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Abstract

The principles by which spiking neurons contribute to thevasding computa-
tional power of generic cortical microcircuits, and how keptiming-dependent
plasticity (STDP) of synaptic weights could generate andhtai this compu-

tational function, are unknown. We show here that STDP, imjwaction with

a stochastic soft winner-take-all (WTA) circuit, induceskapg neurons to gen-
erate through their synaptic weights implicit internal retsdfor subclasses (or
“causes”) of the high-dimensional spike patterns of hudsi@ pre-synaptic neu-
rons. Hence these neurons will fire after learning whendwercurrent input best
matches their internal model. The resulting computatidmattion of soft WTA

circuits, a common network motif of cortical microcircuitsould therefore be
a drastic dimensionality reduction of information streanegether with the au-
tonomous creation of internal models for the probabilitgtdbutions of their in-

put patterns. We show that the autonomous generation anttenaince of this
computational function can be explained on the basis ofroig® mathematical
principles. In particular, we show that STDP is able to agpnate a stochastic
online Expectation-Maximization (EM) algorithm for modwe the input data. A
corresponding result is shown for Hebbian learning in aisifineural networks.

1 Introduction

It is well-known that synapses change their synaptic effiqdweight”) w in dependence of the
differencet,,: — tpre Of the firing times of the post- and presynaptic neuron adogrtb variations
of a generic STDP rule (see [1] for a recent review). Howetles, computational benefit of this
learning rule is largely unknown [2, 3]. It has also been obsé that local WTA-circuits form a
common network-motif in cortical microcircuits [4]. Howex it is not clear how this network-motif
contributes to the computational power and adaptive céipabiof laminar cortical microcircuits,
out of which the cortex is composed. Finally, it has been ectojred for quite some while, on the
basis of theoretical considerations, that the discoved/rapresentation of hidden causes of their
high-dimensional afferent spike inputs is a generic comtpanal operation of cortical networks of
neurons [5]. One reason for this belief is that the undedymathematical framework, Expectation-
Maximization (EM), arguably provides the most powerful eggrh to unsupervised learning that
we know of. But one has so far not been able to combine these totential pieces (STDP, WTA-
circuits, EM) of the puzzle into a theory that could help uanoavel the organization of computation
and learning in cortical networks of neurons.

We show in this extended abstract that STDP in WTA-circuitgrapimates EM for discovering

hidden causes of large numbers of input spike trains. Wed#&stonstrate this in section 2 in an
application to a standard benchmark dataset for the disgmfehidden causes. In section 3 we
show that the functioning of this demonstration can be érpthon the basis of EM for simpler
non-spiking approximations to the spiking network conséden section 2.



2 Discovery of hidden causesfor a benchmark dataset

We applied the network architecture shown in Fig. 1A to hanitien digits from the MNIST dataset
[6].1 This dataset consists @f), 000 28 x 28-pixel images of handwritten digsfrom which we
picked the subset df0, 868 images containing only the digits 3 and4. Training examples were
randomly sampled from this subset with a uniform distribatof digit classes.
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Figure 1:A) Architecture for learning with STDP in a WTA-network of spilj neuronsB) Learn-
ing curve for the two STDP rules that were used (with= 10ms). The synaptic weighty; is

changed in dependence of the firing tinigs. of the presynaptic neurog, andt,,s; of the post-
synaptic neurony. If z fires at timet without a firing ofy; in the interval[t — o,t + 20|, wy; is

reduced byl. The resulting weight change is in any case multiplied wigh¢urrent learning rate,

which was chosen in the simulations according to the vadaracking rulé.

Pixel valuesr; were encoded through population coding by binary variablgspikes were pro-
duced for each variablg by a Poisson process with a rated6fHz for y; = 1, and0 Hz fory; = 0,

at a simulation time step dfms, see Fig. 2A). Every training examptewas presented fas0ms.
Every neurony; was connected to al’ = 10 output neuronsy, . . ., z1¢9. A Poisson process caused
firing of one of the neurons; on average everyms (see [8] for a more realistic firing mechanism).
The WTA-mechanism ensured that only one of the output neuronkl fire at any time step. The
winning neuron at time stepwas chosen from the soft-max distribution
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whereuy(t) = Y1, wiiGi(t) + wyo represents the current membrane potential of newgawith
7i(t) = 1if y; fired within the time intervalt — 10ms ¢], elseg; (¢) = 0).3

STDP with the learning curves shown in Fig. 1B was appliedit®yaapsesu;,; for an input consist-
ing of a continuous sequence of spike encodings of han@nritigits, each presented fadms (see

A similar network of spiking neurons had been applied successfully ito[arn with STDP the classi-
fication of symbolic (i.e., not handwritten) characters. Possibly owr#tial analysis could also be used to
explain their simulation result.

2pixels were binarized to black/white. All pixels that were black in less #farof the training examples
were removed, leavingy = 429 external variableg ;, that were encoded by = 858 spiking neurong;. Our
approach works just as well for external variablgsthat assume any finite number of values, provided that
they are presented to the network through population coding with one iegjabor every possible value of
z;. In fact, the approach appears to work also for the commonly corsidmypulation coding of continuous
external variables.

3This amounts to a representation of the EPSP caused by a firing of ngurpa step function, which facil-
itates the theoretical analysis in section 3. Learning with the spiking netwaksigst as well for biologically
realistic EPSP forms.
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Figure 2: Unsupervised classification learning and spaaditin of firing of output neurons after
training. For testing we presented three examples from éegpaendent test set of handwritten digits
0,3,4 from the MNIST dataset, and compared the firing of the outmutrons before and after
learning. A) Representation of the three handwritten digit8, 4 for 50ms each byg858 spiking
neuronsgy;. B) Response of the output neurons before train@yResponse of the output neurons
after STDP (according to Fig. 1B) was applied to their wedght; for a continuous sequence of
spike encodings o000 randomly drawn examples of handwritten didits3, 4, each represented
for 50ms (like in panel A). The three output neurons 29, zg that respond have generated internal
models for the three shown handwritten digits accordingi¢p BC.

Fig. 2A)# The learning rate) was chosen locally according to the variance tracking’rufég. 2C
shows that for subsequent representations of new handwstamples of the same digits only one
neuron responds during each of thams while a handwritten digit is shown. The implicit internal
models which the output neurons, . . ., z1o had created in their weights after applying STDP are
made explicit in Fig. 3B and C. Since there were more outputares than digits, several output
neurons created internal models for different ways of wgtthe same digit. When after applying
STDP t02000 random examples of handwritten digiisand 3 also examples of handwritten digit
4 were included in the nex2000 examples, the internal models of thé output neurons reorga-
nized autonomously, to include now also two internal moémislifferent ways of writing the digit
4. The adaptation of the spiking network to the examples shawvfar is measured in Fig. 3A by
the normalized conditional entrody¥ (L|Z)/H (L, Z), whereL denotes the correct classification of
each handwritten digiy, and Z is the random variable which denotes the cluster assignmigmt
p(Z = kly) = p(zx = 1]y), the firing probabilities at the presentation of digitsee (1).

Since after training by STDP each of the output neurons fiedgpentially for one digit, we can
measure the emergent classification capability of the nétwidhe resulting weight-settings achieve
a classification error a.19% on the digits0 and3 after 2000 training steps ar3d68% on all three
digits after 4000 training steps on independent test set® 000 new samples each.

3 Underlying theoretical principles

We show in this section that one can analyze the learningrdigsaof the spiking network con-
sidered in the preceding section (with the simple STDP cofveig. 1B with the help of Hebbian
learning (using rule (12)) in a corresponding non-spikimgimal network\,,. N, is a stochastic
artificial neural network with the architecture shown in Fig\, and with a parameter vecter con-

sisting of thresholdsxg (k = 1, ..., K) for the K output unitszq, .. ., zx and weightsav,; for the

connection from theé™ input nodey; (i = 1,...,n) to thek™ output unitz,. We assume that this
network receives at each discrete time step a binary inpetove € {0,1}™ and outputs a binary

vectorz € {0, 1} with Zszl z, = 1, where thek such that;, = 1 is drawn from the distribution

“Whereas the weights in the theoretical analysis of section 3 will approxinmgg@fgrobabilities (see (6)),
one can easily make all weights non-negative by restricting the ranges#ltiy-probabilities to[—5, 0], and
then adding a constahtto all weight values. This transformation gives rise to the factere® in Fig. 1B.
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Figure 3: Analysis of the learning progress of the spikingwuek for the MNIST dataset.A)
Normalized conditional entropy (see text) for the spikiregwork with the two variants of STDP
learning rules illustrated in Fig. 1B (red solid and blue iz lines), as well as two non-spiking
approximations of the network with learning rule (12) theg analyzed in section 3. According to
this analysis the non-spiking network wist% missing attributes (dash-dotted line) is expected to
have a very similar learning behavior to the spiking netw@0 random examples of handwritten
digits 0 and 3 were presented (fas0ms each) to the spiking network as the fi2600 examples.
Then for the nex2000 examples also samples of handwritten digitere includedB) The implicit
internal models created by the neurons a#@w0 training examples are made explicit by drawing
for each pixel the differencey; — wy, ;41 of the weights for inpuy; andy; ., that encode the two
possible values (black/white) of the variable that encodes this pixel value. One can clearly see
that neurons created separate internal models for diffevaps of writing the two digit$) and3. C)
Re-organized internal models af00 further training examples that included didit Two output
neurons had created internal models for the newly introduligit 4.

over{l,..., K} defined by

elr . -
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We consider the case where there are arbitrary discretenatteariablesey, . . ., z,,, €each ranging
over{l,..., M} (we hadM = 2 in section 2), and assume that these are encoded througly bina
variablesy;, ..., y, forn =m- M with >_"" , y; = m according to the rule
YGi—1)Mtr =1 &= z5=r, forj=1,...,mandr=1,..., M. 3)
In other words: the grougr; of variablesy(;_1).ar41, - - -, ¥(j—1). M+ Provides a population cod-

ing for the discrete variable;.

We now consider a class of probability distributions thapésticularly relevant for our analysis:
mixtures of multinomial distributions [9], a generalizati of mixtures of Bernoulli distributions
(see section 9.3.3 of [10]). This is a standard model fomtatéass analysis [11] in the case of
discrete variables. Mixtures of multinomial distribut®are arbitrary mixtures ok’ distributions
p1(x),...,px(x) that factorize, i.e.,

pr(x) = H prj (@)

for arbitrary distributionspy; (x;) over the rangg1,..., M} of possible values fog;. In other

words: there exists some distribution over hidden binarjeidesz; with Zszl 2, = 1, where the
k with z;, = 1 is usually referred to as a hidden “cause” in the generatfan such that

K
p(x) =Y plzx = 1) - pi(x). 4
k=1



We first observe that any such distributipfx) can be represented with some suitable weight vector
w by the neural network/,,, after recoding of the multinomial variables by binary variableg;
as defined before:

K n
p(ylw) = e with — wf =Y wi; v+ wig (5)
k=1 i=1
for
wy,; == logp(y; = 1)z, = 1) and  wy,:=logp(zk=1) . (6)
In addition,V,, defines for any weight vecta¥ whose components are normalized, i.e.
K
e =1 and Y ei=1, forj=1,...mk=1,.. K, (7)
k=1 i€G;

a mixture of multinomials of the type (4).

The problem of learning a generative model for some arligrgiven input distributionp™(x) (or
p*(y) after recoding according to (3)), by the neural netwfl is to find a weight vectow such
thatp(y|w) defined by (5) modelg*(y) as accurately as possible. As usual, we quantify this goal
by demanding that

E,-[log p(y|w)] (8)
is maximized.

Note that the architecturd’, is very useful from a functional point of view, because if filds,
then the weighted sumy, at its unitz, has according to (2) the valdeg p(z;, = 1|y, w), and the
stochastic WTA rule ofV, picks the “winner"k with z;, = 1 from this internally generated model
p(zr = 1|y, w) for the actual distributiop™ (2, = 1]y) of hidden causes. We will not enforce the
normalization (7) explicitly during the subsequently ciolesed learning process, but rather use a
learning rule (12) that turns out to automatically approxiensuch normalization in the limit.

Expectation Maximization (EM) is the standard method foximazing E,,- [log p(y|w)]. We will
show that the simple STDP-rule of Fig. 1B for the spiking natwof section 2 can be viewed as
an approximation to an online version of this EM method. Wk fivst consider in section 3.1 the
standard EM-approach, and show that the Hebbian learnlad1@) provides a stochastic approxi-
mation to the maximization step.

3.1 Reductionto EM

The standard method for maximizing the expected log-liieid E,,- [log p(y|w)] with a dis-
tribution p of the form p(y|w) = >, p(y,z/w) with hidden variablesz, is to observe that
E,- [log p(y|w)] can be written for arbitrary distributiongz|y) in the form

Ep«[log p(y|w)] = L(q, w) + Ep« [KL(q(z[y)|[p(z]y, w))] 9)
—E,. 2ly) log P 21%)
L(g,w) =E, XZ:Q( ly) log e : (10)

whereKL(.) denotes the Kullback-Leibler divergence.

In the E-step one setg(z|y) = p(z|y, w'¢) for the current parameter values = w°!“, thereby
achievingE, - [KL(q(zly)||p(z|y, w'¢))] = 0. In the M-step one replaces®' by new parameters
w that maximizeL(q, w) for this distributiong(z|y). One can easily show that this is achieved by
setting

wy, = logp™(y; = 1]z, = 1), and wry = logp* (2, = 1), (12)

with values for the variables;, generated by(z|y) = p(z|y, w°'¢), while the values for the vari-
ablesy are generated by the external distributjgn Note that this distribution of is exactly the
distribution (2) of the output of the neural netwakk, for inputsy generated by*.> In the fol-
lowing section we will show that thig/-step can be approximated by applying iteratively a simple
Hebbian learning rule to the weights of the neural networl\/s, .

®Hence one can extend (y) for each fixedw to a joint distributionp* (y, z), where thez are generated
for eachy by N



3.2 A Hebbian learning rule for the M-step

We show here that the target weight values (11) are the onljlilequm points of the following
Hebbian learning rule:

n(ewri — 1), if y;=1 andz,=1 —wko _ if 2=
A { L i =0 anda; —1 Awgo— {T] (6 _kO 1)7 |i'E‘ ZZk:](-) (12)
0 if 2, =0, 7, =

It is obvious (using for the second equivalence the factghat a binary variable) that

E[Awg] =0 < p*(yi=1zk=1)n(e”"* — 1) — p*(y;=0[2k=1)n = 0
& p*(yi=1lzp=1)(e™"* — 1) + p*(y;i=1[2x=1) = 1 =0
& p*(yi=1|zr=1)e” "k =1
& wy; = logp*(yi=1|z,=1) . (13)

Analogously one can show thBfAwyg] = 0 < wie = log p*(zx=1). With similar elementary
calculations one can show thBfAwy;| has for anyw a value that movesy; in the direction of
wy,; (in fact, exponentially fast).

One can actually show that one single step of (12) is a lingaircimation of the ideal incremental
update ofwy; = log “’“‘, with ax; and Ny, representing the values of the corresponding sufficient

statistics, asog 4 = wy,; + log(1 + ne"*") —log(1 + 7) for n = 5. This also reveals the

role of the learning rate as the reciprocal of the equivalent sample &ize

In order to guarantee the stochastic convergence (see ¢12h)e learning rule one has to use a
decaying learning rate” such tha®_;°, n® = oo and}_;° | (n)? = 0.

The learning rule (12) is similar to a rule that had been iieed in [13] in the context of supervised
learning and reinforcement learning. That rule had satdsfieequilibrium condition similar to (13).
But to the best of our knowledge, such type of rule has so fabaen considered in the context of
unsupervised learning.

One can easily see the correspondence between the updatg iof (12) and in the simple STDP
rule of Fig. 1B. In fact, if each time where neurepfires in the spiking network, each presynaptic
neurony; that currently has a high firing rate has fired within the last 10ms before the firing

of z;, the two learning rules become equivalent. However sinedatier condition could only be
achieved with biologically unrealistic high firing rateseweed to consider in section 3.4 the case
for the non-spiking network where some attributes are méséie.,y; = 0 for all i € G;; for some
groupG; that encodes an external variablgvia population coding).

We first show that the Hebbian learning rule (12) is also megfui in the case of online learning of
N., which better matches the online learning process for tilérgpnetwork.

3.3 Stochastic online EM

The preceding arguments justify an application of learrinlg (12) for a number of steps within
each M-step of a batch EM approach for maximizitiglog p(y|w)]. We now show that it is also
meaningful to apply the same rule (12) in an online stochdskil approach (similarly as in [14]),
where at each combined EM-step only one exangpilegenerated by*, and the learning rule (12)

®The equilibrium condition (13) only sets a necessary constraint for thgutbient of the two directions of
the update in (12). The actual formulation of (12) is motivated by the gioapdating a sufficient statistics.

In our experiments we used an adaptation of the variance tracking tieéngen [13]. If we assume that
the consecutive values of the weights represent independent sashpted true stochastic distribution at the
current learning rate, then this observed distribution is the log of a betidbdison of the above mentioned
parameters of the sufficient statistics Analytically this distribution has theafii second momenﬁ[wkl] ~

log % andE[wy,;] ~ Elww]® + -1 + ~; » leading to the estimatgif" = 5 = E[ij][wikE]wkl The
emplrlcal estimates of these flrst two moments can be gathered onlinepopaentially decaylng averages

using the same learning ratg;.



is applied just once (fog;, resulting fromp(z|y, w) for the current weightsv, or simpler: for the
z;, that is output byV,, for the current inpuy).

Our strategy for showing that a single application of leagnrule (12) is expected to provide
progress in an online EM-setting is the following. We coesithe Lagrangiarf’ for maximiz-
ing E,-[log p(y|w)] under the constraints (7), and show that an applicationlef(i?) is expected
to increase the value df. We set

F(w,\) =E,-[logp(y|w)] — (1 — Z ew“) Z Z Akj (1 — Z ew’”) . (14)

k=1j=1 i€G

According to (5) one can write(y|w) = ZkK:l e for u, = Zfil Wk Yi + wro. Hence one
arrives at the following conditions for the Lagrange muigps A:

K wn

3 e 35 (Bl ) =1 o
=1

aF => < —Z " Akjewm> o, (16)

u
i€G; i€G; 1=1 €¢"

which yield\o = 1 and\;; = E,- [ZK el

Plugging these values fox into V, I - E5[Aw] with Aw defined by (12) shows that this vector
product is always positive. Hence even a single applicatioiearning rule (12) to a single new
exampley, drawn according t@*, is expected to increade, - [log p(y|w)] under the constraints

(7).
3.4 Impact of missing attributes

We had shown at the end of 3.2 that learning in the spiking oktworresponds to learning in the
non-spiking network\, with missing attributes. A profound analysis of the correandling of
missing attribute values in EM can be found in [15]. Theirlgsiz implies that the correct learning
action is then not to change the weighig; for i € G;. However the STDP rule of Fig. 1B, as
well as (12), reduce also these weightstiy z;, fires. This yields a modification of the equilibrium
analysis (13):

E[Awy] =0 & (1—7) (p*(yi=1lze=1)n(e""* — 1) — p*(y;=0|z=1)n) —rn =0
& wy; = log p*(yi=1|21=1) +log(1 —r) , 17)

wherer is the probability that belongs to a grous; where the value of; is missing. Since
this probabilityr is independent of the neuraf and also independent of the current value of the
external variabler;, this offset oflog(1 — r) is expected to be the same for all weights. It can easily
be verified, that such an offset does not change the resydtigabilities of the competition in the
E-step according to (2).

3.5 Relationship between the spiking and the non-spiking network

As indicated at the end of section 3.2, the learning proaaisthé spiking network from section 2
with the simple STDP curve from Fig. 1B (and external vaishl; encoded by input spike trains
from neurongy;) is equivalent to a somewhat modified learning process oftimespiking network
N, with the Hebbian learning rule (12) and external variablegncoded by binary variables.
Each firing of a neuron;, at some time corresponds to a discrete time stepAf), with an ap-
plication of the Hebbian learning rule (12). Each neuggrthat had fired during the time interval
[t — 10ms, t] contributes a valug; (t) = 1 to the membrane potential, () of the neurore;, at time
t, and a valuey;(0) = 0 if it did not fire during [t — 10ms, t]. Hence the weight updates at tirhe
according to the simple STDP curve are exactly equal to tbd§&2) in the non-spiking network.
However (12) will in general be applied to a correspondinmuiry where it may occur that for some



j€{l,...,m} one hag; = 0forall : € G; (since none of the neurons with i € G, fired in the
spiking network duringt — 10ms t]). Hence we arrive at an application of (12) to an inpuwith
missing attributes, as discussed in section 3.4.

Since several neurong are likely to fire during the presentation of an external ingpieach hand-
written digit was presented f@&0ms in section 2; but a much shorter presentation timiafs also
works quite well), this external input gives in general rise to several applications of the STD®. rul
This corresponds to several applications of rule (12) tosmme input (but with different choices
of missing attributes) in the non-spiking network. In th@esments in section 2, every example
in the non-spiking network with missing attributes was #fere presented for0 steps, such that
the average number of learning steps is the same as in thiegmiise. The learning process of
the spiking network corresponds to a slight variation of skechastic online EM algorithm that is
implemented through (12) according to the analysis of ea@i3.

4 Discussion

The model for discovering hidden causes of inputs that ipgsed in this extended abstract presents
an interesting shortcut for implementing and learning gatie models for input data in networks
of neurons. Rather than building and adapting an explicilehéor re-generating internally the dis-
tribution of input data, our approach creates an implicitdelmf the input distribution (see Fig. 3B)
that is encoded in the weights of neurons in a simple WTA-dirédne might call it a Vapnik-style
[16] approach towards generative modeling, since it fosudieectly on the task to represent the
most likely hidden causes of the inputs through neuronaldiriAs the theoretical analysis via non-
spiking networks in section 3 has shown, this approach dfsosca new perspective for generating
self-adapting networks on the basis of traditional ar@ficieural networks. One just needs to add
the stochastic and non-feedforward parts required for é@mgnting stochastic WTA circuits to a
1-layer feedforward network, and apply the Hebbian learmirig (12) to the feedforward weights.
One interesting aspect of the “implicit generative leagiiapproach that we consider in this ex-
tended abstract is that it retains important advantagebefjenerative learning approach, faster
learning and better generalization [17], while retainihg &lgorithmic simplicity of the discrimina-
tive learning approach.

Our approach also provides a new method for analyzing dethiSTDP learning rules. The sim-
ulation results of section 2 show that a simplified STDP rukt tan be understood clearly from
the perspective of stochastic online EM with a suitable Hablearning rule, provides good perfor-
mance in discovering hidden causes for a standard benchaataket. A more complex STDP rule,
whose learning curve better matches experimentally rexbayerage changes of synaptic weights,
provides almost the same performance. For a comparisored8THOP curves in Fig. 1B with ex-
perimentally observed STDP curves one should keep in miiad nhost experimental data on STDP
curves are for very low firing rates. The STDP curve of Fig. i8] for a firing rate of 20Hz has,
similarly as the STDP curves in Fig. 1B of this extended atstfmo pronounced negative dip, and
instead an almost constant negative part.

In our upcoming paper [8] we will provide full proofs for thesults announced in this extended
abstract, as well as further applications and extensionleofearning result. We will also demon-
strate, that the learning rules that we have proposed atestdb noise, and that they are matched
quite well by experimental data.
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