the learning dynamics of the spiking network con-
sidered in the preceding section (with the simple STDP curveof Fig. 1B with the help of Hebbian
learning (using rule (12)) in a corresponding non-spiking neural networkNw. Nw is a stochastic
artificial neural network with the architecture shown in Fig. 1A, and with a parameter vectorw con-
sisting of thresholdswk0 (k = 1, . . . ,K) for theK output unitsz1, . . . , zK and weightswki for the
connection from theith input nodeyi (i = 1, . . . , n) to thekth output unitzk. We assume that this
network receives at each discrete time step a binary input vector y ∈ {0, 1}n and outputs a binary
vectorz ∈ {0, 1}K with

∑K

k=1 zk = 1, where thek such thatzk = 1 is drawn from the distribution

4Whereas the weights in the theoretical analysis of section 3 will approximate logs of probabilities (see (6)),
one can easily make all weights non-negative by restricting the range of theselog-probabilities to[−5, 0], and
then adding a constant5 to all weight values. This transformation gives rise to the factorc = e5 in Fig. 1B.
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Figure 3: Analysis of the learning progress of the spiking network for the MNIST dataset.A)
Normalized conditional entropy (see text) for the spiking network with the two variants of STDP
learning rules illustrated in Fig. 1B (red solid and blue dashed lines), as well as two non-spiking
approximations of the network with learning rule (12) that are analyzed in section 3. According to
this analysis the non-spiking network with35% missing attributes (dash-dotted line) is expected to
have a very similar learning behavior to the spiking network. 2000 random examples of handwritten
digits 0 and3 were presented (for50ms each) to the spiking network as the first2000 examples.
Then for the next2000 examples also samples of handwritten digit4 were included.B) The implicit
internal models created by the neurons after2000 training examples are made explicit by drawing
for each pixel the differencewki −wk(i+1) of the weights for inputyi andyi+1 that encode the two
possible values (black/white) of the variablexj that encodes this pixel value. One can clearly see
that neurons created separate internal models for different ways of writing the two digits0 and3. C)
Re-organized internal models after2000 further training examples that included digit4. Two output
neurons had created internal models for the newly introduced digit 4.

over{1, . . . ,K} defined by

p(zk = 1|y,w) =
euk

K
∑

l=1

eul

with uk =

n
∑

i=1

wki yi + wk0 . (2)

We consider the case where there are arbitrary discrete external variablesx1, . . . , xm, each ranging
over{1, . . . ,M} (we hadM = 2 in section 2), and assume that these are encoded through binary
variablesy1, . . . , yn for n = m · M with

∑n

i=1 yi = m according to the rule

y(j−1)·M+r = 1 ⇐⇒ xj = r , for j = 1, . . . ,m andr = 1, . . . ,M. (3)

In other words: the groupGj of variablesy(j−1)·M+1, . . . , y(j−1)·M+M provides a population cod-
ing for the discrete variablexj .

We now consider a class of probability distributions that isparticularly relevant for our analysis:
mixtures of multinomial distributions [9], a generalization of mixtures of Bernoulli distributions
(see section 9.3.3 of [10]). This is a standard model for latent class analysis [11] in the case of
discrete variables. Mixtures of multinomial distributions are arbitrary mixtures ofK distributions
p1(x), . . . , pK(x) that factorize, i.e.,

pk(x) =

m
∏

j=1

pkj(xj)

for arbitrary distributionspkj(xj) over the range{1, . . . ,M} of possible values forxj . In other
words: there exists some distribution over hidden binary variableszk with

∑K

k=1 zk = 1, where the
k with zk = 1 is usually referred to as a hidden “cause” in the generation of x, such that

p(x) =

K
∑

k=1

p(zk = 1) · pk(x). (4)
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We first observe that any such distributionp(x) can be represented with some suitable weight vector
w by the neural networkNw, after recoding of the multinomial variablesxj by binary variablesyi

as defined before:

p(y|w) =

K
∑

k=1

eu∗

k with u∗

k :=

n
∑

i=1

w∗

ki yi + w∗

k0 , (5)

for
w∗

ki := log p(yi = 1|zk = 1) and w∗

k0 := log p(zk = 1) . (6)

In addition,Nw defines for any weight vectorw whose components are normalized, i.e.
K
∑

k=1

ewk0 = 1 and
∑

i∈Gj

ewki = 1 , for j = 1, . . . ,m; k = 1, . . . ,K, (7)

a mixture of multinomials of the type (4).

The problem of learning a generative model for some arbitrarily given input distributionp∗(x) (or
p∗(y) after recoding according to (3)), by the neural networkNw is to find a weight vectorw such
thatp(y|w) defined by (5) modelsp∗(y) as accurately as possible. As usual, we quantify this goal
by demanding that

Ep∗ [log p(y|w)] (8)
is maximized.

Note that the architectureNw is very useful from a functional point of view, because if (7)holds,
then the weighted sumuk at its unitzk has according to (2) the valuelog p(zk = 1|y,w), and the
stochastic WTA rule ofNw picks the “winner”k with zk = 1 from this internally generated model
p(zk = 1|y,w) for the actual distributionp∗(zk = 1|y) of hidden causes. We will not enforce the
normalization (7) explicitly during the subsequently considered learning process, but rather use a
learning rule (12) that turns out to automatically approximate such normalization in the limit.

Expectation Maximization (EM) is the standard method for maximizing Ep∗ [log p(y|w)]. We will
show that the simple STDP-rule of Fig. 1B for the spiking network of section 2 can be viewed as
an approximation to an online version of this EM method. We will first consider in section 3.1 the
standard EM-approach, and show that the Hebbian learning rule (12) provides a stochastic approxi-
mation to the maximization step.

3.1 Reduction to EM

The standard method for maximizing the expected log-likelihood Ep∗ [log p(y|w)] with a dis-
tribution p of the form p(y|w) =

∑

z
p(y, z|w) with hidden variablesz, is to observe that

Ep∗ [log p(y|w)] can be written for arbitrary distributionsq(z|y) in the form
Ep∗ [log p(y|w)] = L(q,w) + Ep∗ [KL(q(z|y)||p(z|y,w))] (9)

L(q,w) = Ep∗

[

∑

z

q(z|y) log
p(y, z|w)

q(z|y)

]

, (10)

whereKL(.) denotes the Kullback-Leibler divergence.

In theE-step one setsq(z|y) = p(z|y,wold) for the current parameter valuesw = w
old, thereby

achievingEp∗ [KL(q(z|y)||p(z|y,wold))] = 0. In theM -step one replaceswold by new parameters
w that maximizeL(q,w) for this distributionq(z|y). One can easily show that this is achieved by
setting

w∗

ki = log p∗(yi = 1|zk = 1), and w∗

k0 = log p∗(zk = 1), (11)

with values for the variableszk generated byq(z|y) = p(z|y,wold), while the values for the vari-
ablesy are generated by the external distributionp∗. Note that this distribution ofz is exactly the
distribution (2) of the output of the neural networkNw for inputsy generated byp∗.5 In the fol-
lowing section we will show that thisM -step can be approximated by applying iteratively a simple
Hebbian learning rule to the weightsw of the neural networkNw.

5Hence one can extendp∗(y) for each fixedw to a joint distributionp∗(y, z), where thez are generated
for eachy byNw.
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3.2 A Hebbian learning rule for the M-step

We show here that the target weight values (11) are the only equilibrium points of the following
Hebbian learning rule:

∆wki=

{

η (e−wki − 1), if yi=1 andzk=1
−η, if yi=0 andzk=1
0, if zk = 0,

∆wk0=

{

η (e−wk0 − 1), if zk=1
−η, if zk=0

(12)

It is obvious (using for the second equivalence the fact thatyi is a binary variable) that

E[∆wki] = 0 ⇔ p∗(yi=1|zk=1)η(e−wki − 1) − p∗(yi=0|zk=1)η = 0

⇔ p∗(yi=1|zk=1)(e−wki − 1) + p∗(yi=1|zk=1) − 1 = 0

⇔ p∗(yi=1|zk=1)e−wki = 1

⇔ wki = log p∗(yi=1|zk=1) . (13)

Analogously one can show thatE[∆wk0] = 0 ⇔ wk0 = log p∗(zk=1). With similar elementary
calculations one can show thatE[∆wki] has for anyw a value that moveswki in the direction of
w∗

ki (in fact, exponentially fast).

One can actually show that one single step of (12) is a linear approximation of the ideal incremental
update ofwki = log aki

Nk
, with aki andNk representing the values of the corresponding sufficient

statistics, aslog aki+1
Nk+1 = wki + log(1 + ηe−wki) − log(1 + η) for η = 1

Nk
. This also reveals the

role of the learning rateη as the reciprocal of the equivalent sample size6.

In order to guarantee the stochastic convergence (see [12])of the learning rule one has to use a
decaying learning rateη(t) such that

∑

∞

t=1 η(t) = ∞ and
∑

∞

t=1(η
(t))2 = 0.7

The learning rule (12) is similar to a rule that had been introduced in [13] in the context of supervised
learning and reinforcement learning. That rule had satisfied an equilibrium condition similar to (13).
But to the best of our knowledge, such type of rule has so far not been considered in the context of
unsupervised learning.

One can easily see the correspondence between the update ofwki in (12) and in the simple STDP
rule of Fig. 1B. In fact, if each time where neuronzk fires in the spiking network, each presynaptic
neuronyi that currently has a high firing rate has fired within the lastσ = 10ms before the firing
of zk, the two learning rules become equivalent. However since the latter condition could only be
achieved with biologically unrealistic high firing rates, we need to consider in section 3.4 the case
for the non-spiking network where some attributes are missing (i.e.,yi = 0 for all i ∈ Gj ; for some
groupGj that encodes an external variablexj via population coding).

We first show that the Hebbian learning rule (12) is also meaningful in the case of online learning of
Nw, which better matches the online learning process for the spiking network.

3.3 Stochastic online EM

The preceding arguments justify an application of learningrule (12) for a number of steps within
each M-step of a batch EM approach for maximizingE∗

p[log p(y|w)]. We now show that it is also
meaningful to apply the same rule (12) in an online stochastic EM approach (similarly as in [14]),
where at each combined EM-step only one exampley is generated byp∗, and the learning rule (12)

6The equilibrium condition (13) only sets a necessary constraint for the thequotient of the two directions of
the update in (12). The actual formulation of (12) is motivated by the goalof updating a sufficient statistics.

7In our experiments we used an adaptation of the variance tracking heuristic from [13]. If we assume that
the consecutive values of the weights represent independent samplesof their true stochastic distribution at the
current learning rate, then this observed distribution is the log of a beta-distribution of the above mentioned
parameters of the sufficient statistics. Analytically this distribution has the first and second momentsE[wki] ≈

log aki

Ni
andE[w2

ki] ≈ E[wki]
2 + 1

aki
+ 1

Ni
, leading to the estimateηnew

ki = 1
Ni

=
E[w2

ki]−E[wki]
2

e−E[wki]+1
. The

empirical estimates of these first two moments can be gathered online by exponentially decaying averages
using the same learning rateηki.
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is applied just once (forzk resulting fromp(z|y,w) for the current weightsw, or simpler: for the
zk that is output byNw for the current inputy).

Our strategy for showing that a single application of learning rule (12) is expected to provide
progress in an online EM-setting is the following. We consider the LagrangianF for maximiz-
ing Ep∗ [log p(y|w)] under the constraints (7), and show that an application of rule (12) is expected
to increase the value ofF . We set

F (w,λ) = Ep∗ [log p(y|w)] − λ0

(

1 −
K
∑

k=1

ewk0

)

−
K
∑

k=1

m
∑

j=1

λkj



1 −
∑

i∈Gj

ewki



 . (14)

According to (5) one can writep(y|w) =
∑K

k=1 euk for uk =
∑K

i=1 wki yi + wk0. Hence one
arrives at the following conditions for the Lagrange multipliersλ:

K
∑

k=1

∂F

∂wk0
=

K
∑

k=1

(

Ep∗ [
euk

∑K

l=1 eul

] − λ0e
wk0

)

= 0 (15)

∑

i∈Gj

∂F

∂wki

=
∑

i∈Gj

(

Ep∗ [yi

euk

∑K

l=1 eul

] − λkje
wki

)

= 0, (16)

which yieldλ0 = 1 andλkj = Ep∗ [ euk
P

K
l=1 eul

].

Plugging these values forλ into ∇wF · E∗

p[∆w] with ∆w defined by (12) shows that this vector
product is always positive. Hence even a single applicationof learning rule (12) to a single new
exampley, drawn according top∗, is expected to increaseEp∗ [log p(y|w)] under the constraints
(7).

3.4 Impact of missing attributes

We had shown at the end of 3.2 that learning in the spiking network corresponds to learning in the
non-spiking networkNw with missing attributes. A profound analysis of the correcthandling of
missing attribute values in EM can be found in [15]. Their analysis implies that the correct learning
action is then not to change the weightswki for i ∈ Gj . However the STDP rule of Fig. 1B, as
well as (12), reduce also these weights byη if zk fires. This yields a modification of the equilibrium
analysis (13):

E[∆wki] = 0 ⇔ (1 − r)
(

p∗(yi=1|zk=1)η(e−wki − 1) − p∗(yi=0|zk=1)η
)

− rη = 0

⇔ wki = log p∗(yi=1|zk=1) + log(1 − r) , (17)

wherer is the probability thati belongs to a groupGj where the value ofxj is missing. Since
this probabilityr is independent of the neuronzk and also independent of the current value of the
external variablexi, this offset oflog(1− r) is expected to be the same for all weights. It can easily
be verified, that such an offset does not change the resultingprobabilities of the competition in the
E-step according to (2).

3.5 Relationship between the spiking and the non-spiking network

As indicated at the end of section 3.2, the learning process for the spiking network from section 2
with the simple STDP curve from Fig. 1B (and external variablesxj encoded by input spike trains
from neuronsyi) is equivalent to a somewhat modified learning process of thenon-spiking network
Nw with the Hebbian learning rule (12) and external variablesxj encoded by binary variablesyi.
Each firing of a neuronzk at some timet corresponds to a discrete time step inNw with an ap-
plication of the Hebbian learning rule (12). Each neuronyi that had fired during the time interval
[t− 10ms, t] contributes a valuẽyi(t) = 1 to the membrane potentialuk(t) of the neuronzk at time
t, and a valuẽyi(0) = 0 if it did not fire during [t − 10ms, t]. Hence the weight updates at timet
according to the simple STDP curve are exactly equal to thoseof (12) in the non-spiking network.
However (12) will in general be applied to a corresponding inputy where it may occur that for some
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j ∈ {1, . . . ,m} one hasyi = 0 for all i ∈ Gj (since none of the neuronsyi with i ∈ Gj fired in the
spiking network during[t − 10ms, t]). Hence we arrive at an application of (12) to an inputy with
missing attributes, as discussed in section 3.4.

Since several neuronszk are likely to fire during the presentation of an external input x (each hand-
written digit was presented for50ms in section 2; but a much shorter presentation time of10ms also
works quite well), this external inputx gives in general rise to several applications of the STDP rule.
This corresponds to several applications of rule (12) to thesame input (but with different choices
of missing attributes) in the non-spiking network. In the experiments in section 2, every example
in the non-spiking network with missing attributes was therefore presented for10 steps, such that
the average number of learning steps is the same as in the spiking case. The learning process of
the spiking network corresponds to a slight variation of thestochastic online EM algorithm that is
implemented through (12) according to the analysis of section 3.3.

4 Discussion

The model for discovering hidden causes of inputs that is proposed in this extended abstract presents
an interesting shortcut for implementing and learning generative models for input data in networks
of neurons. Rather than building and adapting an explicit model for re-generating internally the dis-
tribution of input data, our approach creates an implicit model of the input distribution (see Fig. 3B)
that is encoded in the weights of neurons in a simple WTA-circuit. One might call it a Vapnik-style
[16] approach towards generative modeling, since it focuses directly on the task to represent the
most likely hidden causes of the inputs through neuronal firing. As the theoretical analysis via non-
spiking networks in section 3 has shown, this approach also offers a new perspective for generating
self-adapting networks on the basis of traditional artificial neural networks. One just needs to add
the stochastic and non-feedforward parts required for implementing stochastic WTA circuits to a
1-layer feedforward network, and apply the Hebbian learningrule (12) to the feedforward weights.
One interesting aspect of the “implicit generative learning” approach that we consider in this ex-
tended abstract is that it retains important advantages of the generative learning approach, faster
learning and better generalization [17], while retaining the algorithmic simplicity of the discrimina-
tive learning approach.

Our approach also provides a new method for analyzing details of STDP learning rules. The sim-
ulation results of section 2 show that a simplified STDP rule that can be understood clearly from
the perspective of stochastic online EM with a suitable Hebbian learning rule, provides good perfor-
mance in discovering hidden causes for a standard benchmarkdataset. A more complex STDP rule,
whose learning curve better matches experimentally recorded average changes of synaptic weights,
provides almost the same performance. For a comparison of the STDP curves in Fig. 1B with ex-
perimentally observed STDP curves one should keep in mind, that most experimental data on STDP
curves are for very low firing rates. The STDP curve of Fig. 7C in [18] for a firing rate of 20Hz has,
similarly as the STDP curves in Fig. 1B of this extended abstract, no pronounced negative dip, and
instead an almost constant negative part.

In our upcoming paper [8] we will provide full proofs for the results announced in this extended
abstract, as well as further applications and extensions ofthe learning result. We will also demon-
strate, that the learning rules that we have proposed are robust to noise, and that they are matched
quite well by experimental data.
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[9] M. Meil ă and D. Heckerman. An experimental comparison of model-based clustering methods.Machine
Learning, 42(1):9–29, 2001.

[10] C. M. Bishop.Pattern Recognition and Machine Learning. Springer, New York, 2006.

[11] G. McLachlan and D. Peel.Finite mixture models. Wiley, 2000.

[12] J.H. Kushner and G.G. Yin.Stochastic approximation algorithms and applications. Springer, 1997.

[13] B. Nessler, M. Pfeiffer, and W. Maass. Hebbian learning of bayes optimal decisions. InAdvances in
Neural Information Processing Systems 21, pages 1169–1176. MIT Press, 2009.

[14] M. Sato. Fast learning of on-line EM algorithm.Rapport Technique, ATR Human Information Processing
Research Laboratories, 1999.

[15] Z. Ghahramani and M.I. Jordan. Mixture models for learning from incomplete data.Computational
Learning Theory and Natural Learning Systems, 4:67–85, 1997.

[16] V. Vapnik. Universal learning technology: Support vector machines.NEC Journal of Advanced Technol-
ogy, 2:137–144, 2005.

[17] A. Y. Ng and M. I. Jordan. On discriminative vs. generative classifiers: A comparison of logistic regression
and naive Bayes.Advances in Neural Information Processing Systems (NIPS), 14:841–848, 2002.

[18] P. J. Sj̈ostr̈om, G. G. Turrigiano, and S. B. Nelson. Rate, timing, and cooperativity jointly determine
cortical synaptic plasticity.Neuron, 32:1149–1164, 2001.

9


