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Abstract

A well-known analysis of Tropp and Gilbert shows that ortbogl matching
pursuit (OMP) can recover &-sparsen-dimensional real vector fromn =

4k log(n) noise-free linear measurements obtained through a randaumss&n
measurement matrix with a probability that approaches @e a oo. This
work strengthens this result by showing that a lower numlien@asurements,
m = 2klog(n — k), is in fact sufficient for asymptotic recovery. More gen-
erally, when the sparsity level satisfiég,;, < k& < kmax but is unknown,
m = 2kmax log(n — kmin) Mmeasurements is sufficient. Furthermore, this number
of measurements is also sufficient for detection of the #gguattern (support)
of the vector with measurement errors provided the signaietise ratio (SNR)
scales to infinity. The scaling. = 2k log(n — k) exactly matches the number of
measurements required by the more complex lasso methodjfal secovery in

a similar SNR scaling.

1 Introduction

Suppose € R™ is a sparse vector, meaning its number of nonzero compohéstanaller tham.
The support ok is the locations of the nonzero entries and is sometimesctaisparsity pattern
A common sparse estimation problem is to infer the sparsitiegn ofx from linear measurements
of the form

y =Ax+w, 1)

whereA € R™*" is a known measurement matrix,c R™ represents a vector of measurements
andw € R™ is a vector of measurements errors (noise).

Sparsity pattern detection and related sparse estimatidoigms are classical problems in nonlinear
signal processing and arise in a variety of applicationlsiting wavelet-based image processing [1]
and statistical model selection in linear regression [2hefE has also been considerable recent
interest in sparsity pattern detection in the contextahpressed sensingrhich focuses on large
random measurement matricAs[3-5]. It is this scenario with random measurements thdthveil
analyzed here.

Optimal subset recovery is NP-hard [6] and usually involsearches over all th(ag) possible
support sets ak. Thus, most attention has focused on approximate methodsedonstruction.

One simple and popular approximate algorithm is orthogamatching pursuit (OMP) developed
in [7-9]. OMP is a simple greedy method that identifies thatmn of one nonzero componentof
at a time. A version of the algorithm will be described in ddialow in Section 2. The best known
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analysis of the performance of OMP for large random matiieesie to Tropp and Gilbert [10, 11].
Among other results, Tropp and Gilbert show that when thebmmof measurements scales as

m > (14 0)4klog(n) 2

for somed > 0, A has i.i.d. Gaussian entries, and the measurements arefressgy = 0), the
OMP method will recover the correct sparse patters @fith a probability that approaches one as
n andk — oo. Deterministic conditions on the matrix that guarantee recovery &fby OMP are
givenin [12].

However, numerical experiments reported in [10] suggest ahsmaller number of measurements
than (2) may be sufficient for asymptotic recovery with OMPeS&fically, the experiments suggest
that the constant 4 can be reduced to 2.

Our main result, Theorem 1 below, proves this conjecturecHipally, we show that the scaling in
measurements
m > (14 0)2klog(n — k) 3)

is also sufficient for asymptotic reliable recovery with OMivided both: — k£ andk — oo. The
result goes further by allowing uncertainty in the sparkatel .

We also improve upon the Tropp—Gilbert analysis by accogrfbir the effect of the noise. While
the Tropp—Gilbert analysis requires that the measurenagatsoise-free, we show that the scaling
(3) is also sufficient when there is noisg provided the signal-to-noise ratio (SNR) goes to infinity.

The main significance of the new scaling (3) is that it exantgtches the conditions for sparsity
pattern recovery using the well-known lasso method. Thsolasethod, which will be described
in detail in Section 4, is based on a convex relaxation of il detection problem. The best
analysis of the sparsity pattern recovery with lasso is du@/ainwright [13, 14]. He showed in
[13] that under a similar high SNR assumption, the scalingn®umber of measurements is both
necessary and sufficient for asymptotic reliable sparsityepn detectiod.Now, although the lasso
method is often more complex than OMP, it is widely believeat tasso has superior performance
[10]. Our results show that at least for sparsity patterovecy with large Gaussian measurement
matrices in high SNR, lasso and OMP have identical perfommaHence, the additional complexity
of lasso for these problems is not warranted.

Of course, neither lasso nor OMP is the best known approxeiagbrithm, and our intention rsot
to claim that OMP is optimal in any sense. For example, whezeetis no noise in the measurements,
the lasso minimization (14) can be replaced by

X = argmin ||v]|1, S.t.y = Av.
veR”?
A well-known analysis due to Donoho and Tanner [15] shows fhai.i.d. Gaussian measurement
matrices, this minimization will recover the correct vaotgth

m = 2klog(n/m) (4)
whenk < n. This scaling is fundamentally better than the scaling (Blieved by OMP and lasso.

There are also several variants of OMP that have shown ineprpgrformance. The CoSaMP algo-
rithm of Needell and Tropp [16] and subspace pursuit algoriof Dai and Milenkovic [17] achieve
a scaling similar to (4). Other variants of OMP include thegstvise OMP [18] and regularized
OMP [19]. Indeed with the recent interest in compressedisgnghere is now a wide range of
promising algorithms available. We do not claim that OMPieebs the best performance in any
sense. Rather, we simply intend to show that both OMP and lagge similar performance in
certain scenarios.

Our proof of (3) follows along the same lines as Tropp and &tlb proof of (2), but with two key
differences. First, we account for the effect of the noiseséyarately considering its effect in the
“true” subspace and its orthogonal complement. Second amd importantly, we provide a tighter
bound on the maximum correlation of the incorrect vectongecHically, in each iteration of the

sufficient conditions under weaker conditions on the SNRnawmee subtle [14]: the scaling of SNR with
n determines the sequences of regularization parametensfoh asymptotic almost sure success is achieved,
and the regularization parameter sequence affects theisaffnumber of measurements.



OMP algorithm, there are — k possible incorrect vectors that the algorithm can chooseeShe
algorithm runs fork iterations, there are total @f(n — k) possible error events. The Tropp and
Gilbert proof bounds the probability of these error evenith\a union bound, essentially treating
them as statistically independent. However, here we shatethergies on any one of the incorrect
vectors across thk iterations are correlated. In fact, they are precisely idlesd by samples on
a certain normalized Brownian motion. Exploiting this eation we show that the tail bound on
error probability grows as — k, notk(n — k), independent events.

The outline of the remainder of this paper is as follows. Ba@ describes the OMP algorithm. Our
main result, Theorem 1, is stated in Section 3. A comparisdadso is provided in Section 4, and
we suggest some future problems in Section 6. The proof afhhia result is sketched in Section 7.

2 Orthogonal Matching Pur suit

To describe the algorithm, suppose we wish to determine ¢htorx from a vectory of the form
(2). Let

Itruc:{j : Ij;’éO}, (5)

which is the support of the vectar. The setl, .. will also be called thesparsity pattern Let
k = |Iirue|, which is the number of nonzero componentskof The OMP algorithm produces a

sequence of estimaté%t), t=0,1,2,..., of the sparsity patterf,,., adding one index at a time.
In the description below, let; denote thgith column ofA.

Algorithm 1 (Orthogonal Matching Pursuit) Given a vectory € R™, a measurement matrix

A € R™ " and threshold level: > 0, compute an estimat&,\p of the sparsity pattern of
as follows:

1. Initializet = 0 andI(t) = 0.

2. ComputeP(t), the projection operator onto the orthogonal complementhef span of
{a;,i € I(t)}.

3. For eachj, compute

L [P ()y]?
P09 = Ty
and let
[p*(t), 1" ()] = Dax p(t, ), (6)

wherep*(t) is the value of the maximum a¥#idt) is an index which achieves the maximum.

4. If p*(t) > p, setl(t +1) = I(t) U {i*(¢)}. Also, increment = ¢ + 1 and return to step 2.

5. Otherwise stop. The final estimate of the sparsity patefgyp = 1(t).

Note that sinceP(t) is the projection onto the orthogonal complementagffor all j € I(t),

P(t)a; = Oforall j € I(t). Hence(t,7) = 0 forall j € I(t), and therefore the algorithm will
not select the same vector twice.

The algorithm above only provides an estimdtgyp, of the sparsity pattern df .. UsinngMP,
one can estimate the vecterin a number of ways. For example, one can take the least-asjuar
estimate,

X = argmin |y — Av]]? (7)

where the minimization is over all vectosssuchv,; = 0 for all j € Iomp. The estimaté is
the projection of the noisy vectgr onto the space spanned by the vectgrsvith i in the sparsity
pattern estimatéonp. However, this paper only analyzes the sparsity patteimatz /oy itself,
and not the vector estimate



3 Asymptotic Analysis
We analyze the OMP algorithm in the previous section undefdbhowing assumptions.

Assumption 1 Consider a sequence of sparse recovery problems, indexge:lwector dimension
n. For eachn, letx € R" be a deterministic vector and lét = k(n) be the number of nonzero
components ix. Also assume:

(a) The sparsity levek = k(n) satisfies

k(n) € [kmin(1), kmax(n)], 8

for some deterministic sequendesi, (n) and kmax(n) with kyin(n) — oo asn — oo
andkmax(n) < n/2 forall n.

(b) The number of measuremenis= m(n) is a deterministic sequence satisfying
m 2 (1 + 5)2kmax 1Og(n - kmin)a (9)
for somey > 0.

(c) The minimum component powe;  satisfies

lim kz2;, = oo, (10)
n—oo
where
Lmin — min |Ij|7 (11)

jeltrue
is the magnitude of the smallest nonzero componext of

(d) The powers of the vectojis||? satisfy
: 1 2\ _
forall e > 0.

(e) The vectowy is a random vector generated by (1) whekeand w have i.i.d. Gaussian
components with zero mean and variancé ofh.

Assumption 1(a) provides a range on the sparsity lévehs we will see below in Section 5, bounds
on this range are necessary for proper selection of thettbietevely > 0.

Assumption 1(b) is our the main scaling law on the number cisneements that we will show is
sufficient for asymptotic reliable recovery. In the specase wherk is known so that,,., =
kmin = k, we obtain the simpler scaling law

m > (14 6)2klog(n — k). (13)
We have contrasted this scaling law with the Tropp—Gilbealing law (2) in Section 1. We will
also compare it to the scaling law for lasso in Section 4.

Assumption 1(c) is critical and places constraints on thallgst component magnitude. The im-
portance of the smallest component magnitude in the detecti the sparsity pattern was first
recognized by Wainwright [13, 14, 20]. Also, as discussd@ir, the condition requires that signal-
to-noise ratio (SNR) goes to infinity. Specifically, if we defithe SNR as

E[|Ax]|?
SNR = ————,
[[wll

then under Assumption 1(e), it can be easily checked that

SNR = ||x|%.
Sincex hask nonzero component$x||?> > kz?2, , and therefore condition (10) requires that
SNR — oo. For this reason, we will call our analysis of OMP a high-SNRlgsis. The analysis of
OMP with SNR that remains bounded above is an interesting ppablem.



Assumption (d) is technical and simply requires that the SMRs not grow too quickly with.
Note that even iSNR = O(k®) for anya > 0, Assumption 1(d) will be satisfied.

Assumption 1(e) states that our analysis concerns largessgaumeasurement matricés and
Gaussian noise.

Theorem 1 Under Assumption 1, there exists a sequence of threshd@tsjev= ©(n) such that the
OMP method in Algorithm 1 will asymptotically detect thereat sparsity pattern in that

lim Pr (fOMP 7é Itrue) =0.
n—o0
Moreover, the threshold levelscan be selected simply as a functionkgf,,, kuax, 7, m andé.

Theorem 1 provides our main result and shows that the sclamg9) is sufficient for asymptotic
recovery.

4 Comparison to Lasso Performance

It is useful to compare the scaling law (13) to the number chsaeements required by the widely-
used lasso method described for example in [22]. The lassoaddinds an estimate for the vector
x in (1) by solving the quadratic program

x = argmin [[y — Av||® + pl|v]1, (14)
veR™
whereyp, > 0 is an algorithm parameter that trades off the predictionremith the sparsity of the
solution. Lasso is sometimes referred to as basis pursuitisiag [23]. While the optimization (14)
is convex, the running time of lasso is significantly londgeart OMP unles@ has some particular
structure [10]. However, it is generally believed that takas superior performance.

The best analysis of lasso for sparsity pattern recoverjafge random matrices is due to Wain-
wright [13, 14]. There, it is shown that with an i.i.d. Ga@smeasurement matrix and white Gaus-
sian noise, the condition (13) iecessaryor asymptotic reliable detection of the sparsity pattern.
In addition, under the condition (10) on the minimum compameagnitude, the scaling (13) is also
sufficient. We thus conclude that OMP requires an identicaliisg in the number of measurements
to lasso. Therefore, at least for sparsity pattern recofrery measurements with large random
Gaussian measurement matrices and high SNR, there is ntoadtlperformance improvement
with the more complex lasso method over OMP.

5 Threshold Selection and Stopping Conditions

In many problems, the sparsity levels not knowna priori and must be detected as part of the esti-
mation process. In OMP, the sparsity level of estimatedarastprecisely the number of iterations
conducted before the algorithm terminates. Thus, religb#sity level estimation requires a good
stopping condition.

When the measurements are noise-free and one is concerlyedittnexact signal recovery, the
optimal stopping condition is simple: the algorithm shosilehply stop whenever there is no more
error. Thatisp*(t) = 01in (6). However, with noise, selecting the correct stopmiogdition requires
some care. The OMP method as described in Algorithm 1 useppisg condition based on testing
if p*(t) > p for some threshold.

One of the appealing features of Theorem 1 is that it provédssnple sufficient condition under
which this threshold mechanism will detect the correct sipatevel. Specifically, Theorem 1 pro-
vides a rangé& € [kmin, kmax] Under which there exists a threshold that the OMP algorithiin w
terminate in the correct number of iterations. The largerthmber of measurements, the greater
one can make the ran@fe,in, kmax]. The formula for the threshold level is given in (20).

Of course, in practice, one may deliberately want to stopah® algorithm with fewer iterations
than the “true” sparsity level. As the OMP method procedusdetection becomes less reliable and
it is sometimes useful to stop the algorithm whenever theaghigh chance of error. Stopping early



may miss some small components, but may result in an overtitibestimate by not introducing
too many erroneous components or components with too musk.ndowever, since our analysis
is only concerned with exact sparsity pattern recovery, weot consider this type of stopping
condition.

6 Conclusionsand Future Work

We have provided an improved scaling law on the number of oreagents for asymptotic reli-
able sparsity pattern detection with OMP. This scaling laaoly matches the scaling needed by
lasso under similar conditions. However, much about théop@ance of OMP is still not fully un-
derstood. Most importantly, our analysis is limited to higNR. It would be interesting to see if
reasonable sufficient conditions can be derived for finit®R&d well. Also, our analysis has been
restricted to exact sparsity pattern recovery. Howevanamy problems, especially with noise, it is
not necessary to detect every component in the sparsigrpatt would be useful if partial support
recovery results such as [24—-27] can be obtained for OMP.

Finally, our main scaling law (9) is onlsufficient While numerical experiments in [10, 28] suggest
that this scaling is also necessary for vectors with equanitade, it is possible that OMP can
perform better than the scaling law (9) when the componegnihades have some variation; this is
demonstrated numerically in [28]. The benefit of dynamigeam an OMP-like algorithm has also
been observed in [29] and sparse Bayesian learning meth¢88,i31].

7 Proof Sketch for Theorem 1

7.1 Proof Outline

Due to space considerations, we only sketch the proof;iadditdetails are given in [28].

The main difficulty in analyzing OMP is the statistical degdencies between iterations in the OMP
algorithm. Following along the lines of the Tropp—Gilberbpf in [10], we avoid these difficulties
by considering the following “genie” algorithm. A similaltarnate algorithm is analyzed in [29].

1. Initializet = 0 and e (t) = 0.

2. ComputePy,,.(t), the projection operator onto the orthogonal complemetti@&pan of
{ai, 1 € Tiue(t)}-

3. Forallj =1,...,n, compute
|a/'Ptrue(t)Y|2
ptruc(tyj) == Ji, (15)
HPtrue(t)yH2
and let
[p:rue(t)7i*(t)] = max ptrue(taj)- (16)

J€Ttrue

4. Ift <k, setliue(t + 1) = Liyue(t) U {i*(¢)}. Increment = ¢ + 1 and return to step 2.
5. Otherwise stop. The final estimate of the sparsity patteff,. (k).

This “genie” algorithm is identical to the regular OMP medhia Algorithm 1, except that it runs
for preciselyk iterations as opposed to using a thresheltbr the stopping condition. Also, in
the maximization in (16), the genie algorithm searches avdy the correct indiceg € I ye-
Hence, this genie algorithm can never select an incorrelexin ¢ I,.... Also, as in the regular
OMP algorithm, the genie algorithm will never select the saractor twice for almost all vectors
y. Therefore, aftek iterations, the genie algorithm will have selected all thadices in/,,. and
terminate with correct sparsity pattern estimatg. (k) = I, With probability one. So, we need
to show that true OMP algorithm behaves identically to thextig” algorithm with high probability.



To this end, define the following two probabilities:

pup = Pr (t_éfl_f&_fljg}{fic prue(t, J) < u> (17)

pra = Pr (ti%‘rfﬁ Jmax Porue(t; J) > u) (18)

Both probabilities are implicitly functions of.. The first term,pyp, can be interpreted as a
“missed detection” probability, since it corresponds te #vent that the maximum correlation en-
ergy puue(t, 7) on the correct vectors € I,y falls below the threshold. We call the second term
pra the “false alarm” probability since it corresponds to theximaum energy on one of the “incor-
rect” indicesj ¢ I, exceeding the threshold. A simple induction argument shibasif there
are no missed detections or false alarms, the true OMP #igowwill select the same vectors as the
“genie” algorithm, and therefore recover the sparsitygratt This shows that

Pr (f0MP # Itruc) < pMD + DFa.
So we need to show that there exists a sequence of thresheldg(n) > 0, such thapyp and
pra — 0 asn — oco. To set this threshold, we selectar- 0 such that
1456
1+¢
whered is from (9). Then, define the threshold level

b= = 209

>1+e, (19)

log(n — kmin)- (20)

7.2 Probability of Missed Detection

The proofthapyp — 0 is similar to that of Tropp and Gilbert’s proofin [10]. Theykmodification
is to use (10) to show that the effect of the noise is asynyatiyinegligible so that for large,

y ~ Ax = PXqrye. (21)
This is done by separately considering the componentg of the span of the vectoes; for j €
Ii+ve and its orthogonal complement.

One then follows the Tropp—Gilbert proof for the noise-fcase to show that
. 1
Jnax pe(t J) 2 7
for largek. Hence, using (9) and (20) one can then show
lim inf max lptme(t,j) >1+e,
n—00 j€ltrue [

which shows thapyp — 0.

7.3 Probability of False Alarm

This part is harder. Define
Z(t j) _ a./thruc(t)y
’ HPtruc(t)yH ’
so thatpyue(t, j) = |2(t,5)>. Now, Py (t) andy are functions ofw anda; for j € Iyye.
Therefore, they are independentaf for any j ¢ Ii,w.. Also, since the vectora; have i.i.d.

Gaussian components with variantén, conditional onPy,..(t) andy, z(¢,j) is normal with
variancel /m. Hencempiue(t, j) is a chi-squared random variable with one degree of freedom.

Now, there areéi(n — k) values ofpiue(t, k) fort = 1,... k andj & ILue. The Tropp—Gilbert
proof bounds the maximum of thekén — k) value by the standard tail bound

2 2 4
ructv. <_1 k _k <_1 2 :—1 .
Jnax  max, py (t,5) < —log(k(n — k)) < — log(n®) = — log(n)



To improve the bound in this proof, we exploit the fact that &y j, the values of:(¢, j) are
correlated. In fact, we show that the valugs, j), ¢t = 1,..., k are distributed identically to points
on a normalized Brownian motion. Specifically, ®(s) be a standard linear Brownian motion and
let S(s) be the normalized Brownian motion

S(s) = %B(s), s> 0. (22)
We then show that, for every there exists times;, . . ., s with

1<s; < <sp <14 [x|?

such that the vector
z(j) = [2(1,7), .., 2(k, j)]
is identically distributed to

Hence,
max [2(t,7)]" = max [S(s;)* < sup  [S(s)]*.
k t=1,...,k se[1,1+]x]2]
The right-hand side of the sample path can then be boundéuetneflection principle [32]. This
yields an improved bound,

max max i Ptrue (ta .]) S

2
—1 — k).
§&€Iirue t=1,..., m Og(n )

Combining this with (20) shows

lim inf L et ) >
1m inr ma. —
=300 j€Tone upm‘e =T

which shows thapga — 0.
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