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Abstract

In this paper we present a novel approach to learn directadiagraphs (DAGS)
and factor models within the same framework while also alovfor model com-
parison between them. For this purpose, we exploit the aimmebetween factor
models and DAGs to propose Bayesian hierarchies based k& apd slab pri-
ors to promote sparsity, heavy-tailed priors to ensuretifiehility and predictive
densities to perform the model comparison. We require ifi@bility to be able to
produce variable orderings leading to valid DAGs and spatsilearn the struc-
tures. The effectiveness of our approach is demonstrateddh extensive exper-
iments on artificial and biological data showing that ourrapgh outperform a
number of state of the art methods.

1 Introduction

Sparse factor models have proven to be a very versatiledodktailed modeling and interpretation
of multivariate data, for example in the context of gene egpion data analysi4,[2]. A sparse
factor model encodes the prior knowledge that the latembfaonly affect a limited number of the
observed variables. An alternative way of modeling the éatarough linear regression between
the measured quantities. This multiple regression modelsll-defined multivariate probabilistic
model if the connectivity (non-zero weights) defines a dadacyclic graph (DAG). What usually
is done in practice is to consider either factor or DAG mod&edeling the data with both types
of models at the same time and then perform model comparisaud provide additional insight
as these models are complementary and often closely reldi#drtunately, existing off-the-shelf
models are specified in such a way that makes direct compadiffacult. A more principled idea
that can phrased in Bayesian terms is for example to find ainagoce between both models, then
represent them using a common/comparable hierarchy, aally/furse a marginal likelihood or a
predictive density to select one of them. Although a fornmairection between factor models and
DAGs has been already established3p this paper makes important extensions such as explicitly
modeling sparsity, stochastic search over the order ofdhiablies and model comparison.

Is well known that learning the structure of graphical msdéi particular DAGs is a very difficult
task because it turns out to be a combinatorial optimizgti@blem known to be NP-hardi]. A
commonly used approach for structure learning is to spéitghoblem into two stages using the
fact that the space of variable orderings is far more smtikan the space of all possible structures,
e.g. by first attempting to learn a suitable permutation efwthiriables and then the skeleton of the
structure given the already found ordering or viceversa.stMd the work so far for continuous
data assumes linearity and Gaussian variables hence theynéarecover the DAG structure up



to Markov equivalenceq, 6, 7, 8], which means that some subset of links can be reversed wtitho
changing the likelihoodd]. To break the Markov equivalence usually experimentdetiventional)
data in addition to the observational (non-interventipmulata is required]0]. In order to obtain
identifiability from purely observational data, strong@asptions have to to be madgl] 3, 12]. In
this work we follow the line of 8] by starting from a linear factor model and ensure identifiigtby
using non-normal heavy-tailed latent variables. As a bgpob we find a set of candidate orderings
compatible with a linear DAG, i.e. a mixing matrix which islése to” triangular. Finally, we may
perform model comparison between the factor and DAG modé&sried with fixed orderings taken
from the candidate set.

The rest of the paper is organized as follows. Sectibtus5 we motivate and describe the different
ingredients in our method, in Sectiéwe discuss existing work, in Sectignexperiments on both
artificial and real data are presented, and Se@&iooncludes with a discussion and perspectives for
future work.

2 From DAGsto factor models

We will assume that an orderedimensional data vectd?x can be represented as a directed
acyclic graph with only observed nodes, wh&tds the usually unknown true permutation ma-
trix. We will focus entirely on linear models such that théuweaof each variable is a linear weight
combination of parent nodes plus a driving sigaal
x=P 'BPx+1z, (1)

whereB is a strictly lower triangular square matrix. In this segtirach non-zero element 8
corresponds to a link in the DAG. Solving ferwe can rewrite the problem as

x=P 'APz=P '(I-B) 'Pz, )
which corresponds to a noise-free linear factor model witghrestriction thaP —' AP must have a
sparsity pattern that can be permuted to a triangular foneegl — B) ~! is triangular. This require-
ment alone is not enough to ensure identifiability (up toiegadnd permutation of columrid;)?.
We further have to use prior knowledge about the distrilbubithe factorz. A necessary condition
is that these must be a set of non-Gaussian independenblesrfal]. For heavy-tailed data is it
often sufficient in practice to use a model with heavier titn Gaussianifj]. If the requirements
for A and for the distribution of are met, we can first estimaR—' AP and subsequently fing
searching over the space of all possible orderings. Recé8}lapplied the fastICA algorithm to
solve for the inverse mixing matriP~*A~'P. To find a candidate solution fd8, P is set such
that B found from the direct relation equatiofi)( B = I — A~! (according to magnitude-based
criterion) is as close as possible to lower triangular. kfihal step the Wald statistic is used for
pruningB and the chi-square test is used for model selection.

In our work we also exploit the relation between the factoidale and linear DAGs. We apply a
Bayesian approach to learning a sparse factor models andsPé@ the stochastic search r

is performed as an integrated part of inference of the sgacter model. The inference of factor
model (including order) and DAG parameters are performad/aseparate inferences such that the
only input that comes from the first part is a set of candidades.

3 From factor modelsto DAGs

Our first goal is to perform model inference in the familiedadtor and linear DAG models. We
specify the joint distribution oprobability of everything, e.g. for the factor model, as

P(X,AZ, ¥, P,) =p(X|A,Z,P, )p(Al)p(Z| )p(®|)p(P|)p(-) ,
whereX = [x3,...,xn], Z = [z1,... zy], N is the number of observations afd indicates
additional parameters in the hierarchical models. Therpmn@r permutatiorp(P|-) will always
be chosen to be uniform over tidépossible values. The actual sampling based inferencP fisr
discussed in the next section and the standard Gibbs sayrggimponents are provided in the sup-
plementary material. Model comparison should ideally bégomed using the marginal likelihood.
This is more difficult to calculate with sampling than obtag samples from the posterior so we
use the predictive densities on a test set as a yardstick.

1These ambiguities are not affecting our ability to find correct permut&iof the rows.



Factor model Instead of using the noise-free factor model of equat®)re allow for additive
noisex = P, ' AP.z + €, wheree is an additional Gaussian noise term with diagonal covagan
matrix ¥, i.e. uncorrelated noise, to account for independent nmeasent noiseP, = P is the
permutation matrix for the rows oA andP. = P¢P, another permutation for the columns with
P accounting for the permutation freedom of the factors. Wi nat restrict the mixing matrix

A to be triangular. Instead we inf&, andP. using a stochastic search based upon closeness to
triangular as measured by a masked likelihood, see below W can specify a hierarchy for the
Bayesian model as follows

X|P,,A,P.,Z, ¥ ~N(X|P,'AP.Z,¥), Z ~n(Z|),

1 1 3)
wi |$S’ST‘ NGa‘mma‘(q/)i |53557’)a A NP(A|)7

where); are elements of. For convenience, to exploit conjugate exponential fasilive are
placing a gamma prior on the precision ©fwith shapes, and rates,.. Given that the data is
standardized, the selection of hyperparametergfas not very critical as long as both “signal and
noise” are supported. The prior should favor small valueg,0és well as providing support for
1; = 1 such that certain variables can be explained solely by rfaisesets, = 2 ands,. = 0.05 in
the experiments).

For the factors we use a heavy-tailed pridE|-) in the form of a Laplace distribution parameterized
for convenience as a scale mixture of Gaussiads [

Zin|p, A ~ Laplace(zjn|i, A) = / N (2jn|pt, v)Exponential (v, |A?)dv;s, , 4
0
M|l 0, ~ Gamma(\?|4,, £,) , (5)

where z;,, is an element ofZ, X is the rate andv
has an exponential distribution acting as mixing den-

sity. Furthermore, we place a gamma distribution on (i=1:4d vj Q\

A2 to get conditionals forr and A? in standard con- (IS -

jugate families. We let the components &f have ’ 2 - '

on average unit variance. This is achieved by setting}“* 4

05/t = 2 (we setls = 4 and/, = 2). Alternatively

one may use a distribution—again as scale mixture <_Q<_Q

of Gaussians—which can to interpolate between very ,9,\ /O s
|

heavy-tailed (power law) and very light tails, i.e. be-

! ; N
coming Gaussian when degrees of freedom approaches O*—( ) Y
infinity. However such flexibility comes at the price of ne1:nl Tin i=1:d]

being more difficult to select its hyperparameters, be-
cause the model could become unidentified for sonfegure 1: Graphical model for Bayesian
settings. hierarchy in equation3j.

The priorp(A|-) for the mixing matrix should be biased towards sparsity beeave want to infer
something close to a triangular matrix. Here we adopt a taye discrete spike and slab prior for
the elements;;; of A similar to the one inZ]. The first layer in the prior control the sparsity of
each element;; individually, whereas the second layer impose a per-fesparsity level to allow
elements within the same factor to share information. Theanchy can be written as

ajlrij, i, Tij ~ (1 —7i;)0(ai;) + rigN(ai;|0,vim;)
Tlgl\ts,t ~ Gamma(7,; Lte,tr)
Tij|nig ~ Bernoulh(rljm”) , ©)
nijlqijv Qp, Oy, (1 - qu)5(7]Lj) + qijBeta(nij|apama ap(l - 057n,)) )
gijlv; ~ Bernoulli(g;;|v;) ,
Vj|6ma ﬁp ~ Beta(yj|ﬁp6mv ﬁp(l - ﬁm)) )
whered(-) is a Diracé-function. The prior above specify a point mass mixture ayemwith mask
;5. The expected probability af;; to be non-zero ig;; and is controlled through a beta hyperprior

with meanc,,, and precisiony,. Besides, each factor has a common sparsity vathat let the
elements);; to be exactly zero with probability— v; through a beta distribution with meah, and



precisiong,, turning the distribution of);; bimodal over the unit interval. The magnitude of non-
zero elements i\ is specified through the slab distribution depending-gn The parameters for
7;; should be specified in the same fashionjagut putting more probability mass arouag = 1,

for instancet, = 4 andt¢, = 10. Note that we scale the variances with since it makes the
model easier to specify and tend to have better mixing pt@sdL5]. The masking matrix;; with
parameters);; should be somewhat diffuse while favoring relatively largasking probabilities,
e.g.a, = 10 anda,,, = 0.9. Additionally, ¢; and should favor very small values with low variance,
this is for examples, = 1000 andj,, = 0.005. The graphical model for the entire hierarchy 8 (
omitting parameters is shown in Figute

DAG We make the following Bayesian specification of linear DAGd®lof equation 1) as
X|P,,B,X,- ~ 7(X-P;'B|), B ~ p(B|), ©)

wherer andp are given by equationgll and @). The Bayesian specification for the DAG has a
similar graphical model to the one in Figutebut without noise variance®. The factor model
needs only shared variance parametésr the Laplace distributed;,, because a change of scale in
A is equivalent to change of variances),. The DAG on the other hand, needs individual variance
parameters because it has no scaling freedom. Given thatevetkatB is strictly lower triangular,

it should be in general less sparse thanthus we use a different setting for the sparsity prior, i.e.
Bp = 100 and 3, = 0.01.

4 Sampling based inference

For given permutatiol?, Gibbs sampling can be used for inference of the remainingrpaters. De-
tails of Gibbs sampler is given in the supplementary maltarid we will focus on the non-standard
inference corresponding to the sampling over permutatidhgre are basically two approaches to
find P, one is perform the inference for parameters Brjdintly with B restricted to be triangular.
The other is to let the factor model be unrestricted and sdard according to a criterion that does
not affect parameter inference. Here we prefer the lattetwio reasons. First, joint combinatorial
and parameter inference in this model will probably haver poiing with slow convergence. Sec-
ond, we are also interested in comparing the factor modéhsighie DAG for cases when we cannot
really assume that the data is well approximated by a DAGulrapproach the proposB* corre-
sponds to picking two of the elements in the order vector logloan and exchanging them. Other
approaches such as restricting to pick two adjacent eleneve been suggested as wéb,[7].
For the linear DAG model we are not performing joint infererad P and the model parameters.
Rather we use a set &fs found for the factor model to be good candidates for the DAG.

The stochastic search f@t = P, goes as follows: we make inference for the unrestrictedfact
model, propos®} andP?} independently according(P}|P,)q(P|P.) which is the uniform two
variable random exchange. With this proposal and the flar mver P, we use a Metropolis-
Hastings acceptance probability simply as the ratio oflilk@ds with A masked to have zeros
above its diagonal (through masking matrid)

NPy "Moo PrA(Py) P, D)
T NXPYI(M e PAPC )P, W)

)

The procedure can be seen as a simple approach for genengintheses about good, close to
triangularA, orderings in a model where the spike and slab prior proviistowards sparsity.

To learn DAGs we first perform inference on the factor modeicHied by the hierarchy in3j to
obtain a set of ordering candidates sorted according totisage during sampling—after the burn-
in period. It is possible that the estimation Afmight contain errors, e.g. a false zero entryAn
allowing several orderings leading to several lower tridagversions ofA, only one of those being
actually correct. Thus, we propose not only to use the bestidate but a set of top candidates of
sizemyop = 10. Then we perform inference on the DAG model corresponditigestructure search

hierarchy in ), for each one of the permutation candidates being coresig@t"), ... P{™wr),
Finally, we select the DAG model among candidates using tadigtive distribution for the DAG
when a test set is available or just the likelihood if not.



5 Predictivedistributions and model comparison

Given that our model produces both DAG and a factor modemesgés at the same time, it could
be interesting to estimate also whether one option is bétim the other given the observed
data, for example in exploratory analysis when the DAG agdiom is just one reasonable op-
tion. In order to perform the model comparison, we use pteeicdensitiesp(X*|X, M) with
M = {Mga, Mpag}, instead of marginal likelihoods because the latter isaliffiand expensive
to compute by sampling, requiring for example thermodymaimtiegration. With Gibbs sampling,
we draw samples from the posterior distributigd\, ¥, \|X, ) andp(B, A1, ..., A\n|X, ). The
average over the extensive variables associated with sheténtsp(Z~*|-) is a bit more compli-
cated because naively drawing samples fiaf#*|-) gives an estimator with high variance—for
1; < vjn. In the following we describe how to do it for each model, dmg the permutation
matrices for clarity.

Factor model We can compute the predictive distribution by taking theliikood in equation3)
and marginalizing. Since the integral has no closed form we can approximaggrigihe Gaussian
distribution from the scale mixture representation as

rep

N Y - L I
p(X*|A, @, )—/p(X A, Z, ®)p(Z]|")dZ repl;[ZTjN(xnw,A U,A +9),

whereU,, = diag(vin,...,v4n), thev;, are sampled from the prior andp is the number of
samples generated to approximate the intractable intéggal= 500 in the experiments). Then we
can average ovar(A, ¥, \|X, -) to obtainp(X*|X, Mga).

DAG Inthis case the predictive distribution is rather easy bsedhe marginal ove in equation
(4) is just a Laplace distribution with med@X

p(X*|B,-) = /p(X*|B,X7 Z)p(Z|)dZ = HLaplaee(xij\[BX]m,)\i) )

i,m

where [BX];; is the element indexed by theth row andn-th column of BX. In practice we
compute the predictive densities for a particulatr during sampling and then select the model
based on its ratio. Note that both predictive distributidepend directly oth—the rate of Laplace
distribution, making the estimates highly dependent omdtge. This is why it is important to have
the hyperprior om of equation §) instead of just fixing its value.

6 Existing work

Among the existing approaches to DAG learning, our work istradosely related to LINGAM
(Linear Non-Gaussian Acyclic Model for causal discove®])\ith several important differences:
Since LINGAM relies on fastICA to learn the mixing is not inbatly sparse, hence a pruning
procedure based on Wald statistic and model fit second onflenmation should be applied after
obtaining an ordering for the variables. The order searchiNGAM assumes that there is not
estimation errors during fastiCA model inference, thenraylsi ordering candidate is produced.
LINGAM produces and select a final model among several caetgl but in contrast to our method
such candidates are not different DAGs with different d@georderings but DAGs with different
sparsity levels. The factor model inference in LINGAM, ndyrfastICA is very efficient however
their structure search involves repeated inversions oficest of sizesi?> x d? which can make
it prohibitive for large problems. More explicitly, the cputational complexity of LINGAM is
roughly O(Ng:d®) where Ny, is the number of model fit evaluations. In contrast, the cexipt

in our case i) (Ni.d? N) where Ny, is the total number of samples including burn-in periods for
both, factor model and DAG inferences. Finally, our modehizre principled in the sense that all
the approach is within the same Bayesian framework, as # resan be extended to for example
binary data or time series by selecting some suitable prariloutions.

Much work on Bayesian models for DAG learning already existr example, the approach pre-
sented in 16] is a Gaussian Bayesian network and therefore suffers famk of identifiability.
Besides, order search is performed directly for the DAG rhodgking necessary the use of longer



sampler runs with a number of computational tricks when tleblem is larged > 10), i.e. when
exhaustive order enumeration is not an option.

7 Experiments

We consider four sets of experiments in the following. Thet fivo consist on extensive experiments
using artificial data, the third addresses the model coraparscenario and the last one uses real
data previously published iif]. In every case we ran 2000 samples after a burn-in perio0@d 4
iterations and three independent chains for the factor inadd a single chain with 1000 samples
and 2000 as burn-in for the DAGHyperparameter settings are discussed in Seétion

LINGAM suite We evaluate the performance of our model against LINGAIing the artificial
model generator presented Bj.[ The generator produces both dense and sparse networtkdifvit
ferent degree of sparsity, is generated from a non-Gaussian heavy-tailed distribpois gener-
ated using equatiori) and then randomly permuted to hide the correct oeFor the experiment
we have generatetD00 different dataset/models usimg= {5,10}, N = {200, 500, 1000, 2000}
and the DAG was selected using the (training set) likelinoastjuation 7). Results are summarized
in Figure2 using several performance measures. For the particularafabe area under the ROC
curve (AUC), we use the conditional posterior of the maskimagrix, i.e. p(R|X, ) whereR is

a matrix with elements;;. AUC is an important measure because it quantifies how theehzad
counts for the uncertainty of presence or absence of linksdAG. Such uncertainty assessment
is not possible in LINGAM where the probability of having aliis simply zero or one, however
the AUC can be still computed.
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Figure 2: Performance measures for LINGAM suite. Symbads square for 5 variables, star for 10
variables, solid line for sFA and dashed line for LINGAM. {@le positive rate. (b) True negative
rate. (c) Frequency of AUC being greater than 0.9. (d) Numolbestimated correct orderings.

In terms of true negative rates, AUC and ordering error @ieapproach is significantly better than
LINGAM. The true positive rate results in Figuéa) show that LINGAM outperform our approach
only for N = 2000. However by comparing it to the true positive rate, it seemasLiNGAM prefer
more dense models which could be an indication of overfittirmpking to the ordering errors, our
model is clearly superior. It is important to mention thainigeable to compute a probability for a
link in the DAG to be zerop(b;; # 0/X,-), turns out to be very useful in practice, for example to
reject links with high uncertainty or to rank them. To giveidrea of running times on a regular
two-core 2.5GHz machine, fet = 10 and N = 500: LINGAM took in average 10 seconds and
our method 170 seconds. However, when doubling the numberiables the times were 730 and
550 seconds for LINGAM and our method respectively, whicim isgreement with our complexity
estimates.

2Source code available upon request (C with Matlab interface).
3Matlab package available http://www.cs.helsinki.fi/group/neuroinf/lingam/
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Bayesian networksrepository Next we want to compare some of the state of the art (Gaussian)
approaches to DAG learning on 7 well known structtiy@amely alarm, barley, carpo, hailfinder,
insurance, mildew and wated (= 37,48, 61, 56,27, 35, 32 respectively). A single dataset of size
1000 per structure was generated using a similar procedutieetone used before. Apart from
ours (sFA), we considered the following metheidstandard DAG search (DS), order-search (OS),
sparse candidate pruning then DAG-search (DS[;)JLMB then DAG-search (DSL)g], sparse-
candidate pruning then order-search (OSQ.) Results are shown in FiguB including the number

of reversed links found due to ordering errors.

water water

water

mildew mildew mildew

Il

insurance insurance insurance
hailfinder hailfinder hailfinder

carpo carpo carpo
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False positive rate False negative rate AUC Reversed links
CY (b) (c) (d)

Figure 3: Performance measures for Bayesian networksiteposxperiments.

In this case, our approach obtained slightly better resuiten looking at the false positive rate,
Figure3(a) The true negative rate is comparable to the other methagigesting that our model
in some cases is sparser than the others. AUC estimatesgaificsintly better because we have
continuous probabilities for links to be zero (in the otheethods we had to use a binary value).
From Figure3(d), the number of reversed links in the other methods is qugh hg expected due to
lack of identifiability. Our model produced a small amountarsed links because it was not able to
find any of the true orderings, but indeed something quiteecld his results could be improved by
running the sampler for a longer time or by considering mamedadates. We also tried to run the
other approaches with data generated from Gaussian disrils but the results were approximately
equal to those shown in FiguBe On the other hand, our approach performs similarly but thelver

of reversed links increases significantly since the modebiknger identified. The most important
advantage of the (Gaussian) methods used in this experisémir speed. In all cases they are
considerably faster than sampling based methods. The@dspeke them very suitable for large
scale problems regardless of their identifiability issues.

Model comparison For this experiment we have generated 1000 different datasedels with

d = 5andN = {500,1000} in a similar way to the first experiment but this time we seddct
the true model to be a factor model or a DAG uniformly. In orttegenerate a factor model we
basically just need to be sure thatcannot be permuted to a triangular form. We k&t of the
data to compute the predictive densities to then selectdmatvall estimated DAG candidates and
the factor model. We found that fé¥ = 500 our approach was able to select true DAG 5% of
the times and true factor moded8.2%, corresponding to an overall error 6%, For N = 1000
the true DAG and true factor model rates increase@t6% and94.6% respectively. This results
demonstrate that our approach is very effective at selgthia true underlying structure in the data
between the two proposed hypotheses.

Protein-signaling network The dataset introduced il ] consists on flow cytometry measure-
ments of 11 phosphorylated proteins and phospholipids, (®&f p38, Jnk, Akt, Mek, PKA, PKC,
PIP,, PIP;, PLCy). Each observation is a vector of quantitative amounts aredsfrom single
cells, generated from a series of stimulatory cues anditanybinterventions. The dataset contains
both observational and experimental data. Here we are aihgl755 samples corresponding to

“http://compbio.cs.huiji.ac.il/Repository/
SParameters: 10000 iterations, 5 candidates (SC, DSC), max fan-if@$50SC) andr strategy and
MDL penalty (DSL).
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INTERL Figure 4: Result for protein-signaling network. (a) Text-

/ /;’\ s book signaling network as reported iti7]. (b) Estimated
B structure using Bayesian networks7]. (c) Estimated

o \ ] o : structure using our model. (e) Test likelihoods for the

; 1/ \ IR I ‘:‘ best ordering DAG (dashed) and the factor model (solid).

| [ VRN (d) Likelihood ratios (solid) and structure errors (daghed

\ AR Y for all candidates considered by our method and their us-
e age. The Bayesian network is not able to identify the

o o o e R e e direction of the links with only observational data.

(d) (e)

pure observational data and randomly seleet¥d of the data to compute the predictive densities.
Using the entire set will produce a richer model, howevegrventions are out of the scope of this
paper. The textbook ground truth and results are presentiglire4. From the 21 possible links
in figure 4(a), the model from 17] was able to find 9, but also one falsely added link.4(b), a
marginal likelihood equivalent prior is used and they tfiene cannot make any inferences about
directionality from observational data alone, see Figl(t®. Our model in Figurel(c) was able to
find 10 true links, one falsely added link and only two revdrieks (RL), one of them is PIP—
PIP; which according to the ground truth is bidirectional and dliger one, PLG — PIP; which
was also found reversed using experimental datd th [Note from figure4(e) that the predictive
density ratios correlate quite well with the structural@ecy. The predictive densities for the best
candidate (sixth in Figuré(e)) is shown in Figurel(d) and suggests that the factor model is a better
option which makes sense considering that estimated DAQurdi4(c) is a substructure of the
ground truth. We also examined the estimated factor modg e found out that three factors
could correspond to unmeasured proteins (PI3K, MKK and,|IB& Figure 2 and table 3 ia].

We also tried the above methods. Results were very similantonethod in terms of true positives
(= 9) and true negativesy{ 32), however none of them were able to produce less than 6 exvers
links that corresponds to approximately two-thirds of ttiae positives.

Ratio
o
Accuracy

1

8 Discussion

We have proposed a novel approach to perform inference awi@lncomparison of sparse factor
models and DAGs within the same framework. The key ingrediéar both Bayesian models are
spike and slab priors to promote sparsity, heavy-tailedrptio ensure identifiability and predictive
densities to perform the comparison. A set of candidaterorge is produced by the factor model.
Subsequently, a linear DAG is learned for each of the camelidalo the authors’ knowledge this
is the first time that a method for comparing such a closebteel linear models is proposed. This
setting can be very beneficial in situations where the prtesce suggests both DAG structure
and/or unmeasured variables in the data. For example inrtteip signaling network[7], the
textbook ground truth suggests both DAG structure and a earabunmeasured proteins. The
previous approachl[/] only performed structure learning in DAGs but our resuliggest that the
data is better explained by the factor model. For furthetagtion of this data set, we obviously
need to modify our approach to handle hybrid models, i.eplgavith directed/undirected links
and observed/latent nodes as well as being able to use expedl data. Our Bayesian hierarchical
approach is very flexible. We are currently investigatingeagions to other source distributions
(non-parametric Dirichlet process, temporal Gaussiangsses and discrete).
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