
Periodic Step-Size Adaptation for
Single-Pass On-line Learning

Chun-Nan Hsu1,2,∗, Yu-Ming Chang1, Han-Shen Huang1 and Yuh-Jye Lee3
1Institute of Information Science, Academia Sinica, Taipei115, Taiwan
2USC/Information Sciences Institute, Marina del Rey, CA 90292, USA

3Department of Computer Science and Information Engineering,
National Taiwan University of Science and Technology, Taipei 106, Taiwan

∗chunnan@isi.edu

Abstract

It has been established that the second-order stochastic gradient descent (2SGD)
method can potentially achieve generalization performance as well as empirical
optimum in a single pass (i.e., epoch) through the training examples. However,
2SGD requires computing the inverse of the Hessian matrix ofthe loss function,
which is prohibitively expensive. This paper presentsPeriodic Step-size Adapta-
tion (PSA), which approximates the Jacobian matrix of the mapping function and
explores a linear relation between the Jacobian and Hessianto approximate the
Hessian periodically and achieve near-optimal results in experiments on a wide
variety of models and tasks.

1 Introduction

On-line learning has been studied for decades. Early works concentrate on minimizing the required
number of model corrections made by the algorithm through a single pass of training examples.
More recently, on-line learning is considered as a solutionof large scale learning mainly because
of its fast convergence property. New on-line learning algorithms for large scale learning, such as
SMD [1] and EG [2], are designed to learn incrementally to achieve fast convergence. They usually
still require several passes (or epochs) through the training examples to converge at a satisfying
model. However, the real bottleneck of large scale learningis I/O time. Reading a large data set
from disk to memory usually takes much longer than CPU time spent in learning. Therefore, the
study of on-line learning should focus more on single-pass performance. That is, after processing
all available training examples once, the learned model should generalize as well as possible so
that used training example can really be removed from memoryto minimize disk I/O time. In
natural learning, single-pass learning is also interesting because it allows for continual learning from
unlimited training examples under the constraint of limited storage, resembling a nature learner.

Previously, many authors, including [3] and [4], have established that given a sufficiently large set
of training examples, 2SGD can potentially achieve generalization performance as well as empirical
optimum in a single pass through the training examples. However, 2SGD requires computing the
inverse of the Hessian matrix of the loss function, which is prohibitively expensive. Many attempts
to approximate the Hessian have been made. For example, one may consider to modify L-BFGS [5]
for online settings. L-BFGS relies on line search. But in online settings, we only have the surface of
the loss function given one training example, as opposed to all in batch settings. The search direction
obtained by line search on such a surface rarely leads to empirical optimum. A review of similar
attempts can be found in Bottou’s tutorial [6], where he suggested that none is actually sufficient to
achieve theoretical single-pass performance in practice.This paper presents a new 2SGD method,
calledPeriodic Step-size Adaptation (PSA). PSA approximates the Jacobian matrix of the mapping
function and explores a linear relation between the Jacobian and Hessian to approximate the Hessian

1



periodically. The per-iteration time-complexity of PSA islinear to the number of nonzero dimen-
sions of the data. We analyze the accuracy of the approximation and derive the asymptotic rate of
convergence for PSA. Experimental results show that for a wide variety of models and tasks, PSA is
always very close to empirical optimum in a single-pass. Experimental results also show that PSA
can run much faster compared to state-of-the-art algorithms.

2 Aitken’s Acceleration

Let w ∈ ℝ
d be ad-dimensional weight vector of a model. A machine learning problem can be

formulated as a fixed-point iteration that solves the equationw =ℳ(w), whereℳ is a mapping
ℳ : ℝd → ℝ

d, until w∗ = ℳ(w∗). Assume that the mappingℳ is differentiable. Then we
can applyAitken’s acceleration, which attempts to extrapolate to the local optimum in one step, to
accelerate the convergence of the mapping:

w∗ = w(t) + (I− J)−1(ℳ(w(t))−w(t)), (1)

whereJ :=ℳ′(w∗) is the Jacobian of the mappingℳ atw∗. When�i := eig(J) ∈ (−1, 1), the
mappingℳ is guaranteed to converge. That is, whent→∞, w(t) → w∗.

It is usually difficult to computeJ for even a simple machine learning model. To alleviate this issue,
we can approximateJ with the estimates of itsi-th eigenvalue�i by



(t)
i :=

ℳ(w(t))i −w
(t)
i

w
(t)
i −w

(t−1)
i

, ∀i, (2)

and extrapolate at each dimensioni by:

w
(t+1)
i = w

(t)
i + (1− 


(t)
i )−1(ℳ(w(t))i −w

(t)
i ) . (3)

In practice, Aitken’s acceleration alternates a step for preparing
(t) and a step for the extrapolation.
That is, whent is an even number,ℳ is used to obtainw(t+1). Otherwise, the extrapolation (3) is
used. A benefit of the above approximation is that the cost forperforming an extrapolation isO(d),
linear in terms of the dimension.

3 Periodic Step-Size Adaptation

Whenℳ is a gradient descent update rule, that is,ℳ(w) ← w − �g(w;D), where� is a scalar
step size,D is the entire set of training examples, andg(w;D) is the gradient of a loss function to
be minimized, Aitken’s acceleration is equivalent to Newton’s method, because

J =ℳ′(w) = I− �H(w;D), (4)

(I− J)−1 =
1

�
H(w;D)−1, and ℳ(w)−w = w − �g(w;D)−w = −�g(w;D),

whereH(w;D) = g′(w;D), the Hessian matrix of the loss function, and the extrapolation given in
(1) becomes

w = w + (I− J)−1(ℳ(w)−w) = w − 1

�
H−1�g = w −H−1g.

In this case, Aitken’s acceleration enjoys the same local quadratic convergence as Newton’s method.

This can also be extended to a SGD update rule:w(t+1) ← w(t) − � ∙ g(w(t);B(t)), where the
mini-batchB ⊆ D, ∣B∣ ≪ ∣D∣, is a randomly selected small subset ofD. A genuine on-line learner
usually has∣B∣ = 1. We consider a positive vector-valued step-size� ∈ ℝ

d
+ and “∙” denotes

component-wise (Hadamard) product of two vectors. Again, by exploiting (4), since

eig(I− diag(�)H) = eig(ℳ′) = eig(J) ≈ 
,

where
 is an estimated eigenvalue ofJ as given in (2), whenH is a symmetric matrix, its eigenvalue
is given by

eig(J) = 1− �ieig(H)⇒ eig(H) =
1− eig(J)

�i
.

2



Therefore, we can update the step size component-wise by

eig(H−1) =
�i

1− eig(J)
≈ �i

1− 
i
⇒ �

(t+1)
i ∝ �

(t)
i

1− 

(t)
i

. (5)

Since the mappingℳ in SGD involves the gradientg(w(t);B(t)) of a randomly selected training
exampleB(t),ℳ is itself a random variable. It is unlikely that we can obtaina reliable eigenvalue
estimation at each single iteration. To increase stationary of the mapping, we take advantage of the
law of large numbers and aggregate consecutive SGD mappingsinto a new mapping

ℳb =ℳ(ℳ(. . .ℳ(w) . . .))
︸ ︷︷ ︸

b

,

which reduces the variance of gradient estimation by1
b
, compared to the plain SGD mappingℳ.

The approximation is valid becausew(t+i), i = 0, . . . , b − 1 are approximately fixed when� is
sufficiently small [7].

We can proceed to estimate the eigenvalues ofℳb from w(t), w(t+b) andw(t+2b) by applying (2)
for each componenti:


̄b
i =

w
(t+2b)
i −w

(t+b)
i

w
(t+b)
i −w

(t)
i

. (6)

We note that our aggregate mappingℳb is different from a mapping that takesb mini-batches as the
input in a single iteration. Their difference is similar to that between batch and stochastic gradient
descent. Aggregate mappings haveb chances to adjust its search direction, while mappings thatuse
b mini-batches together only have one.

With the estimated eigenvalues, we can present the completeupdate rule to adjust the step size
vector�. To ensure that the estimated values of eig(J) ∈ (−1, 1) and to ensure numerical stability,
we introduce a positive constant� < 1 as the upper bound of∣
̄b

i ∣. Letu denote the constrained̄
b.
Its components are given by

ui := sgn(
̄b
i )min(∣
̄b

i ∣, �), ∀i. (7)

Then we can update the step size every2b iterations based onu by:

�(t+2b+1) = v ∙ �(t+2b), (8)

wherev is a discount factor with components defined by

vi :=
m+ ui

m+ �+ n
, ∀i. (9)

The discount factor is derived from (5) and the fact that whenu < 1, 1
1−u

> eu ≈ 1 + u to ensure
numerical stability, withm andn controlling the range. Let� be the maximum value and� be the
minimum value ofvi. We can obtainm andn by solving� ≤ vi ≤ � for all i. Since−� ≤ ui ≤ �,
we havevi = � whenui = � andvi = � whenui = −�. Solving these equations yields:

m =
�+ �

�− �
� and n =

2(1− �)

�− �
�. (10)

For example, if we want to set� = 0.9999 and� = 0.99, thenm andn will be 201� and0.0202�,
respectively. Setting0 < � < � ≤ 1 ensures that the step size is decreasing and approaches zeroso
that SGD can be guaranteed to converge [7].

Algorithm 1 shows the PSA algorithm. In a nutshell, PSA applies SGD with a fixed step size
and periodically updates the step size by approximating Jacobian of the aggregated mapping. The
complexity per iteration isO(d

b
) because the cost of eigenvalue estimation given in (6) is2d and it

is required for every2b iterations. That is, PSA updates� after learning from2b ⋅ B examples.

3



Algorithm 1 The PSA Algorithm
1: Given: �, �, � < 1 andb
2: Initialize �(0) and�(0); t← 0; m← �+�

�−�
� andn← 2(1−�)

�−�
� ⊳ Equation (10)

3: repeat
4: Choose a small batchB(t) uniformly at random from the set of training examplesD

5: update�(t+1) ← �(t) − � ∙ g(�(t);B(t)) ⊳ SGD update
6: if (t+ 1) mod 2b = 0 then ⊳ Update�

7: updatē
b
i ←

�
(t+2b)
i

−�
(t+b)
i

�
(t+b)
i

−�
(t)
i

⊳ Equation (6)

8: For all i, updateui ← sgn(
̄b
i )min(∣
̄b

i ∣, �) ⊳ Equation (7)
9: For all i, updatevi ← m+ui

m+�+n
⊳ Equation (9)

10: update�(t+1) ← v ∙ �(t) ⊳ Equation (8)
11: else
12: �(t+1) ← �(t)

13: end if
14: t← t+ 1
15: until Convergence

4 Analysis of PSA

We analyze the accuracy of
(t)
i as an eigenvalue estimate as follows. Let eigen decomposition

J = QΛQ−1 andui be column vectors ofQ andvT
i be row vectors ofQ−1. Then we have

Jt =

d∑

j=1

�t
jujv

T
j ,

where�j is thej-th eigenvalue ofJ. By applying Taylor’s expansion toℳ, we have

w(t) −w∗ ≈ Jt(w(0) −w∗)

w(t−1) −w∗ ≈ Jt−1(w(0) −w∗)

⇒ Δ(t) = w(t) −w(t−1) ≈ JtJ−1(J− I)(w(0) −w∗)

⇒ Δ(t+1) = w(t+1) −w(t) ≈
d∑

j=1

�j�
t
jujv

T
j J

−1(J− I)(w(0) −w∗)

Now let
!ij := eTi ujv

T
j J

−1(J− I)(w(0) −w∗),

whereei is thei-th column ofI. LetΔi be thei-th element ofΔ and�ji be the largest eigenvalue
of J such that!ij ∕= 0. Then


i ≡
Δ

(t+1)
i

Δ
(t)
i

=

∑d

j=1 �
t+1
j !ij

∑d

j=1 �
t
j!ij

=
�ji +

∑

j ∕=ji
(�j/�ji)

t�j!ij/!iji

1 +
∑

j ∕=ji
(�j/�ji)

t!ij/!iji

.

Therefore, we can conclude that

∙ 
i → �ji as t → ∞ because∀i, if !ij ∕= 0 then�j/�ji ≤ 1. �ji ≡ Ri is the i-th
componentwise rate of convergence.

∙ 
i = �i if J is a diagonal matrix. In this case, our approximation is exact. This happens
when there are high percentages of missing data for a Bayesian network model trained
by EM [8] and when features are uncorrelated for training a conditional random field
model [9].

∙ 
i is the average of eigenvalues weighted by�t
j!ij . Since!ij is usually the largest when

i = j, we have
i ≈ �i.

4



When we have the least possible step size�(t+1) = ��(t) for all t mod 2b = 0 in PSA, the
expectation ofw(t) obtained by PSA can be shown to be:

E(w(t)) = w∗ +
t∏

k=1

(

I − �(0)�⌊ k
b
⌋H(w∗;D)

)

(w(0) −w∗)

= w∗ + S(t)(w(0) −w∗).

The rate of convergence is governed by the largest eigenvalue of S(t). We now derive a bound of
this eigenvalue.

Theorem 1 Let �ℎ be the least eigenvalue of H(w∗;D). The asymptotic rate of convergence of PSA
is bounded by

eig(S(t)) ≤ exp

{−�(0)�ℎb

1− �

}

.

Proof We can show that

eig(S(t)) =

t∏

k=1

(

1− �(0)�⌊ k
b
⌋�ℎ

)

≤ exp

{

−
t∑

k=1

�(0)�ℎ�
⌊ k

b
⌋

}

= exp

{

−�(0)�ℎ

t∑

k=1

�⌊ k
b
⌋

}

because for any0 ≤ aj < 1, 1− aj ≤ e−aj ,

0 ≤
n∏

j=1

(1− aj) ≤
n∏

j=1

e−aj = e−
∑n

j=1 aj .

Now, since

t∑

k=1

�⌊ k
b
⌋ ≈

⎛

⎝

⌊ t
b
⌋

∑

l=0

b�l

⎞

⎠ = b

⌊ t
b
⌋

∑

l=0

�l −→ b

1− �
when t→∞,

we have

eig(S(t)) ≤ exp

{

−�(0)�ℎ

t∑

k=1

�⌊ k
b
⌋

}

→ exp

{−�(0)�ℎb

1− �

}

when t→∞.

□

Though this analysis suggests that for rapid convergence to�∗, we should assign� ≈ 1 with a
largeb and�(0), it is based on a worst-case scenario and thus insufficient asa practical guideline
for parameter assignment. In practice, we fix(�, �, �) = (0.9999, 0.99, 0.9) and tuneb as follows.
When the training set size∣D∣ ≫ 2000, set b in the order of0.5∣D∣/1000 is usually sufficient.
This setting implies that the step size will be adjusted per∣D∣/1000 examples. In fact, whenb
is in the same order, PSA performs similarly. Consider the following three settings:(b, �, �) =
(10, 0.9999, 0.99), (100, 0.999, 0.9) or (1, 0.99999, 0.999). They all yield nearly identical single-
pass F-scores for the BaseNP task (see Section 5). The first setting was used in this paper. To see
why this is the case, consider the decreasing factorvi (see (8) and (9)), which will be confined within
the interval(�, �). Assume thatvi is selected at ransom uniformly, then the mean ofvi = 0.995
when(�, �) = (0.9999, 0.99) and�i will be decreased by a factor of0.995 on average in each PSA
update. Whenb = 10, PSA will update�i per 20 examples. After learning from 200 examples, PSA
will decrease�i 10 times by a combined factor of0.9511. Similarly, we can obtain that the factors
for the other two settings are0.95 and0.9512, respectively, nearly identical.

5



5 Experimental Results

Table 1 shows the tasks chosen for our comparison. The tasks for CRF have been used in compe-
titions and the performance was measured by F-score.Weight for CRF reported here isNumber
of features provided by CRF++.Target provides the empirical optimal performance achieved
by batch learners. If PSA accurately approximates 2SGD, then its single-pass performance should
be very close toTarget. The target F-score for BioNLP/NLPBA is not>85% as reported in [1]
because it was due to a bug that included true labels as a feature 1.

Table 1: Tasks for the experiments.

Task Model Training Test Tag/Class Weight Target

Base NP CRF 8936 2012 3 1015662 94.0% [10]
Chunking CRF 8936 2012 23 7448606 93.6% [11]
BioNLP/NLPBA CRF 18546 3856 11 5977675 70.0% [12]
BioCreative 2 CRF 15000 5000 3 10242972 86.5% [13]
LS FD LSVM 2734900 2734900 2 900 3.26%
LS OCR LSVM 1750000 1750000 2 1156 23.94%
MNIST [14] CNN 60000 10000 10 134066 0.99%

5.1 Conditional Random Field

We compared PSA with plain SGD and SMD [1] to evaluate PSA’s performance for training
conditional random fields (CRF). We implemented PSA by replacing the L-BFGS optimizer in
CRF++ [11]. For SMD, we used the implementation available inthe public domain2. Our SGD
implementation for CRF is from Bottou3. All the above implementations are revisions of CRF++.
Finally, we ran the original CRF++ with default settings to obtain the performance results of L-
BFGS. We simply used the original parameter settings for SGDand SMD as given in the literature.
For PSA, we used� = 0.9, (�, �) = (0.9999, 0.99), b = 10, and�(0)i = 0.1, ∀i. The batch size
is one for all tasks. These parameters were determined by using a small subset from CoNLL 2000
baseNP and we simply used them for all tasks. All of the experiments reported here for CRF were
ran on an Intel Q6600 Fedora 8 i686 PC with 4G RAM.

Table 2 compares SGD variants in terms of the execution time and F-scores achieved after processing
the training examples for a single pass. Since the loss function in CRF training is convex, the
convergence results of L-BFGS can be considered as the empirical minimum. The results show that
single-pass F-scores achieved by PSA are about as good as theempirical minima, suggesting that
PSA has effectively approximated Hessian in CRF training.

Fig. 1 shows the learning curves in terms of the CPU time. Though as expected, plain SGD is the
fastest, it is remarkable that PSA is faster than SMD for all tasks. SMD is supposed to have an edge
here because the mini-batch size for SMD was set to 6 or 8, as specified in [1], while PSA used one
for all tasks. But PSA is still faster than SMD partly becausePSA can take advantage ofthe sparsity
trick as plain SGD [15].

5.2 Linear SVM

We also evaluated PSA’s single-pass performance for training linear SVM. It is straightforward to
apply PSA as a primal optimizer for linear SVM. We used two very large data sets: FD (face detec-
tion) and OCR (see Table 1), from the Pascal large-scale learning challenge in 2008 and compared
the performance of PSA with the state-of-the-art linear SVMsolvers: Liblinear 1.33 [16], the winner
of the challenge, and SvmSgd, from Bottou’s SGD web site. They have been shown to outperform
many well-known linear SVM solvers, such as SVM-perf [17] and Pegasos [15].

1Thanks to Shing-Kit Chan of the Chinese University of Hong Kong for pointing that out.
2Available under LGPL from the following URL:http://sml.nicta.com.au/code/crfsmd/.
3http://leon.bottou.org/projects/sgd.

6



Base NP Chunking BioNLP/NLPBA BioCreative 2
Method (pass) time F-score time F-score time F-score time F-score

SGD (1) 1.15 92.42 13.04 92.26 12.23 66.37 3.18 34.33
SMD (1) 41.50 91.81 350.00 91.89 522.00 66.53 497.71 69.04
PSA (1) 16.30 93.31 160.00 93.16 206.00 69.41 191.61 80.79
L-BFGS (batch) 221.17 93.91 8694.40 93.78 20130.00 70.30 1601.50 86.82

Table 2: CPU time in seconds and F-scores achieved after a single pass of CRF training.

0 50 100 150 200
90

90.5

91

91.5

92

92.5

93

93.5

94

94.5
BaseNP

Time(sec)

F
−

sc
or

e

 

 

PSA

SMD

SGD

L−BFGS

0 200 400 600 800 1000 1200
90

90.5

91

91.5

92

92.5

93

93.5

94

94.5
Chunking

Time(sec)
F

−
sc

or
e

 

 

PSA

SMD

SGD

L−BFGS

0 100 200 300 400 500 600 700 800
20

30

40

50

60

70

80
NLPBA04

Time(sec)

F
−

sc
or

e

 

 

PSA

SMD

SGD

L−BFGS

0 100 200 300 400 500
30

40

50

60

70

80

90
BioCreative 2 GM Task

Time(sec)

F
−

sc
or

e

 

 

PSA

SMD

SGD

L−BFGS

Figure 1: Comparison of CPU time; Horizontal lines indicatetarget F-scores.

We selected L2-regularized logistic regression as the lossfunction for PSA and Liblinear because
it is twice differentiable. The weightC of the margin error term was set to one. We kept SvmSgd
intact. The experiment was run on an Open-SUSE Linux machinewith Intel Xeon E7320 CPU
(2.13GHz) and 64GB RAM. Table 3 shows the results. Again, PSAachieves the best single-pass
accuracy for both tasks. Its test accuracies are very close to that of converged Liblinear. PSA takes
much less time than the other two solvers. PSA (1) is faster than SvmSgd (1) for SVM because
SvmSgd uses the sparsity trick [15], which speeds up training for sparse data, but otherwise may
slow down. Both data sets we used turn out to be dense,i.e., with no zero features. We implemented
PSA with the sparsity trick for CRF only but not for SVM and CNN.

LS FD LS OCR
Method (pass) accuracy time accuracy time

Liblinear converge 96.74 4648.49 76.06 4454.42
Liblinear (1) 91.43 290.58 74.33 398.00
SvmSgd (20) 93.78 1135.67 - -
SvmSgd (10) 93.77 567.68 73.71 473.35
SvmSgd (1) 93.60 56.78 73.76 46.96
PSA (1) 95.10 30.65 75.68 25.33

Table 3: Test accuracy rates and elapsed CPU time in seconds by various linear SVM solvers.

7



The parameter settings for PSA are basically the same as those for CRF but with a large period
b = 1250 for FD and500 for OCR. For FD, the worst accuracy by PSA is94.66% with b between
250 to 2000. For OCR, the worst is75.20% with b between 100 to 1000, suggesting that PSA is not
very sensitive to parameter settings.

5.3 Convolutional Neural Network

Approximating Hessian is particularly challenging when the loss function is non-convex. We tested
PSA in such a setting by applying PSA to train a large convolutional neural network for the original
10-class MNIST task (see Table 1). We tried to duplicate the implementation of LeNet described in
[18] in C++. Our implementation, referred to as “LeNet-S”, is a simplified variant of LeNet-5. The
differences include that the sub-sampling layers in LeNet-S picks only the upper-left value from a
2× 2 area and abandons the other three. LeNet-S used more maps (50vs. 16) in the third layer and
less nodes (120 vs. 100) in the fifth layer, due to the difference in the previous sub-sampling layer.
Finally, we did not implement the Gaussian connections in the last layer. We trained LeNet-S by
plain SGD and PSA. The initial� for SGD was 0.7 and decreased by 3 percent per pass. For PSA,
we used� = 0.9, (�, �) = (0.99999, 0.999), b = 10, �(0)i = 0.5, ∀i, and the mini-batch size is
one for all tasks. We also adapted a trick given in [19] which advises that step sizes in the lower
layers should be larger than in the higher layer. Following their trick, the initial step sizes for the
first and the third layers were 5 and

√
2.5 times as large as those for the other layers, respectively.

The experiments were ran on an Intel Q6600 Fedora 8 i686 PC with 4G RAM.

Table 4 shows the results. To obtain the empirical optimal error rate of our LeNet-S model, we ran
plain SGD with sufficient passes and obtained 0.99% error rate at convergence, slightly higher than
LeNet-5’s 0.95% [18]. Single-pass performance of PSA with the layer trick is within one percentage
point to the target. Starting from an initial weight closer to the optimum helped improving PSA’s
performance further. We ran SGD 100 passes with randomly selected 10K training examples then
re-started training with PSA using the rest 50K training examples for a single pass. Though PSA did
achieve a better error rate, this is infeasible because it took 4492 seconds to run SGD 100 passes.
Finally, though not directly comparable, we also report theperformance of TONGA given in [20] as
a reference. TONGA is a 2SGD method based on natural gradient.

Method (pass) time error Method (pass) time error

SGD (1) 266.77 2.36 PSA w/o layer trick (1) 311.95 2.31
SGD (140) 37336.20 0.99 PSA w/ layer trick (1) 311.00 1.97
TONGA (n/a) 500.00 2.00 PSA re-start (1) 253.72 1.90

Table 4: CPU time in seconds and percentage test error rates for various neural network trainers.

6 Conclusions

It has been shown that given a sufficiently large training set, a single pass of 2SGD generalizes as
well as the empirical optimum. Our results show that PSA provides a practical solution to accom-
plish near optimal performance of 2SGD as predicted theoretically for a variety of large scale models
and tasks with a reasonably low cost per iteration compared to competing 2SGD methods. The ben-
efit of 2SGD with PSA over plain SGD becomes clearer when the scale of the tasks are increasingly
large. For non-convex neural network tasks, since the curvature of the error surface is so complex,
it is still very challenging for an eigenvalue approximation method like PSA. A complete version of
this paper will appear as [21]. Source codes of PSA are available at http://aiia.iis.sinica.edu.tw.

References

[1] S.V.N. Vishwanathan, Nicol N. Schraudolph, Mark W. Schmidt, and Kevin P. Murphy. Accel-
erated training of conditional random fields with stochastic gradient methods. InProceedings
of the 23rd International Conference on Machine Learning (ICML’06), Pittsburgh, PA, USA,
June 2006.

8



[2] Michael Collins, Amir Globerson, Terry Koo, Xavier Carreras, and Peter L. Bartlett. Expo-
nentiated gradient algorithms for conditional random fields and max-margin markov networks.
Journal of Machine Learning Research, 9:1775–1822, August 2008.

[3] Noboru Murata and Shun-Ichi Amari. Statistical analysis of learning dynamics.Signal Pro-
cessing, 74(1):3–28, April 1999.

[4] Léon Bottou and Yann LeCun. On-line learning for very large data sets.Applied Stochastic
Models in Business and Industry, 21(2):137–151, 2005.

[5] Jorge Nocedal and Stephen J. Wright.Numerical Optimization. Springer, 1999.

[6] Léon Bottou. The tradeoffs of large-scale learning. Tutorial, the 21st Annual Conference
on Neural Information Processing Systems (NIPS 2007), Vancouver, BC, Canada, December
2007.http://leon.bottou.org/talks/largescale.

[7] Albert Benveniste, Michel Metivier, and Pierre Priouret. Adaptive Algorithms and Stochastic
Approximations. Springer-Verlag, 1990.

[8] Chun-Nan Hsu, Han-Shen Huang, and Bo-Hou Yang. Global and componentwise extrapola-
tion for accelerating data mining from large incomplete data sets with the EM algorithm. In
Proceedings of the Sixth IEEE International Conference on Data Mining (ICDM’06), pages
265–274, Hong Kong, China, December 2006.

[9] Han-Shen Huang, Bo-Hou Yang, Yu-Ming Chang, and Chun-Nan Hsu. Global and componen-
twise extrapolations for accelerating training of Bayesian networks and conditional random
fields. Data Mining and Knowledge Discovery, 19(1):58–91, 2009.

[10] Fei Sha and Fernando Pereira. Shallow parsing with conditional random fields. InProceedings
of Human Language Technology, the North American Chapter of the Association for Compu-
tational Linguistics (NAACL’03), pages 213–220, 2003.

[11] Taku Kudo. CRF++: Yet another CRF toolkit, 2006. Available under LGPL from the following
URL: http://crfpp.sourceforge.net/.

[12] Burr Settles. Biomedical named entity recognition using conditional random fields and novel
feature sets. InProceedings of the Joint Workshop on Natural Language Processing in
Biomedicine and its Applications (JNLPBA-2004), pages 104–107, 2004.

[13] Cheng-Ju Kuo, Yu-Ming Chang, Han-Shen Huang, Kuan-Ting Lin, Bo-Hou Yang, Yu-Shi
Lin, Chun-Nan Hsu, and I-Fang Chung. Rich feature set, unification of bidirectional parsing
and dictionary filtering for high f-score gene mention tagging. In Proceedings of the Second
BioCreative Challenge Evaluation Workshop, pages 105–107, 2007.

[14] Yann LeCun and Corinna Cortes. The MNIST database of handwritten digits, 1998.
http://yann.lecun.com/exdb/mnist/.

[15] Shai Shalev-Shwartz, Yoram Singer, and Nathan Srebro.Pegasos: Primal Estimated sub-
GrAdient SOlver for SVM. InICML’07: Proceedings of the 24th international conference on
Machine learning, pages 807–814, New York, NY, USA, 2007. ACM Press.

[16] Chih-Chung Chang and Chih-Jen Lin.LIBSVM: a library for support vector machines, 2001.
Software available athttp://www.csie.ntu.edu.tw/∼cjlin/libsvm.

[17] Thorsten Joachims. Training linear SVMs in linear time. In Proceedings of the 12th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD’06),
pages 217–226, New York, NY, USA, 2006. ACM.

[18] Yann LeCun, Ĺeon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning
applied to document recognition.Proceedings of the IEEE, 86(11):2278–2324, 1998.

[19] Yann LeCun, Leon Bottou, Genevieve B. Orr, and Klaus-Robert Muller. Efficient backprop.
In G. Orr and Muller K., editors,Neural Networks: Tricks of the trade. Springer, 1998.

[20] Nicolas LeRoux, Pierre-Antoine Manzagol, and Yoshua Bengio. Topmoumoute online natural
gradient algorithm. InAdvances in Neural Information Processing Systems, 20 (NIPS 2007),
Cambridge, MA, USA, 2008. MIT Press.

[21] Chun-Nan Hsu, Yu-Ming Chang, Han-Shen Huang, and Yuh-Jye Lee. Periodic step-size adap-
tation in second-order gradient descent for single-pass on-line structured learning. To appear in
Mchine Learning, Special Issue on Structured Prediction. DOI: 10.1007/s10994-009-5142-6,
2009.

9


