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Abstract

A kernel embedding of probability distributions into reproducing kernel Hilbert
spaces (RKHS) has recently been proposed, which allows the comparison of two
probability measuresP andQ based on the distance between their respective em-
beddings: for a sufficiently rich RKHS, this distance is zeroif and only if P and
Q coincide. In using this distance as a statistic for a test of whether two samples
are from different distributions, a major difficulty arisesin computing the signif-
icance threshold, since the empirical statistic has as its null distribution (where
P = Q) an infinite weighted sum ofχ2 random variables. Prior finite sample
approximations to the null distribution include using bootstrap resampling, which
yields a consistent estimate but is computationally costly; and fitting a parametric
model with the low order moments of the test statistic, whichcan work well in
practice but has no consistency or accuracy guarantees. Themain result of the
present work is a novel estimate of the null distribution, computed from the eigen-
spectrum of the Gram matrix on the aggregate sample fromP andQ, and having
lower computational cost than the bootstrap. A proof of consistency of this esti-
mate is provided. The performance of the null distribution estimate is compared
with the bootstrap and parametric approaches on an artificial example, high di-
mensional multivariate data, and text.

1 Introduction

Learning algorithms based on kernel methods have enjoyed considerable success in a wide range of
supervised learning tasks, such as regression and classification [25]. One reason for the popularity of
these approaches is that they solve difficult non-parametric problems by representing the data points
in high dimensional spaces of features, specifically reproducing kernel Hilbert spaces (RKHSs), in
which linear algorithms can be brought to bear. While classical kernel methods have addressed the
mapping of individual points to feature space, more recent developments [14, 29, 28] have focused
on the embedding of probability distributions in RKHSs. When the embedding is injective, the
RKHS is said to becharacteristic[11, 29, 12], and the distance between feature mappings constitutes
a metric on distributions. This distance is known as the maximum mean discrepancy (MMD).

One well-defined application of the MMD is in testing whethertwo samples are drawn from two
different distributions (i.e., a two-sample or homogeneity test). For instance, we might wish to find
whether DNA microarrays obtained on the same tissue type by different labs are distributed iden-
tically, or whether differences in lab procedure are such that the data have dissimilar distributions
(and cannot be aggregated) [8]. Other applications includeschema matching in databases, where
tests of distribution similarity can be used to determine which fields correspond [14], and speaker
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verification, where MMD can be used to identify whether a speech sample corresponds to a person
for whom previously recorded speech is available [18].

A major challenge when using the MMD in two-sample testing isin obtaining a significance thresh-
old, which the MMD should exceed with small probability whenthe null hypothesis (that the sam-
ples share the same generating distribution) is satisfied. Following [14, Section 4], we define this
threshold as an upper quantile of the asymptotic distribution of the MMD under the null hypothesis.
Unfortunately this null distribution takes the form of an infinite weighted sum ofχ2 random vari-
ables. Thus, obtaining aconsistentfinite sample estimate of this threshold — that is, an estimate
that converges to the true threshold in the infinite sample limit — is a significant challenge. Three
approaches have previously been applied: distribution-free large deviation bounds [14, Section 3],
which are generally too loose for practical settings; fitting to the Pearson family of densities [14],
a simple heuristic that performs well in practice, but has noguarantees of accuracy or consistency;
and a bootstrap approach, which is guaranteed to be consistent, but has a high computational cost.

The main contribution of the present study is a consistent finite sample estimate of the null distribu-
tion (not based on bootstrap), and a proof that this estimateconverges to the true null distribution in
the infinite sample limit. Briefly, the infinite sequence of weights that defines the null distribution is
identical to the sequence of normalized eigenvalues obtained in kernel PCA [26, 27, 7]. Thus, we
show that the null distribution defined using finite sample estimates of these eigenvalues converges
to the population distribution, using only convergence results on certain statistics of the eigenvalues.
In experiments, our new estimate of the test threshold has a smaller computational cost than that
of resampling-based approaches such as the bootstrap, while providing performance as good as the
alternatives for larger sample sizes.

We begin our presentation in Section 2 by describing how probability distributions may be embedded
in an RKHS. We also review the maximum mean discrepancy as ourchosen distance measure on
these embeddings, and recall the asymptotic behaviour of its finite sample estimate. In Section 3,
we present both moment-based approximations to the null distribution of the MMD (which have
no consistency guarantees); and our novel, consistent estimate of the null distribution, based on the
spectrum of the kernel matrix over the aggregate sample. Ourexperiments in Section 4 compare the
different approaches on an artificial dataset, and on high-dimensional microarray and neuroscience
data. We also demonstrate the generality of a kernel-based approach by testing whether two samples
of text are on the same topic, or on different topics.

2 Background

In testing whether two samples are generated from the same distribution, we require both a measure
of distance between probabilities, and a notion of whether this distance is statistically significant. For
the former, we define an embedding of probability distributions in a reproducing kernel Hilbert space
(RKHS), such that the distance between these embeddings is our test statistic. For the latter, we give
an expression for the asymptotic distribution of this distance measure, from which a significance
threshold may be obtained.

Let F be an RKHS on the separable metric spaceX, with a continuous feature mappingφ(x) ∈ F

for eachx ∈ X. The inner product between feature mappings is given by the positive definite kernel
functionk(x, x′) := 〈φ(x), φ(x′)〉

F
. We assume in the following that the kernelk is bounded. Let

P be the set of Borel probability measures onX. Following [4, 10, 14], we define the mapping toF

of P ∈ P as the expectation ofφ(x) with respect toP , or

µP : P → F

P 7→

∫

X

φ(x)dP.

The maximum mean discrepancy (MMD) [14, Lemma 7] is defined asthe distance between two
such mappings,

MMD(P,Q) := ‖µP − µQ‖F

= (Ex,x′(k(x, x′)) + Ey,y′k(y, y′) − 2Ex,yk(x, y))
1/2

,

wherex andx′ are independent random variables drawn according toP , y andy′ are independent
and drawn according toQ, andx is independent ofy. This quantity is apseudo-metricon distribu-
tions: that is, it satisfies all the qualities of a metric besidesMMD(P,Q) = 0 iff P = Q. ForMMD
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to be a metric, we require that the kernel be characteristic [11, 29, 12].1 This criterion is satisfied for
many common kernels, such as the Gaussian kernel (both on compact domains and onRd) and the
B2l+1 spline kernel onRd.

We now consider two possible empirical estimates of the MMD,based on i.i.d. samples
(x1, . . . , xm) from P and(y1, . . . , ym) from Q (we assume an equal number of samples for sim-
plicity). An unbiasedestimate of MMD is the one-sample U-statistic

MMD2
u :=

1

m(m− 1)

m∑

i6=j

h(zi, zj), (1)

wherezi := (xi, yi) andh(zi, zj) := k(xi, xj)+k(yi, yj)−k(xi, yj)−k(xj , yi). We also define the
biasedestimateMMD2

b by replacing the U-statistic in (1) with a V-statistic (the sum then includes
termsi = j).

Our goal is to determine whetherP andQ differ, based onm samples from each. To this end, we
require a measure of whetherMMD2

u differs significantly from zero; or, if the biased statisticMMD2
b

is used, whether this value is significantly greater than itsexpectation whenP = Q. In other words
we conduct a hypothesis test with null hypothesisH0 defined asP = Q, and alternative hypothesis
H1 asP 6= Q. We must therefore specify a threshold that the empirical MMD will exceed with
small probability, whenP = Q. For an asymptotic false alarm probability (Type I error) ofα, an
appropriate threshold is the1 − α quantile of the asymptotic distribution of the empirical MMD
assumingP = Q. According to [14, Theorem 8], this distribution takes the form

mMMD2
u →

D

∞∑

l=1

λl(z
2
l − 2), (2)

where→
D

denotes convergence in distribution,zl ∼ N(0, 2) i.i.d., λi are the solutions to the eigen-

value equation ∫

X

k̃(xi, xj)ψl(xi)dP := λlψl(xj), (3)

andk̃(xi, xj) := k(xi, xj) − Exk(xi, x) − Exk(x, xi) + Ex,x′k(x, x′). Consistency in power of
the resulting hypothesis test (that is, the convergence of its Type II error to zero for increasingm) is
shown in [14].

The eigenvalue problem (3) has been studied extensively in the context of kernel PCA [26, 27, 7]:
this connection will be used in obtaining a finite sample estimate of the null distribution in (2),
and we summarize certain important results. Following [3, 10], we define the covariance operator
C : F → F as

〈f, Cf〉
F

:= var(f(x))

= Exf
2(x) − [Exf(x)]2 . (4)

The eigenvaluesλl of C are the solutions to the eigenvalue problem in (3) [19, Proposition 2].
Following e.g. [27, p.2511], empirical estimates of these eigenvalues are

λ̂l =
1

m
νl (5)

whereνl are the eigenvalues of the centered Gram matrix

K̃ := HKH,

Ki,j := k(xi, xj), andH = I− 1

m11⊤ is a centering matrix. Finally, by subtractingmMMD2
u from

mMMD2
b , we observe that these differ by a quantity with expectationtr(C) =

∑∞
l=1

λl, and thus

mMMD2
b →

D

∞∑

l=1

λlz
2
l .

1Other interpretations of the MMD are also possible, for particular kernel choices. The most closely related
is theL2 distance between probability density estimates [1], although this requires the kernel bandwidth to
decrease with increasing sample size. See [1, 14] for more detail. Yet another interpretation is given in [32].
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3 Theory

In the present section, we describe three approaches for approximating the null distribution of MMD.
We first present the Pearson curve and Gamma-based approximations, which consist of parametrized
families of distributions that we fit by matching the low order moments of the empirical MMD. Such
approximations can be accurate in practice, although they remain heuristics with no consistency
guarantees. Second, we describe a null distribution estimate based on substituting the empirical
estimates (5) of the eigenvalues into (2). We prove that thisestimate converges to its population
counterpart in the large sample limit.

3.1 Moment-based null distribution estimates

The Pearson curves and the Gamma approximation are both based on the low order moments of the
empirical MMD. The second and third moments for MMD are obtained in [14]:

E

([
MMD2

u

]2)
=

2

m(m− 1)
Ez,z′

[
h2(z, z′)

]
and (6)

E

([
MMD2

u

]3)
=

8(m− 2)

m2(m− 1)2
Ez,z′ [h(z, z′)Ez′′ (h(z, z′′)h(z′, z′′))] +O(m−4). (7)

Pearson curves take as arguments the variance, skewness andkurtosis As in [14], we replace the

kurtosis with a lower bound due to [31],kurt
(
MMD2

u

)
≥
(
skew

(
MMD2

u

))2
+ 1. An alternative,

more computationally efficient approach is to use a two-parameter Gamma approximation [20, p.
343, p. 359],

mMMDb(Z) ∼
xα−1e−x/β

βαΓ(α)
where α =

(E(MMDb(Z)))2

var(MMDb(Z))
, β =

mvar(MMDb(Z))

E(MMDb(Z))
, (8)

and we use thebiasedstatisticMMD2
b . Although the Gamma approximation is necessarily less

accurate than the Pearson approach, it has a substantially lower computational cost (O(m2) for
the Gamma approximation, as opposed toO(m3) for Pearson). Moreover, we will observe in our
experiments that it performs remarkably well, at a substantial cost saving over the Pearson curves.

3.2 Null distribution estimates using Gram matrix spectrum

In [14, Theorem 8], it was established that for large sample sizes, the null distribution of MMD
approaches an infinite weighted sum of independentχ2

1 random variables, the weights being the
population eigenvalues of the covariance operatorC. Hence, an efficient and theoretically grounded
way to calibrate the test is to compute the quantiles by replacing the population eigenvalues ofC
with their empirical counterparts, as computed from the Gram matrix (see also [18], where a similar
strategy is proposed for the KFDA test with fixed regularization).

The following result shows that this empirical estimate of the null distribution converges in distribu-
tion to its population counterpart. In other words, a test using the MMD statistic, with the threshold
computed from quantiles of the null distribution estimate,is asymptotically consistent in level.

Theorem 1 Letz1, . . . , zl, . . . be an infinite sequence of i.i.d. random variables, withz1 ∼ N(0, 2).

Assume
∑∞

l=1
λ

1/2

l <∞. Then, asm→ ∞

∞∑

l=1

λ̂l(z
2
l − 2) →

D

∞∑

l=1

λl(z
2
l − 2) .

Furthermore, asm→ ∞

sup
t

∣∣∣∣∣P
(
mMMD2

u > t
)
− P

(
∞∑

l=1

λ̂l(z
2
l − 2) > t

)∣∣∣∣∣→ 0 .
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Proof (sketch)We begin with a proof of conditions under which the sum
∑∞

l=1
λl(z

2
l − 2) is finite

w.p. 1. According to [16, Exercise 30, p. 358], we may use Kolmogorov’s inequality to determine
that this sum converges a.s. if

∞∑

l=1

Ez[λ
2
l (z

2
l − 2)2] <∞,

from which it follows that the covariance operator must be Hilbert-Schmidt: this is guaranteed by
the assumption

∑∞
l=1

λ
1/2

l < ∞ (see also [7]). We now proceed to the convergence result. LetC

andĈ be the covariance operator and its empirical estimator. Letλl and λ̂l (l = 1, 2, . . .) be the
eigenvalues ofC andĈ, respectively, in descending order. We want to prove

∞∑

p=1

(λ̂l − λl)Z
2
l → 0 (9)

in probability asn → ∞, whereZp ∼ N(0, 2) are i.i.d. random variables. The constant−2 in
Z2

p −2 can be neglected asTr[Ĉ] → Tr[C], where the proof is given in the online supplement. Thus
∣∣∣
∑

l

(λ̂l − λl)Z
2
l

∣∣∣ ≤
∣∣∣
∑

l

λ̂
1/2

l

(
λ̂

1/2

l − λ
1/2

l )Z2
l

∣∣∣+
∣∣∣
∑

l

(
λ̂

1/2

l − λ
1/2

l )λ
1/2

l Z2
l

∣∣∣

≤
{∑

l

λ̂lZ
4
l

}1/2{∑

l

∣∣λ̂1/2

l − λ
1/2

l

∣∣2
}1/2

+
{∑

l

λlZ
4
l

}1/2{∑

l

∣∣λ̂1/2

l − λ
1/2

l

∣∣2
}1/2

(Cauchy-Schwarz). (10)

We now establish
∑

l λlZ
4
l and

∑
l λ̂lZ

4
l are ofOp(1). The former follows from Chebyshev’s

inequality. To prove the latter, we use that sinceλ̂i andZi are independent,

E

∑

i

λ̂iZ
4
i =

∑

i

E[λ̂i]E[Z4
i ] = κE[tr(Ĉ)], (11)

whereκ = E[Z4]. SinceE[tr(Ĉ)] is bounded when the kernel has bounded expectation, we again
have the desired result by Chebyshev’s inequality. The proof is complete if we show

∑

l

(
λ̂

1/2

l − λ
1/2

l )2 = op(1). (12)

From ∣∣∣λ̂1/2

l − λ
1/2

l

∣∣∣
2

≤
∣∣∣λ̂1/2

l − λ
1/2

l

∣∣∣ (λ̂1/2

l + λ
1/2

l ) =
∣∣∣λ̂l − λl

∣∣∣ , (13)

we have ∑

l

∣∣∣λ̂1/2

l − λ
1/2

l

∣∣∣
2

≤
∑

l

|λ̂l − λl|.

It is known as an extension of the Hoffmann-Wielandt inequality that
∑

l

∣∣∣λ̂l − λl

∣∣∣ ≤ ‖Ĉ − C‖1,

where‖ · ‖1 is the trace norm (see [23], also shown in [5, p. 490]). Using [18, Prop. 12], which
gives‖Ĉ − C‖1 → 0 in probability, the proof of the first statement is completed. The proof of the
second statement follows immediately from the Polya theorem [21], as in [18].

3.3 Discussion

We now have several ways to calibrate the MMD test statistic,ranked in order of increasing com-
putational cost: 1) the Gamma approximation, 2) the “empirical null distribution”: that is, the null
distribution estimate using the empirical Gram matrix spectrum, and 3) the Pearson curves, and
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the resampling procedures (subsampling or bootstrap with replacement). We include the final two
approaches in the same cost category since even though the Pearson approach scales worse with
m than the bootstrap (O(m3) vsO(m2)), the bootstrap has a higher cost for sample sizes less than
about103 due the requirement to repeatedly re-compute the test statistic. We also note that our result
of large-sample consistency in level holds under a restrictive condition on the decay of the spectrum
of the covariance operator, whereas the Gamma approximation calculations are straightforward and
remain possible for any spectrum decay behaviour. The Gammaapproximation remains a heuristic,
however, and we give an example of a distribution and kernel for which it performs less accurately
than the spectrum-based estimate in the upper tail, which isof most interest for testing purposes.

4 Experiments

In this section, we compare the four approaches to obtainingthe null distribution, both in terms of
the approximation error computed with respect to simulations from the true null, and when used
in homogeneity testing. Our approaches are denotedGamma(the two-parameter Gamma approx-
imation),Pears(the Pearson curves based on the first three moments, using a lower bound for the
kurtosis),Spec(our new approximation to the null distribution, using the Gram matrix eigenspec-
trum), andBoot(the bootstrap approach).

Artificial data: We first provide an example of a distributionP for which the heuristicsGamma
andPearshave difficulty in approximating the null distribution, whereasSpecconverges. We chose
P to be a mixture of normalsP = 0.5 ∗ N(−1, 0.44) + 0.5 ∗ N(+1, 0.44), andk as a Gaussian
kernel with bandwidth ranging overσ = 2−4, 2−3, 2−2, 2−1, 20, 21, 22. The sample sizes were set
tom = 5000, the total sample size hence being10, 000, and the results were averaged over50, 000
replications. The eigenvalues of the Gram matrix were estimated in this experiment using [13],
which is slower but more accurate than standard Matlab routines. The true quantiles of the MMD
null distribution, referred to as the oracle quantiles, were estimated by Monte Carlo simulations with
50, 000 runs. We report the empirical performance ofSpeccompared to the oracle in terms of∆q =

maxtr:q<r<1 |P(mMMD2
u > tr) − P̂m(mMMD2

u > tr)|, wheretq is such thatP(mMMD2
u >

tq) = q for q = 0.6, 0.7, 0.8, 0.9, andP̂m is theSpecnull distribution estimate obtained withm
samples from each ofP andQ. We also use this performance measure for theGammaandPears
approximations. This focuses the performance comparison on the quantiles corresponding to the
upper tail of the null distribution, while still addressinguniform accuracy over a range of thresholds
so as to ensure reliablep-values. The results are shown in Figure 1, and demonstrate that for this
combination of distribution and kernel,Specperforms almost uniformly better than bothGammaand
Pears. We emphasize that the performance advantage ofSpecis greatest when we restrict ourselves
to higher quantiles, which are of most interest in testing.
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Figure 1: Evolution of∆q for resp. the Gamma (Gam), Spectrum (Spec), and Pearson (Pears) approximations
to the null distribution, as the Gaussian kernel bandwidth parameter varies. From left to right, plots of∆q

versusσ = 2
−4, 2−3, . . . , 22 for q = 0.6, 0.7, 0.8, 0.9.

Benchmark data: We next demonstrate the performance of the MMD tests on a number of mul-
tivariate datasets, taken from [14, Table 1]. We compared microarray data from normal and tumor
tissues (Health status), microarray data from different subtypes of cancer (Subtype), and local field
potential (LFP) electrode recordings from the Macaque primary visual cortex (V1) with and with-
out spike events (Neural Data I and II, described in [24]). Inall cases, we were provided with two
samples having different statistical properties, where the detection of these differences was made
difficult by the high data dimensionality (for the microarray data, density estimation is impossi-
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ble given the small sample size and high data dimensionality, and a successful test cannot rely on
accurate density estimates as an intermediate step).

In computing the null distributions for both theSpecandPearscases, we drew500 samples from the
associated null distribution estimates, and computed the test thresholds using the resulting empirical
quantiles. For theSpeccase, we computed the eigenspectrum on the gram matrix of theaggregate
data fromP andQ, retaining in all circumstances the maximum number2m− 1 of nonzero eigen-
values of the empirical Gram matrix. This is a conservative approach, given that the Gram matrix
spectrum may decay rapidly [2, Appendix C], in which case it might be possible to safely discard the
smallest eigenvalues. For the bootstrap approachBoot, we aggregated points from the two samples,
then assigned these randomly without replacement toP andQ. In our experiments, we performed
500 such iterations, and used the resulting histogram of MMD values as our null distribution. We
used a Gaussian kernel in all cases, with the bandwidth set tothe median distance between points in
the aggregation of samples fromP andQ.

We applied our tests to the benchmark data as follows: Given datasets A and B, we either drew one
sample with replacement from A and the other from B (in which case a Type II error was made
when the null hypothesisH0 was accepted); or we drew both samples with replacement froma
single pool consisting of A and B combined (in which case a Type I error was made whenH0

was rejected: this should happen a fraction1 − α of the time). This procedure was repeated1000
times to obtain average performance figures. We summarize our results in Table 1. Note that an
extensive benchmark of the MMDBootandPearstests against other nonparametric approaches to
two-sample testing is provided in [14]: these include the the Friedman-Rafsky generalisation of the
Kolmogorov-Smirnov and Wald-Wolfowitz tests [9], the Biau-Györfi test [6], and the Hall-Tajvidi
test [17]. See [14] for details.

We observe that the kernel tests perform extremely well on these data: the Type I error is in the
great majority of cases close to its design value of1 − α, and the Type II error is very low (and
often zero). TheSpectest is occasionally slightly conservative, and has a lowerType I error than
required: this is most pronounced in the Health Status dataset, for which the sample sizem is low.
The computational cost shows the expected trend, withGammabeing least costly, followed bySpec,
Pears, and finallyBoot(this trend is only visible for the largerm = 500 datasets). Note that for yet
larger sample sizes, however, we expect the cost ofPearsto exceed that of the remaining methods,
due to itsO(m3) cost requirement (vsO(m2) for the other approaches).

Dataset Attribute Gamma Pears Spec Boot

Neural Data I Type I/Type II 0.95 / 0.00 0.96 / 0.00 0.96 / 0.00 0.96 / 0.00
Time (sec) 0.06 3.92 2.79 5.79

Neural Data II Type I/Type II 0.96 / 0.00 0.96 / 0.00 0.97 / 0.00 0.96 / 0.00
Time (sec) 0.08 3.97 2.91 8.08

Health status Type I/Type II 0.96 / 0.00 0.96 / 0.00 0.98 / 0.00 0.95 / 0.00
Time (sec) 0.01 0.01 0.01 0.03

Subtype Type I/Type II 0.95 / 0.02 0.95 / 0.01 0.96 / 0.01 0.94 / 0.01
Time (sec) 0.05 0.05 0.05 0.07

Table 1: Benchmarks for the kernel two-sample tests on high dimensional multivariate data. Type I and Type
II errors are provided, as are average run times. Sample size(dimension): Neural I 500 (63) ; Neural II 500
(100); Health Status 25 (12,600); Subtype 25 (2,118).

Finally, we demonstrate the performance of the test on structured
(text) data. Our data are taken from the Canadian Hansard corpus
(http : //www.isi.edu/natural− language/download/hansard/). As in the earlier work on
dependence testing presented in [15], debate transcripts on the three topics of agriculture, fisheries,
and immigration were used. Transcripts were in English and French, however we confine ourselves
to reporting results on the English data (the results on the French data were similar). Our goal was to
distinguish samples on differenttopics, for instanceP being drawn from transcripts on agriculture
andQ from transcripts on immigration (in the null case, both samples were from the same topic).
The data were processed following the same procedures as in [15]. We investigated two different
kernels on text: thek-substring kernel of [22, 30] withk = 10, and a bag-of-words kernel. In
both cases, we computed kernels between five-line extracts,ignoring lines shorter than five words
long. Results are presented in Figure 2, and represent an average over all three combinations of
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Figure 2: Canadian Hansard data.Left: Average Type II error over all of agriculture-fisheries, agriculture-
immigration, and fisheries-immigration, for the bag-of-words kernel.Center: Average Type II error for the
k-substring kernel.Right: Eigenspectrum of a centered Gram matrix obtained by drawingm = 10 points from
each ofP andQ, whereP 6= Q, for the bag-of-words kernel.

different topic pairs: agriculture-fisheries, agriculture-immigration, and fisheries-immigration. For
each topic pairing, results are averaged over 300 repetitions.

We observe that in general, the MMD is very effective at distinguishing distributions of text frag-
ments on different topics: for sample sizes above 30, all thetest procedures are able to detect differ-
ences in distribution with zero Type II error, for both kernels. When thek-substring kernel is used,
the Boot, Gamma, and Pears approximations can distinguish the distributions for sample sizes as low
as 10: this indicates that a more sophisticated encoding of the text than provided by bag-of-words
results in tests of greater sensitivity (consistent with the independence testing observations of [15]).

We now investigate the fact that for sample sizes belowm = 30 on the Hansard data, theSpec
test has a much higher Type II error the alternatives. Thek-substring and bag-of-words kernels are
diagonally dominant: thus for small sample sizes, the empirical estimate of the kernel spectrum
is effectively truncated at a point where the eigenvalues remain large, introducing a bias (Figure
2). This effect vanishes on the Hansard benchmark once the number of samples reaches 25-30.
By contrast, for the Neural data using a Gaussian kernel, this small sample bias is not observed,
and theSpectest has equivalent Type II performance to the other three tests (see Figure 1 in the
online supplement). In this case, for sample sizes of interest (i.e., where there are sufficient samples
to obtain a Type II error of less than 50%), the bias in theSpectest due to spectral truncation is
negligible. We emphasize that the speed advantage of theSpectest becomes important only for
larger sample sizes (and the consistency guarantee is only meaningful in this regime).

5 Conclusion

We have presented a novel method for estimating the null distribution of the RKHS distance be-
tween probability distribution embeddings, for use in a nonparametric test of homogeneity. Unlike
previous parametric heuristics based on moment matching, our new distribution estimate is consis-
tent; moreover, it is computationally less costly than the bootstrap, which is the only alternative
consistent approach. We have demonstrated in experiments that our method performs well on high
dimensional multivariate data and text, as well as for distributions where the parametric heuristics
show inaccuracies. We anticipate that our approach may alsobe generalized to kernel independence
tests [15], and to homogeneity tests based on the kernel Fisher discriminant [18].
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