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Abstract

A kernel embedding of probability distributions into reduzing kernel Hilbert
spaces (RKHS) has recently been proposed, which allowsottmparison of two
probability measure® and@ based on the distance between their respective em-
beddings: for a sufficiently rich RKHS, this distance is zérand only if P and

@ coincide. In using this distance as a statistic for a testlodtiver two samples
are from different distributions, a major difficulty arisescomputing the signif-
icance threshold, since the empirical statistic has asuilisdistribution (where
P = Q) an infinite weighted sum of? random variables. Prior finite sample
approximations to the null distribution include using ksitdp resampling, which
yields a consistent estimate but is computationally coathyl fitting a parametric
model with the low order moments of the test statistic, widah work well in
practice but has no consistency or accuracy guaranteesmaheresult of the
present work is a novel estimate of the null distributiormpaited from the eigen-
spectrum of the Gram matrix on the aggregate sample ffaand(, and having
lower computational cost than the bootstrap. A proof of csieacy of this esti-
mate is provided. The performance of the null distributistireate is compared
with the bootstrap and parametric approaches on an artifigemple, high di-
mensional multivariate data, and text.

1 Introduction

Learning algorithms based on kernel methods have enjoyesiderable success in a wide range of
supervised learning tasks, such as regression and clagisifi¢25]. One reason for the popularity of
these approaches s that they solve difficult non-paramgtoblems by representing the data points
in high dimensional spaces of features, specifically repcody kernel Hilbert spaces (RKHSS), in
which linear algorithms can be brought to bear. While clzddternel methods have addressed the
mapping of individual points to feature space, more recemelbpments [14, 29, 28] have focused
on the embedding of probability distributions in RKHSs. Whbe embedding is injective, the
RKHS is said to beharacteristid11, 29, 12], and the distance between feature mappingsittdas

a metric on distributions. This distance is known as the maxn mean discrepancy (MMD).

One well-defined application of the MMD is in testing whetlwo samples are drawn from two
different distributions (i.e., a two-sample or homogeynasst). For instance, we might wish to find
whether DNA microarrays obtained on the same tissue typeffgreht labs are distributed iden-
tically, or whether differences in lab procedure are suett the data have dissimilar distributions
(and cannot be aggregated) [8]. Other applications inchoflema matching in databases, where
tests of distribution similarity can be used to determinecivtiields correspond [14], and speaker



verification, where MMD can be used to identify whether a spesample corresponds to a person
for whom previously recorded speech is available [18].

A major challenge when using the MMD in two-sample testinigisbtaining a significance thresh-
old, which the MMD should exceed with small probability whitie null hypothesis (that the sam-
ples share the same generating distribution) is satisfietlowing [14, Section 4], we define this
threshold as an upper quantile of the asymptotic distidoudif the MMD under the null hypothesis.
Unfortunately this null distribution takes the form of arfiimite weighted sum of? random vari-
ables. Thus, obtaining eonsistenfinite sample estimate of this threshold — that is, an esemat
that converges to the true threshold in the infinite sampié H— is a significant challenge. Three
approaches have previously been applied: distributies-farge deviation bounds [14, Section 3],
which are generally too loose for practical settings; figtto the Pearson family of densities [14],
a simple heuristic that performs well in practice, but hagnarantees of accuracy or consistency;
and a bootstrap approach, which is guaranteed to be camsiste has a high computational cost.

The main contribution of the present study is a consisteitefsample estimate of the null distribu-
tion (not based on bootstrap), and a proof that this estic@teerges to the true null distribution in
the infinite sample limit. Briefly, the infinite sequence ofigles that defines the null distribution is
identical to the sequence of normalized eigenvalues odxdaim kernel PCA [26, 27, 7]. Thus, we
show that the null distribution defined using finite samplingstes of these eigenvalues converges
to the population distribution, using only convergenceltson certain statistics of the eigenvalues.
In experiments, our new estimate of the test threshold hasadier computational cost than that
of resampling-based approaches such as the bootstrap, pvbiliding performance as good as the
alternatives for larger sample sizes.

We begin our presentation in Section 2 by describing howalndiby distributions may be embedded
in an RKHS. We also review the maximum mean discrepancy aslmsen distance measure on
these embeddings, and recall the asymptotic behavious dihite sample estimate. In Section 3,
we present both moment-based approximations to the natildison of the MMD (which have
no consistency guarantees); and our novel, consistemagstiof the null distribution, based on the
spectrum of the kernel matrix over the aggregate sampleegheriments in Section 4 compare the
different approaches on an artificial dataset, and on higtedsional microarray and neuroscience
data. We also demonstrate the generality of a kernel-bag@dach by testing whether two samples
of text are on the same topic, or on different topics.

2 Background

In testing whether two samples are generated from the sastrébdiion, we require both a measure
of distance between probabilities, and a notion of whethisistance is statistically significant. For
the former, we define an embedding of probability distriagiin a reproducing kernel Hilbert space
(RKHS), such that the distance between these embeddingstest statistic. For the latter, we give
an expression for the asymptotic distribution of this dis@measure, from which a significance
threshold may be obtained.

Let F be an RKHS on the separable metric spaicevith a continuous feature mappigdz) € F
for eache € X. The inner product between feature mappings is given bydiséipe definite kernel
functionk(z,2’) := (¢(x), #(a')) 4. We assume in the following that the kerrieis bounded. Let
P be the set of Borel probability measuresXnFollowing [4, 10, 14], we define the mappingdo
of P € P as the expectation af(x) with respect taP, or

up P — F
P e /¢(x)dP.
X

The maximum mean discrepancy (MMD) [14, Lemma 7] is definethasdistance between two
such mappings,
MMD(P,Q) = |pr — pels
= (Bow(k(a,2) + By yk(y,y') — 2B k() /7,
wherezx andz’ are independent random variables drawn according,tg andy’ are independent

and drawn according t@, andx is independent of. This quantity is gpseudo-metrion distribu-
tions: that is, it satisfies all the qualities of a metric besMMD(P, Q) = 0iff P = Q. ForMMD



to be a metric, we require that the kernel be characteristicZ9, 12 This criterion is satisfied for
many common kernels, such as the Gaussian kernel (both opamtmomains and oR¢) and the
By 11 spline kernel orR<.

We now consider two possible empirical estimates of the MMiased on i.i.d. samples
(z1,...,zm) from P and(y1,...,ym) from Q (we assume an equal number of samples for sim-
plicity). An unbiasedestimate of MMD is the one-sample U-statistic

1 m
2. _ L
MMD? := ey Z h(zi, ), 1)
i#]
wherez; := (z;,y;) andh(z;, z;) == k(zi, ;) +k(yi, y;) —k(x:, y;) —k(x;, y;). We also define the
biasedestimateMMD; by replacing the U-statistic in (1) with a V-statistic (thens then includes
termsi = j).

Our goal is to determine whethétand@ differ, based onn samples from each. To this end, we
require a measure of whetReiMD? differs significantly from zero; or, if the biased statistid D}

is used, whether this value is significantly greater thaajisectation whe® = Q. In other words
we conduct a hypothesis test with null hypothésisdefined as® = @, and alternative hypothesis
Hi asP # Q. We must therefore specify a threshold that the empirical DAMll exceed with
small probability, whenP = @Q. For an asymptotic false alarm probability (Type | errorphgfan
appropriate threshold is the— « quantile of the asymptotic distribution of the empirical NDM
assumingP = . According to [14, Theorem 8], this distribution takes tbenfi

2 2 _
mMMD;, — ; N(zE —2), )
whereg denotes convergence in distributian,~ N(0, 2) i.i.d., A; are the solutions to the eigen-
value equation

/x F(oa, o) (@) dP = A (), 3)

andk(z;, z;) := k(zi, ;) — Egk(zi, x) — Egk(x,2;) + Eg 2 k(x,2”). Consistency in power of
the resulting hypothesis test (that is, the convergendas df/pe Il error to zero for increasing) is
shown in [14].

The eigenvalue problem (3) has been studied extensiveheirontext of kernel PCA [26, 27, 7]:
this connection will be used in obtaining a finite samplersate of the null distribution in (2),
and we summarize certain important results. Following [, Wve define the covariance operator
C:F—-TFas

(f:Cf)g = var(f(x))
= E,f2(z) - [E.f(2)]*. (4)

The eigenvalues; of C' are the solutions to the eigenvalue problem in (3) [19, Psdjonm 2].
Following e.g. [27, p.2511], empirical estimates of theigervalues are

5\[ = i 14 (5)
m

wherev; are the eigenvalues of the centered Gram matrix

K := HKH,
K; ;= k(z;,z;),andH = I — 1117 is a centering matrix. Finally, by subtracting\IMD?, from
mMMD}, we observe that these differ by a quantity with expectatiof’) = >°;°, \;, and thus

mMMD? - ; Nzt

10ther interpretations of the MMD are also possible, foripatar kernel choices. The most closely related
is the L, distance between probability density estimates [1], aigfothis requires the kernel bandwidth to
decrease with increasing sample size. See [1, 14] for maad .déet another interpretation is given in [32].



3 Theory

In the present section, we describe three approaches fawdpyating the null distribution of MMD.
We first present the Pearson curve and Gamma-based apptiaxisjavhich consist of parametrized
families of distributions that we fit by matching the low ordeoments of the empirical MMD. Such
approximations can be accurate in practice, although taeaim heuristics with no consistency
guarantees. Second, we describe a null distribution etgitn@ased on substituting the empirical
estimates (5) of the eigenvalues into (2). We prove thatdékignate converges to its population
counterpartin the large sample limit.

3.1 Moment-based null distribution estimates

The Pearson curves and the Gamma approximation are botth dasee low order moments of the
empirical MMD. The second and third moments for MMD are ofoéa in [14]:

E ([MMD2]*) = ﬁE [h2(z,2')] and (6)
E ([MMDi]B) = %Ezz’ [h(z, 2V E.r (h(z, 2" Yh(Z, "N + O(m™).  (7)

Pearson curves take as arguments the variance, skewneksréoals As in [14], we replace the
kurtosis with a lower bound due to [3Hurt (MMD?) > (skew (MMD?,))2 + 1. An alternative,

more computationally efficient approach is to use a two+patar Gamma approximation [20, p.
343, p. 359],

x@le=x/B _ (E(MMDy(2)))? _ mvar(MMDy(2))
PRI Ty M 0 aonmy) 0 T Teanmyz) @

and we use thdiasedstatistic MMD?. Although the Gamma approximation is necessarily less
accurate than the Pearson approach, it has a substantiaiy tomputational costy(m?) for

the Gamma approximation, as opposedton?) for Pearson). Moreover, we will observe in our
experiments that it performs remarkably well, at a sub&thodst saving over the Pearson curves.

3.2 Null distribution estimates using Gram matrix spectrum

In [14, Theorem 8], it was established that for large samizdess the null distribution of MMD
approaches an infinite weighted sum of independéntandom variables, the weights being the
population eigenvalues of the covariance oper&torHence, an efficient and theoretically grounded
way to calibrate the test is to compute the quantiles by oépdathe population eigenvalues 6f
with their empirical counterparts, as computed from thenGnaatrix (see also [18], where a similar
strategy is proposed for the KFDA test with fixed regulara}.

The following result shows that this empirical estimatehaf hull distribution converges in distribu-
tion to its population counterpart. In other words, a tegtgithe MMD statistic, with the threshold
computed from quantiles of the null distribution estiméesymptotically consistent in level

Theorem 1 Letz, ..., z,... be aninfinite sequence of i.i.d. random variables, with- N (0, 2).
Assumé " A% < co. Then, asn — oo

> At =2) 5 ot ).

Furthermore, asn — oo

sup [P (mMMD2 > t) — P <25\l(z? -2)> t)’ —0.
=1

t



Proof (sketch)We begin with a proof of conditions under which the sBRI° | A (27 — 2) is finite
w.p. 1. According to [16, Exercise 30, p. 358], we may use Kadorov's inequality to determine
that this sum converges a.s. if

Z E )‘l - 2 ] 0,

from which it follows that the covariance operator must bébelit-Schmidt: this is guaranteed by
the assumptio} ,~, M2 < o (see also [7]). We now proceed to the > convergence resultCLet
andC be the covariance operator and its empirical estimator. \L@ind )\z (Il =1,2,...) be the
eigenvalues of” andC, respectively, in descending order. We want to prove

o0

Su-nz2 - 0 9)

p=1
in probability asn — oo, whereZ, ~ N(0,2) are i.i.d. random variables. The constaft in
Z? —2 can be neglected & [C] — Tr[C], where the proof s given in the online supplement. Thus

S (- /\z)Z?‘ < ‘ZX,UQ(X}/Q A2) ZQ‘ n ‘Z /2 \1/2)51/2 72
l l
T $1/2 1/2 2\ 1/2
< () ()

+ {Z NZ} } {Z\)\W AN 2} i (Cauchy-Schwaiz (10)
l

We now establisty_, A, Z{ and )", )\lZf are of O,(1). The former follows from Chebyshev’s
inequality. To prove the latter, we use that sifgeind Z; are independent,

EY \z! =) E\E[Z]] = sE[tr(C))], (11)

wherex = E[Z*4]. SinceE[tr(C)] is bounded when the kernel has bounded expectation, we again
have the desired result by Chebyshev's inequality. Thefpsammplete if we show

STV =N =0,(1). (12)

l
From )
D e e Y S (AR P S B VY (13)

Z ‘:\\1/2 1/2‘ Z |/\I )\l

It is known as an extension of the Hoffmann- Wlelandt inefudhat

S [h-x|<i€-cl,
l

we have

where|| - ||; is the trace norm (see [23], also shown in [5, p. 490]). Usit®} [Prop. 12], which

gives||C — C||; — 0 in probability, the proof of the first statement is complet&tie proof of the
second statement follows immediately from the Polya thedgl], as in [18]. |

3.3 Discussion

We now have several ways to calibrate the MMD test statisticked in order of increasing com-
putational cost: 1) the Gamma approximation, 2) the “ernpinull distribution”: that is, the null
distribution estimate using the empirical Gram matrix $pen, and 3) the Pearson curves, and



the resampling procedures (subsampling or bootstrap wiitacement). We include the final two
approaches in the same cost category since even though aéingoReapproach scales worse with
m than the bootstrapd(m?) vs O(m?)), the bootstrap has a higher cost for sample sizes less than
about10? due the requirement to repeatedly re-compute the testtatatiVe also note that our result

of large-sample consistency in level holds under a resteicbndition on the decay of the spectrum

of the covariance operator, whereas the Gamma approximediculations are straightforward and
remain possible for any spectrum decay behaviour. The Gaapm@ximation remains a heuristic,
however, and we give an example of a distribution and kewrelvhich it performs less accurately
than the spectrum-based estimate in the upper tail, whichrnsost interest for testing purposes.

4 Experiments

In this section, we compare the four approaches to obtaihi@gull distribution, both in terms of
the approximation error computed with respect to simutegtiivom the true null, and when used
in homogeneity testing. Our approaches are denGehma(the two-parameter Gamma approx-
imation), Pears(the Pearson curves based on the first three moments, usimgeatound for the
kurtosis),Spec(our new approximation to the null distribution, using thea@ matrix eigenspec-
trum), andBoot(the bootstrap approach).

Artificial data: We first provide an example of a distributidh for which the heuristic6&samma
andPearshave difficulty in approximating the null distribution, weasSpecconverges. We chose
P to be a mixture of normal® = 0.5 « N(—1,0.44) + 0.5 « N(+1,0.44), andk as a Gaussian
kernel with bandwidth ranging over = 274,273,272 2-1 20 21 92 The sample sizes were set
to m = 5000, the total sample size hence beiryy 000, and the results were averaged o¥ero00
replications. The eigenvalues of the Gram matrix were egtiohin this experiment using [13],
which is slower but more accurate than standard Matlabmesti The true quantiles of the MMD
null distribution, referred to as the oracle quantiles,evestimated by Monte Carlo simulations with
50, 000 runs. We report the empirical performanceSgieccompared to the oracle in termsAf, =
maxy,.q<r<1 |[P(mMMD?2 > t,) — P,,(mMMD?2 > t,.)|, wheret, is such thalP (mM M D2 >

tq) = g for ¢ = 0.6,0.7,0.8,0.9, andP,, is the Specnull distribution estimate obtained witt
samples from each ad? and@). We also use this performance measure forGaenmaand Pears
approximations. This focuses the performance comparisoth® quantiles corresponding to the
upper tail of the null distribution, while still addressingiform accuracy over a range of thresholds
S0 as to ensure reliabjevalues. The results are shown in Figure 1, and demonstratddr this
combination of distribution and kern&@pegerforms almost uniformly better than ba#ammaand
Pears We emphasize that the performance advanta@pefis greatest when we restrict ourselves
to higher quantiles, which are of most interest in testing.

Ao.e Vs 0 A0.7 Vs 0 Ao_s Vs 0 Ao_g Vs 0

0.0 0.0 0.05
-0-Gam -0-Gam -0-Gam
-o-Spec 0.05( -8~ Spec -o-Spec

Pearg Pears 0.04 Pearg
0.04)
® @
< 0.03 < 0.03
0.02
[ 0.02]
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) 94 0.0
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Figure 1: Evolution ofA, for resp. the Gamma (Gam), Spectrum (Spec), and Pearsors(@paroximations
to the null distribution, as the Gaussian kernel bandwidtrameter varies. From left to right, plots of,
versuse = 274,273, ... 2% for ¢ = 0.6,0.7,0.8,0.9.

Benchmark data: We next demonstrate the performance of the MMD tests on a euoftmul-
tivariate datasets, taken from [14, Table 1]. We comparextoarray data from normal and tumor
tissues (Health status), microarray data from differebtygues of cancer (Subtype), and local field
potential (LFP) electrode recordings from the Macaque annvisual cortex (V1) with and with-
out spike events (Neural Data | and Il, described in [24])allrcases, we were provided with two
samples having different statistical properties, whegedbtection of these differences was made
difficult by the high data dimensionality (for the microarrdata, density estimation is impossi-



ble given the small sample size and high data dimensionalityf a successful test cannot rely on
accurate density estimates as an intermediate step).

In computing the null distributions for both ti8pecandPearscases, we dre®0 samples from the
associated null distribution estimates, and computedsttaitresholds using the resulting empirical
guantiles. For th&peccase, we computed the eigenspectrum on the gram matrix efpegate
data fromP and@, retaining in all circumstances the maximum number— 1 of nonzero eigen-
values of the empirical Gram matrix. This is a conservatjperaach, given that the Gram matrix
spectrum may decay rapidly [2, Appendix C], in which caseighmbe possible to safely discard the
smallest eigenvalues. For the bootstrap appr&at we aggregated points from the two samples,
then assigned these randomly without replacemet &md Q. In our experiments, we performed
500 such iterations, and used the resulting histogram of MMieslas our null distribution. We
used a Gaussian kernel in all cases, with the bandwidth $le¢ tmedian distance between points in
the aggregation of samples frofhandq.

We applied our tests to the benchmark data as follows: Gietaiseéts A and B, we either drew one
sample with replacement from A and the other from B (in whieseca Type Il error was made
when the null hypothesig(, was accepted); or we drew both samples with replacement &#om
single pool consisting of A and B combined (in which case aelygrror was made whef(,

was rejected: this should happen a fraction « of the time). This procedure was repeal®d0
times to obtain average performance figures. We summarizeesults in Table 1. Note that an
extensive benchmark of the MMBootandPearstests against other nonparametric approaches to
two-sample testing is provided in [14]: these include theeRhiedman-Rafsky generalisation of the
Kolmogorov-Smirnov and Wald-Wolfowitz tests [9], the Bi@yorfi test [6], and the Hall-Tajvidi
test [17]. See [14] for detalils.

We observe that the kernel tests perform extremely well esdtdata: the Type | error is in the
great majority of cases close to its design valud ef «, and the Type Il error is very low (and
often zero). TheSpectest is occasionally slightly conservative, and has a Iolyge | error than
required: this is most pronounced in the Health Status dgts which the sample size is low.
The computational cost shows the expected trend, @é@mmabeing least costly, followed b$pec
Pears and finallyBoot(this trend is only visible for the largen = 500 datasets). Note that for yet
larger sample sizes, however, we expect the coBeafsto exceed that of the remaining methods,
due to itsO(m?) cost requirement (v@(m?) for the other approaches).

| Dataset | Attribute | Gamma] Pears] Spec ] Boot |
Neural Datal | Type I/Typell | 0.95/0.00| 0.96/0.00| 0.96/0.00| 0.96/0.00
Time (sec) 0.06 3.92 2.79 5.79

Neural Data II] Type I/Type I | 0.96/0.00] 0.96/0.00] 0.97/0.00] 0.96/0.00
Time (sec) 0.08 3.97 291 8.08

Health status | Type I/Type I [ 0.96/0.00] 0.96/0.00] 0.98/0.00] 0.95/0.00
Time (sec) 0.01 0.01 0.01 0.03

Subtype Type /Type IT | 0.9570.02] 0.95/0.01] 0.96/0.01] 0.94/0.01
Time (sec) 0.05 0.05 0.05 0.07

Table 1: Benchmarks for the kernel two-sample tests on hiigieasional multivariate data. Type | and Type
Il errors are provided, as are average run times. Samplgdimension): Neural | 500 (63) ; Neural Il 500
(100); Health Status 25 (12,600); Subtype 25 (2,118).

Finally, we demonstrate the performance of the test on tsired
(text) data. Our data are taken from the Canadian Hansardpusor
(http: //www.isi.edu/natural — language/download/hansard/). As in the earlier work on
dependence testing presented in [15], debate transcritseedhree topics of agriculture, fisheries,
and immigration were used. Transcripts were in English ared¢h, however we confine ourselves
to reporting results on the English data (the results on teed¢h data were similar). Our goal was to
distinguish samples on differetdpics for instanceP being drawn from transcripts on agriculture
and@ from transcripts on immigration (in the null case, both saapvere from the same topic).
The data were processed following the same procedures a5]in\\Ve investigated two different
kernels on text: thé-substring kernel of [22, 30] witk = 10, and a bag-of-words kernel. In
both cases, we computed kernels between five-line extiigaisting lines shorter than five words
long. Results are presented in Figure 2, and represent aagavever all three combinations of
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Figure 2: Canadian Hansard dataeft: Average Type Il error over all of agriculture-fisheries, iagiture-
immigration, and fisheries-immigration, for the bag-ofrd® kernel. Center: Average Type Il error for the
k-substring kernelRight: Eigenspectrum of a centered Gram matrix obtained by drawirg 10 points from
each ofP and@, whereP # @, for the bag-of-words kernel.

different topic pairs: agriculture-fisheries, agricuitimmigration, and fisheries-immigration. For
each topic pairing, results are averaged over 300 repwitio

We observe that in general, the MMD is very effective at digtiishing distributions of text frag-
ments on different topics: for sample sizes above 30, alldbeprocedures are able to detect differ-
ences in distribution with zero Type Il error, for both kelséNVhen thek-substring kernel is used,
the Boot, Gamma, and Pears approximations can distinguestiistributions for sample sizes as low
as 10: this indicates that a more sophisticated encodinigeofeixt than provided by bag-of-words
results in tests of greater sensitivity (consistent withititdependence testing observations of [15]).

We now investigate the fact that for sample sizes below= 30 on the Hansard data, ti&pec
test has a much higher Type Il error the alternatives. fHsabstring and bag-of-words kernels are
diagonally dominant: thus for small sample sizes, the eiggliestimate of the kernel spectrum
is effectively truncated at a point where the eigenvaluesaia large, introducing a bias (Figure
2). This effect vanishes on the Hansard benchmark once thd@uof samples reaches 25-30.
By contrast, for the Neural data using a Gaussian kerna,gimall sample bias is not observed,
and theSpectest has equivalent Type Il performance to the other thrsts {see Figure 1 in the
online supplement). In this case, for sample sizes of istéie., where there are sufficient samples
to obtain a Type Il error of less than 50%), the bias in 8pectest due to spectral truncation is
negligible. We emphasize that the speed advantage dbpleetest becomes important only for
larger sample sizes (and the consistency guarantee is @ayinmgful in this regime).

5 Conclusion

We have presented a novel method for estimating the nuliildision of the RKHS distance be-
tween probability distribution embeddings, for use in apemametric test of homogeneity. Unlike
previous parametric heuristics based on moment matchingyew distribution estimate is consis-
tent; moreover, it is computationally less costly than tleetbtrap, which is the only alternative
consistent approach. We have demonstrated in experinfettsir method performs well on high
dimensional multivariate data and text, as well as for itistrons where the parametric heuristics
show inaccuracies. We anticipate that our approach maybalgeneralized to kernel independence
tests [15], and to homogeneity tests based on the kernetFasbcriminant [18].
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