Periodic Step-Size Adaptation for
Single-Pass On-line Learning

Chun-Nan Hsu'-2*, Yu-Ming Chang', Han-Shen Huang® and Yuh-Jye L ec?
Hnstitute of Information Science, Academia Sinica, Taipeh, Taiwan
2USC/Information Sciences Institute, Marina del Rey, CASDAJSA

3Department of Computer Science and Information Engingerin
National Taiwan University of Science and Technology, €ail06, Taiwan
*chunnan@si . edu

Abstract

It has been established that the second-order stochaatiegt descent (2SGD)
method can potentially achieve generalization perforrmaaswell as empirical
optimum in a single pass (i.e., epoch) through the trainikegreles. However,
2SGD requires computing the inverse of the Hessian matrtkeofoss function,
which is prohibitively expensive. This paper presePds odic Sep-size Adapta-
tion (PSA), which approximates the Jacobian matrix of the maphinction and
explores a linear relation between the Jacobian and Hegsiapproximate the
Hessian periodically and achieve near-optimal resultsxpeements on a wide
variety of models and tasks.

1 Introduction

On-line learning has been studied for decades. Early wayksentrate on minimizing the required
number of model corrections made by the algorithm througingles pass of training examples.
More recently, on-line learning is considered as a solutiblarge scale learning mainly because
of its fast convergence property. New on-line learning atgms for large scale learning, such as
SMD [1] and EG [2], are designed to learn incrementally toegfast convergence. They usually
still require several passes (or epochs) through the trgiekamples to converge at a satisfying
model. However, the real bottleneck of large scale learisri¢O time. Reading a large data set
from disk to memory usually takes much longer than CPU timensn learning. Therefore, the
study of on-line learning should focus more on single-pasfopmance. That is, after processing
all available training examples once, the learned modelilshgeneralize as well as possible so
that used training example can really be removed from menwmyinimize disk 1/O time. In
natural learning, single-pass learning is also intergdigcause it allows for continual learning from
unlimited training examples under the constraint of lidigtorage, resembling a nature learner.

Previously, many authors, including [3] and [4], have elsshld that given a sufficiently large set
of training examples, 2SGD can potentially achieve gertidbn performance as well as empirical
optimum in a single pass through the training examples. Mew&@SGD requires computing the
inverse of the Hessian matrix of the loss function, whichrighibitively expensive. Many attempts
to approximate the Hessian have been made. For example,aneansider to modify L-BFGS [5]
for online settings. L-BFGS relies on line search. But inmakettings, we only have the surface of
the loss function given one training example, as opposeliitolzatch settings. The search direction
obtained by line search on such a surface rarely leads toriealpdptimum. A review of similar
attempts can be found in Bottou's tutorial [6], where he sgigd that none is actually sufficient to
achieve theoretical single-pass performance in praclibés paper presents a new 2SGD method,
calledPeriodic Sep-size Adaptation (PSA). PSA approximates the Jacobian matrix of the mapping
function and explores a linear relation between the Jaoddnd Hessian to approximate the Hessian

periodically. The per-iteration time-complexity of PSAliisear to the number of nonzero dimen-
sions of the data. We analyze the accuracy of the approxdmatid derive the asymptotic rate of
convergence for PSA. Experimental results show that fordeewariety of models and tasks, PSA is
always very close to empirical optimum in a single-pass. éixpental results also show that PSA
can run much faster compared to state-of-the-art algosthm

2 Aitken’s Acceleration

Let w € R? be ad-dimensional weight vector of a model. A machine learningbtem can be
formulated as a fixed-point iteration that solves the equati = M (w), where M is a mapping
M : R4 — R4, until w* = M(w*). Assume that the mappiny! is differentiable. Then we
can applyAitken’s acceleration, which attempts to extrapolate to the local optimum in ome@ sto

accelerate the convergence of the mapping:

w' = w4 (1=) (Mw?) —w), ()

whereJ := M'(w*) is the Jacobian of the mappingl atw*. When),; := eig(J) € (—1,1), the
mappingM is guaranteed to converge. That is, when oo, w() — w*.

Itis usually difficult to computd for even a simple machine learning model. To alleviate 8ssé,
we can approximaté with the estimates of itsth eigenvalue\; by

o Mw®); — wl

0 o MO =W
% Wz(t) _ wgtfl) ’

Vi, 2

and extrapolate at each dimensidoy:
wi T = w4 (L=)T M) - wi) ©)

In practice, Aitken’s acceleration alternates a step feppringy® and a step for the extrapolation.
That is, whert is an even numberM is used to obtaimw(**1), Otherwise, the extrapolation (3) is
used. A benefit of the above approximation is that the cogtéoforming an extrapolation 9(d),
linear in terms of the dimension.

3 Periodic Step-Size Adaptation

When M is a gradient descent update rule, thatNd(w) + w — ng(w; D), wheren is a scalar
step sizeD is the entire set of training examples, agdwv; D) is the gradient of a loss function to
be minimized, Aitken’s acceleration is equivalent to Nemiganethod, because

J = M'(w) = - yH(w; D), (4)
(1-3)7' = ~H(wiD)", and M(w) - w = w ~ g(w:D) —w = —g(w:D).

whereH(w; D) = ¢’(w; D), the Hessian matrix of the loss function, and the extrafmiagiven in
(1) becomes

1
w=w+I-J) ' Mw)-w)=w—--H lyg=w-H g
n
In this case, Aitken’s acceleration enjoys the same locaticatic convergence as Newton’s method.

This can also be extended to a SGD update rat€:t!) « w®) — 5 e g(w®:B®), where the
mini-batchB C D, |B| < |DJ, is a randomly selected small subsetofA genuine on-line learner
usually has/|B| = 1. We consider a positive vector-valued step-size Ri and “e” denotes
component-wise (Hadamard) product of two vectors. Agajrexploiting (4), since

eig(I - diag(n)H) = eig(M’) = eig(J) ~ v,
wherey is an estimated eigenvaluebfs given in (2), wheil is a symmetric matrix, its eigenvalue
is given by

1 —eig(J)

eig(J) =1 — neig(H) = eig(H) = 0

Therefore, we can update the step size component-wise by

. | ()
eig(H_l) o i - n£t+1) o~ 771,) (5)

:1—eig(J)%1—% 1_%(1&)

Since the mappingv in SGD involves the gradierg(w®); B®)) of a randomly selected training
exampleB(®), M is itself a random variable. It is unlikely that we can obtaireliable eigenvalue
estimation at each single iteration. To increase statioofthe mapping, we take advantage of the
law of large numbers and aggregate consecutive SGD mapipitogs new mapping

MP = MM(... M(w)...)),

b

which reduces the variance of gradient estimatior%by:ompared to the plain SGD mappind.

The approximation is valid because*t?) i = 0,...,b — 1 are approximately fixed when is
sufficiently small [7].

We can proceed to estimate the eigenvalues@ffrom w(®), w(+% andw(**+2%) by applying (2)
for each componerit

(t-+2b) (t-+b)
b _ W - W

Vi = — . (6)
Wgter) . Wl(t)

We note that our aggregate mappihdgf’ is different from a mapping that takésnini-batches as the
input in a single iteration. Their difference is similar ttat between batch and stochastic gradient
descent. Aggregate mappings hawehances to adjust its search direction, while mappingsubat

b mini-batches together only have one.

With the estimated eigenvalues, we can present the comppetate rule to adjust the step size
vectory. To ensure that the estimated values of &jge (—1, 1) and to ensure numerical stability,
we introduce a positive constamt< 1 as the upper bound ¢f?|. Let u denote the constraineg.

Its components are given by

u; := sgn(3?) min(|3?|, k), Vi. @)
Then we can update the step size ev@rjterations based on by:

,'7(1‘,+2b+1) —ve 77(1&—}-21))7 (8)

wherev is a discount factor with components defined by

SR BV)
m+rK+n

The discount factor is derived from (5) and the fact that when 1, ﬁ > e" =~ 1+ uto ensure

numerical stability, withm andn controlling the range. Let be the maximum value ang be the
minimum value ofv;. We can obtainn andn by solving3 < v; < « for all i. Since—x < u; < &,

we havev, = a whenu; = x andv; = 8 whenu; = —k. Solving these equations yields:
. 2(1 —
m:a+ﬁm andnzi(a)ﬁ. (10)
a—p a—p

For example, if we want to set = 0.9999 ands = 0.99, thenm andn will be 201x and0.0202k,
respectively. Setting < 5 < a < 1 ensures that the step size is decreasing and approachesmzero
that SGD can be guaranteed to converge [7].

Algorithm 1 shows the PSA algorithm. In a nutshell, PSA agplBGD with a fixed step size
and periodically updates the step size by approximatinghlan of the aggregated mapping. The
complexity per iteration is?(%) because the cost of eigenvalue estimation given in (8) iand it

is required for everyy iterations. That is, PSA updatesfter learning fron2b - B examples.

Algorithm 1 The PSA Algorithm
1. Given: «, 8, k < 1 andb

2: Initialize 6 andn(®; ¢ « 0; m « %m andn « 2(0417:[;)& > Equation (10)
3: repeat
4 Choose a small batdb(® uniformly at random from the set of training examplzs
5: updatedtl) « 9t) — 1) e g(H); BM) > SGD update
6: if (¢4 1) mod 2b = 0 then > Updaten
b g(t+2b) _ g(t-+b))
7 updatey; < R GomvoN > Equation (6)
8 For alli, updateu; < sgn(3?) min(|7?|, ») > Equation (7)
9: For alli, updatev; < -t > Equation (9)
10: updaten*th) «— v e 5*) > Equation (8)
11: else
12: it
13: end if

14: t—t+1
15: until Convergence

4 Analysisof PSA

We analyze the accuracy o/ft) as an eigenvalue estimate as follows. Let eigen decompositi
J = QAQ~! andu; be column vectors of) andv! be row vectors of) . Then we have

d
t_ to ol
J' = g Aju;vi,
i=1

where); is thej-th eigenvalue of. By applying Taylor’'s expansion 1, we have

Q

wt) — w* JH(w(® —w¥)
W(t—l) —w* o~ Jt—l(W(O) o W*)

=AW —wl) —wt=D ~ JIHIT 1) (W —w)

l

S A = (D) _ @)

Q

d
> ANuvTITH I - (W@ - wr)
j=1

Now let

wij 1= eiTujvaJfl(J ~D(w® —w*),
wheree; is thei-th column ofI. Let A; be thei-th element ofA and);, be the largest eigenvalue
of J such thatv;; # 0. Then

d
- AP S N i N 2, (A A A wi fwi,

AD T Ny T 2 N) i fwig,

Therefore, we can conclude that

e v — Aj, ast — oo becausevi, if w;; # 0then);/\;, < 1. \;, = R; is thei-th
componentwise rate of convergence.

e v, =)\, if Jis a diagonal matrix. In this case, our approximation is exabis happens
when there are high percentages of missing data for a Bayesiavork model trained
by EM [8] and when features are uncorrelated for training adawmnal random field
model [9].

e ~; is the average of eigenvalues weighted)@yzij. Sincew;; is usually the largest when
i = j, we havey; =~ \,.

When we have the least possible step sj#e!) = gn® for all t mod 2b = 0 in PSA, the
expectation ofw(*) obtained by PSA can be shown to be:

t
Ew®) = w+]] (1 O H(w"; D)) (w©® — w*)
k=1
= w4+ SOWw® —w*).

The rate of convergence is governed by the largest eigemdl8(Y). We now derive a bound of
this eigenvalue.

Theorem 1 Let \;, betheleast eigenvalue of H(w*; D). The asymptotic rate of convergence of PSA
is bounded by

—nONb
1-p '

eig(S") < exp {
Proof We can show that

t
eigs®”) =] (1 _ n(ow%uh)
k=1

t t
exp{_zn(O)AhﬁngJ} :exp{_n(o))\hzﬁng}
k=1

k=1

IN

because forany < a; < 1,1 —a; <e™%,
n n

0< [0 -a) < [[e = Shre,
j=1 j=1

Now, since
t Lz]

LZ]
b
Ble) ol =by B — —— whent — oo,

we have

LA —n©ON\b
eig(S(t)) <exp{ -0\, ZﬁL%J — exp A2 \when t — oo
k=1 1-5

]

Though this analysis suggests that for rapid convergend&,tave should assig ~ 1 with a
largeb andn(?), it is based on a worst-case scenario and thus insufficieatpmactical guideline
for parameter assignment. In practice, we(fx 3, k) = (0.9999, 0.99, 0.9) and tuneb as follows.
When the training set siz®| > 2000, setb in the order of0.5|D|/1000 is usually sufficient.
This setting implies that the step size will be adjusted |@8y1000 examples. In fact, wheh

is in the same order, PSA performs similarly. Consider thiwiong three settingsi(b, o,) =
(10,0.9999, 0.99), (100, 0.999,0.9) or (1,0.99999,0.999). They all yield nearly identical single-
pass F-scores for the BaseNP task (see Section 5). The fiiagsgas used in this paper. To see
why this is the case, consider the decreasing fagt(gee (8) and (9)), which will be confined within
the interval(«, 3). Assume thaw; is selected at ransom uniformly, then the meam;0f 0.995
when(a, 8) = (0.9999,0.99) andr; will be decreased by a factor 6f995 on average in each PSA
update. When = 10, PSA will updater; per 20 examples. After learning from 200 examples, PSA
will decrease); 10 times by a combined factor 6f9511. Similarly, we can obtain that the factors
for the other two settings afe95 and0.9512, respectively, nearly identical.

5 Experimental Results

Table 1 shows the tasks chosen for our comparison. The taskdRF have been used in compe-
titions and the performance was measured by F-scteght for CRF reported here isunber

of features provided by CRF++Target provides the empirical optimal performance achieved
by batch learners. If PSA accurately approximates 2SGD) itisesingle-pass performance should
be very close tdrarget. The target F-score for BioNLP/NLPBA is not85% as reported in [1]
because it was due to a bug that included true labels as adéatu

Table 1: Tasks for the experiments.

Task Model Training Test Tag/Class Weight Target
Base NP CRF 8936 2012 3 1015662 94.0% [10]
Chunking CRF 8936 2012 23 7448606 93.6% [11]
BioNLP/NLPBA CRF 18546 3856 11 5977675 70.0% [12]
BioCreative 2 CRF 15000 5000 3 10242972 86.5% [13]
LS FD LSVM 2734900 2734900 2 900 3.26%
LS OCR LSVM 1750000 1750000 2 1156 23.94%
MNIST [14] CNN 60000 10000 10 134066 0.99%

5.1 Conditional Random Field

We compared PSA with plain SGD and SMD [1] to evaluate PSAd&gomance for training
conditional random fields (CRF). We implemented PSA by reiptathe L-BFGS optimizer in
CRF++ [11]. For SMD, we used the implementation availablénhs public domairf. Our SGD
implementation for CRF is from Bottot All the above implementations are revisions of CRF++.
Finally, we ran the original CRF++ with default settings totain the performance results of L-
BFGS. We simply used the original parameter settings for 88MDSMD as given in the literature.

For PSA, we used = 0.9, (a, 8) = (0.9999,0.99), b = 10, andn”’ = 0.1, Vi. The batch size
is one for all tasks. These parameters were determined hg assmall subset from CoNLL 2000
baseNP and we simply used them for all tasks. All of the expenis reported here for CRF were
ran on an Intel Q6600 Fedora 8 1686 PC with 4G RAM.

Table 2 compares SGD variants in terms of the execution tidd-ascores achieved after processing
the training examples for a single pass. Since the lossiimét CRF training is convex, the
convergence results of L-BFGS can be considered as theieaipininimum. The results show that
single-pass F-scores achieved by PSA are about as good emfiécal minima, suggesting that
PSA has effectively approximated Hessian in CRF training.

Fig. 1 shows the learning curves in terms of the CPU time. §haas expected, plain SGD is the
fastest, it is remarkable that PSA is faster than SMD foraaks. SMD is supposed to have an edge
here because the mini-batch size for SMD was set to 6 or 8,easfigal in [1], while PSA used one
for all tasks. But PSA is still faster than SMD partly becaBSA can take advantagetb sparsity
trick as plain SGD [15].

5.2 Linear SYM

We also evaluated PSA's single-pass performance for trgilmear SVM. It is straightforward to
apply PSA as a primal optimizer for linear SVM. We used twoparge data sets: FD (face detec-
tion) and OCR (see Table 1), from the Pascal large-scalaitepchallenge in 2008 and compared
the performance of PSA with the state-of-the-art linear S8@Wers: Liblinear 1.33 [16], the winner
of the challenge, and SvmSgd, from Bottou’'s SGD web site yTtaae been shown to outperform
many well-known linear SVM solvers, such as SVM-perf [17¢§idegasos [15].

1Thanks to Shing-Kit Chan of the Chinese University of Hong Kong fanfing that out.
2Available under LGPL from the following URLht t p: / / s . ni ct a. com au/ code/ cr f snd/ .
Shttp:/ /1 eon. bottou. org/ projects/sgd.

Base NP Chunking BioNL P/NL PBA BioCreative 2
Method (pass) time F-score time F-score time F-score timescdre
SGD (1) 1.15 92.42 13.04 92.26 12.23 66.37 3.18 34.33
SMD (1) 41.50 91.81 350.00 91.89 522.00 66.53 497.71 69.04
PSA (1) 16.30 93.31 160.00 93.16 206.00 69.41 19161 80.79
L-BFGS (batch) 221.17 93.91 8694.40 93.78 20130.00 70.3001.56 86.82

Table 2: CPU time in seconds and F-scores achieved aftegke giass of CRF training.

BaseNP

100
Time(sec)

NLPBAO4

50

200

600

200

300_ 400 500
Time(sec)

Chunking

= |---swmp
--:sGD

““““ L-BFGS

éOO
Time(sec)

400

800 1000

BioCreative 2 GM Task

1200

Y
i

L HAT A T TS A A e
ARy l'[\,n.,!‘ o OIEEA

)
100

200

300

Time(sec)

500

Figure 1: Comparison of CPU time; Horizontal lines indicateyet F-scores.

We selected L2-regularized logistic regression as theflasstion for PSA and Liblinear because

it is twice differentiable. The weight' of the margin error term was set to one. We kept SvmSgd
intact. The experiment was run on an Open-SUSE Linux machitte Intel Xeon E7320 CPU
(2.13GHz) and 64GB RAM. Table 3 shows the results. Again, RSieves the best single-pass
accuracy for both tasks. Its test accuracies are very ctodet of converged Liblinear. PSA takes
much less time than the other two solvers. PSA (1) is fastm 8vmSgd (1) for SVM because
SvmSgd uses the sparsity trick [15], which speeds up trgifon sparse data, but otherwise may
slow down. Both data sets we used turn out to be deresgyith no zero features. We implemented
PSA with the sparsity trick for CRF only but not for SVM and CNN

LSFD LSOCR

Method (pass) accuracy time| accuracy time
Liblinear converge 96.74 4648.49 76.06 4454.42
Liblinear (1) 91.43 290.58 74.33 398.00
SvmSgd (20) 93.78 1135.67 - -

SvmSgd (10) 93.77 567.68 73.71 473.35
SvmSagd (1) 93.60 56.78 73.76 46.96
PSA (1) 95.10 30.65 75.68 25.33

Table 3: Test accuracy rates and elapsed CPU time in secgn@sibus linear SVM solvers.

The parameter settings for PSA are basically the same as tho€CRF but with a large period

b = 1250 for FD and500 for OCR. For FD, the worst accuracy by PSAQis66% with b between
250 to 2000. For OCR, the worsti5.20% with b between 100 to 1000, suggesting that PSA is not
very sensitive to parameter settings.

5.3 Convolutional Neural Network

Approximating Hessian is particularly challenging whea tbss function is non-convex. We tested
PSA in such a setting by applying PSA to train a large coniahai neural network for the original
10-class MNIST task (see Table 1). We tried to duplicate tiyf@émentation of LeNet described in
[18] in C++. Our implementation, referred to as “LeNet-S$'ai simplified variant of LeNet-5. The
differences include that the sub-sampling layers in LeSlgicks only the upper-left value from a

2 x 2 area and abandons the other three. LeNet-S used more maygs (B8) in the third layer and
less nodes (120 vs. 100) in the fifth layer, due to the diffeeen the previous sub-sampling layer.
Finally, we did not implement the Gaussian connections él#ist layer. We trained LeNet-S by
plain SGD and PSA. The initia} for SGD was 0.7 and decreased by 3 percent per pass. For PSA,
we useds = 0.9, (o, 8) = (0.99999,0.999), b = 10, n{”) = 0.5, Vi, and the mini-batch size is
one for all tasks. We also adapted a trick given in [19] whidkises that step sizes in the lower
layers should be larger than in the higher layer. Followimgjrttrick, the initial step sizes for the
first and the third layers were 5 ard.5 times as large as those for the other layers, respectively.
The experiments were ran on an Intel Q6600 Fedora 8 1686 FCAGRAM.

Table 4 shows the results. To obtain the empirical optim@raate of our LeNet-S model, we ran
plain SGD with sufficient passes and obtained 0.99% erreraatonvergence, slightly higher than
LeNet-5’s 0.95% [18]. Single-pass performance of PSA withlayer trick is within one percentage
point to the target. Starting from an initial weight closerthe optimum helped improving PSA's
performance further. We ran SGD 100 passes with randoméctesl 10K training examples then
re-started training with PSA using the rest 50K trainingregées for a single pass. Though PSA did
achieve a better error rate, this is infeasible becaus®lit 4492 seconds to run SGD 100 passes.
Finally, though not directly comparable, we also reportghgformance of TONGA given in [20] as
areference. TONGA is a 2SGD method based on natural gradient

Method (pass) time error Method (pass) time error
SGD (1) 266.77 2.36 PSAw/o layertrick (1) 311.95 2.31
SGD (140) 37336.20 0.99 PSAw/layertrick (1) 311.00 1.97
TONGA (n/a) 500.00 2.00 PSAre-start(1) 253.72 1.90

Table 4: CPU time in seconds and percentage test error mtearious neural network trainers.

6 Conclusions

It has been shown that given a sufficiently large training aeingle pass of 2SGD generalizes as
well as the empirical optimum. Our results show that PSA jgles a practical solution to accom-
plish near optimal performance of 2SGD as predicted thiealt for a variety of large scale models
and tasks with a reasonably low cost per iteration comparedrmpeting 2SGD methods. The ben-
efit of 2SGD with PSA over plain SGD becomes clearer when takesaf the tasks are increasingly
large. For non-convex neural network tasks, since the tur@af the error surface is so complex,
it is still very challenging for an eigenvalue approximatimethod like PSA. A complete version of
this paper will appear as [21]. Source codes of PSA are dlaikt http://aiia.iis.sinica.edu.tw.

References

[1] S.V.N. Vishwanathan, Nicol N. Schraudolph, Mark W. Sétitmand Kevin P. Murphy. Accel-
erated training of conditional random fields with stochagtiadient methods. IRroceedings
of the 23rd International Conference on Machine Learning (ICML’06), Pittsburgh, PA, USA,
June 2006.

[2] Michael Collins, Amir Globerson, Terry Koo, Xavier Caras, and Peter L. Bartlett. Expo-
nentiated gradient algorithms for conditional random 8eddd max-margin markov networks.
Journal of Machine Learning Research, 9:1775-1822, August 2008.

[3] Noboru Murata and Shun-Ichi Amari. Statistical anadysf learning dynamicsSgnal Pro-
cessing, 74(1):3-28, April 1999.

[4] Léon Bottou and Yann LeCun. On-line learning for very largeadsets. Applied Sochastic
Modelsin Business and Industry, 21(2):137-151, 2005.

[5] Jorge Nocedal and Stephen J. WrigRumerical Optimization. Springer, 1999.

[6] Léon Bottou. The tradeoffs of large-scale learning. Tutptlee 21st Annual Conference
on Neural Information Processing Systems (NIPS 2007), daver, BC, Canada, December
2007.http://1 eon. bottou. org/tal ks/| argescal e.

[7] Albert Benveniste, Michel Metivier, and Pierre Priourédaptive Algorithms and Stochastic
Approximations. Springer-Verlag, 1990.

[8] Chun-Nan Hsu, Han-Shen Huang, and Bo-Hou Yang. Globdlamponentwise extrapola-
tion for accelerating data mining from large incompleteadsets with the EM algorithm. In
Proceedings of the Sxth IEEE International Conference on Data Mining (ICDM’06), pages
265-274, Hong Kong, China, December 2006.

[9] Han-Shen Huang, Bo-Hou Yang, Yu-Ming Chang, and Chum-Nau. Global and componen-
twise extrapolations for accelerating training of Bayesietworks and conditional random
fields. Data Mining and Knowledge Discovery, 19(1):58-91, 2009.

[10] Fei Sha and Fernando Pereira. Shallow parsing withitiondl random fields. IfProceedings
of Human Language Technology, the North American Chapter of the Association for Compu-
tational Linguistics (NAACL'03), pages 213-220, 2003.

[11] Taku Kudo. CRF++: Yet another CRF toolkit, 2006. Avaiunder LGPL from the following
URL:http://crfpp.sourceforge. net/.

[12] Burr Settles. Biomedical named entity recognitionmngstonditional random fields and novel
feature sets. IrProceedings of the Joint Workshop on Natural Language Processing in
Biomedicine and its Applications (JNLPBA-2004), pages 104—-107, 2004.

[13] Cheng-Ju Kuo, Yu-Ming Chang, Han-Shen Huang, KuargTiim, Bo-Hou Yang, Yu-Shi
Lin, Chun-Nan Hsu, and I-Fang Chung. Rich feature set, wtifio of bidirectional parsing
and dictionary filtering for high f-score gene mention tamggi In Proceedings of the Second
BioCreative Challenge Evaluation Workshop, pages 105-107, 2007.

[14] Yann LeCun and Corinna Cortes. The MNIST database ofdWwatten digits, 1998.
http://yann. | ecun. conl exdb/ mi st/.

[15] Shai Shalev-Shwartz, Yoram Singer, and Nathan Srelitegasos: Primal Estimated sub-
GrAdient SOlver for SVM. InCML’07: Proceedings of the 24th international conference on
Machine learning, pages 807—814, New York, NY, USA, 2007. ACM Press.

[16] Chih-Chung Chang and Chih-Jen LinlBSVM: a library for support vector machines, 2001.
Software available dit t p: / / www. csi e. ntu. edu.tw ~cjlin/libsvm

[17] Thorsten Joachims. Training linear SVMs in linear tim@ Proceedings of the 12th ACM
S GKDD International Conference on Knowledge Discovery and Data Mining (KDD’06),
pages 217-226, New York, NY, USA, 2006. ACM.

[18] Yann LeCun, leon Bottou, Yoshua Bengio, and Patrick Haffner. Gradierstel learning
applied to document recognitioRroceedings of the IEEE, 86(11):2278-2324, 1998.

[19] Yann LeCun, Leon Bottou, Genevieve B. Orr, and Klaus&b Muller. Efficient backprop.
In G. Orr and Muller K., editordNeural Networks: Tricks of the trade. Springer, 1998.

[20] Nicolas LeRoux, Pierre-Antoine Manzagol, and Yoshea@o. Topmoumoute online natural
gradient algorithm. IrAdvances in Neural Information Processing Systems, 20 (NIPS 2007),
Cambridge, MA, USA, 2008. MIT Press.

[21] Chun-Nan Hsu, Yu-Ming Chang, Han-Shen Huang, and ¥Yéhtke. Periodic step-size adap-
tation in second-order gradient descent for single-pasmerstructured learning. To appear in
Mchine Learning, Special Issue on Sructured Prediction. DOI: 10.1007/s10994-009-5142-6,
2009.

