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Abstract 

We extend the concept of phase tuning, a ubiquitous mechanism among 
sensory neurons including motion and disparity selective neurons, to the 
motion contrast detection.  We demonstrate that the motion contrast can be 
detected by phase shifts between motion neuronal responses in different 
spatial regions.  By constructing the differential motion opponency in 
response to motions in two different spatial regions, varying motion contrasts 
can be detected, where similar motion is detected by zero phase shifts and 
differences in motion by non-zero phase shifts.  The model can exhibit either 
enhancement or suppression of responses by either different or similar 
motion in the surrounding.  A primary advantage of the model is that the 
responses are selective to relative motion instead of absolute motion, which 
could model neurons found in neurophysiological experiments responsible 
for motion pop-out detection. 

1  Introduction 
Motion discontinuity or motion contrast is an important cue for the pop-out of salient moving 
objects from contextual backgrounds.  Although the neural mechanism underlying the motion 
pop-out detection is still unknown, the center-surround receptive field (RF) organization is 
considered as a physiological basis responsible for the pop-out detection. 

The center-surround RF structure is simple and ubiquitous in cortical cells especially in neurons 
processing motion and color information.  Nakayama and Loomis [1] have predicted the existence 
of motion selective neurons with antagonistic center-surround receptive field organization in 1974.  
Recent physiological experiments [2][3] show that neurons with center-surround RFs have been 
found in both middle temporal (MT) and medial superior temporal (MST) areas related to motion 
processing.  This antagonistic mechanism has been suggested to detect motion segmentation [4], 
figure/ground segregation [5] and the differentiation of object motion from ego-motion [6]. 

There are many related works [7]-[12] on motion pop-out detection.  Some works [7]-[9] are based 
on spatio-temporal filtering outputs, but motion neurons are not fully interacted by either only 
inhibiting similar motion [7] or only enhancing opposite motion [8].  Heeger, et al. [7] proposed a 
center-surround operator to eliminate the response dependence upon rotational motions.  But the 
Heeger's model only shows a complete center-surround interaction for moving directions.  With 
respect to the surrounding speed effects, the neuronal responses are suppressed by the same speed 
with the center motion but not enhanced by other speeds.  Similar problem existed in [8], which only 
modeled the suppression of neuronal responses in the classical receptive field (CRF) by similar 
motions in surrounding regions.  Physiological experiments [10][11] show that many neurons in 
visual cortex are sensitive to the motion contrast rather than depend upon the absolute direction and 
speed of the object motion.  Although pooling over motion neurons tuned to different velocities can 



eliminate the dependence upon absolute velocities, it is computationally inefficient and still can't 
give full interactions of both suppression and enhancement by similar and opposite surrounding 
motions.  The model proposed by Dellen, et al. [12] computed differential motion responses directly 
from complex cells in V1 and didn't utilize responses from direction selective neurons. 

In this paper, we propose an opponency model which directly responds to differential motions by 
utilizing the phase shift mechanism.  Phase tuning is a ubiquitous mechanism in sensory information 
processing, including motion, disparity and depth detection.  Disparity selective neurons in the 
visual cortex have been found to detect disparities by adjusting the phase shift between the receptive 
field organizations in the left and right eyes [13][14].  Motion sensitive cells have been modeled in 
the similar way as the disparity energy neurons and detect image motions by utilizing the phase shift 
between the real and imaginary parts of temporal complex valued responses, which are comparable 
to images to the left and right eyes [15].  Therefore, the differential motion can be modeled by 
exploring the similarity between images from different spatial regions and from different eyes. 

The remainder of this paper is organized as following.  Section 2 illustrates the phase shift motion 
energy neurons which estimate image velocities by the phase tuning in the imaginary path of the 
temporal receptive field responses.  In section 3, we extend the concept of phase tuning to the 
construction of differential motion opponency.  The phase difference determines the preferred 
velocity difference between adjacent areas in retinal images.  Section 4 investigates properties of 
motion pop-out detection by the proposed motion opponency model.  Finally, in section 5, we relate 
our proposed model to the neural mechanism of motion integration and motion segmentation in 
motion related areas and suggest a possible interpretation for adaptive center-surround interactions 
observed in biological experiments. 

2  Phase Shift  Motion Energy Neurons 
Adelson and Bergen [16] proposed the motion energy model for visual motion perception by 
measuring spatio-temporal orientations of image sequences in space and time.  The motion energy 
model posits that the responses of direction-selective V1 complex cells can be computed by a 
combination of two linear spatio-temporal filtering stages, followed by squaring and summation.  
The motion energy model was extended in [15] to be phase tuned by splitting the complex valued 
temporal responses into real and imaginary paths and adding a phase shift on the imaginary path. 

Figure 1(a) demonstrates the schematic diagram of the phase shift motion energy model.  Here we 
assume an input image sequence in two-dimensional space (x, y) and time t.  The separable 
spatio-temporal receptive field ensures the cascade implementation of RF with spatial and temporal 
filters.  Due to the requirement of the causal temporal RF, the phase shift motion energy model 
didn’t adopt the Gabor filter like the spatial RF.  The phase shift spatio-temporal RF is modeled with 
a complex valued function ( ) ( ) ( ), , , ,f x y t g x y h t= ⋅ Φ , where the spatial and temporal RFs are 
denoted by ( ),g x y  and ( ),h t Φ  respectively, 
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and C  is the covariance matrix of the spatial Gaussian envelope and Φ is the phase tuning of the 
motion energy neuron.  The real and imaginary profiles of the temporal receptive field are Gamma 
modulated sinusoidal functions with quadrature phases, 
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The envelopes for complex exponentials are functions of Gaussian and Gamma distributions, 
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where ( )αΓ  is the gamma function and ( )u t  is the unit step function.  The parameters α  and τ  
determine the temporal RF size.  As derived in [15], the motion energy at location (x, y) can be 
computed by 

 ( ) ( )E , , cosv x y S PΦ = + Ψ −Φ  (5) 
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and complex valued responses in real and imaginary paths are obtained as, 
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The superscript * represents the complex conjugation and the phase shift parameter Φ  controls the 
spatio-temporal orientation tuning.  To avoid clutter, the spatial location variables x and y for S, P, 
Ψ, Vreal and Vimag are not explicitly shown in Eq. (5) and (6).  Figure 1(b) demonstrates the even and 
odd profiles of the spatio-temporal RF tuned to a particular phase shift. 
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(c) 
Figure 1. (a) shows the diagram of the phase shift motion energy model adapted from [15].  (b) 
draws the spatiotemporal representation of the phase shift motion energy neuron with the real
and imaginary receptive field demonstrated by the two left pictures. (c) illustrates the 
construction of differential motion opponency with a phase difference Θ  from two populations 
of phase shift motion energy neurons in two spatial areas c and s.  To avoid clutter, the space 
location (x, y) is not explicitly shown in phase tuned motion energies. 



3  Extending Phase Mechanism to Differential  Motion 
Opponency 

Based on the above phase shift motion energy model, the local image velocity at each spatial 
location can be represented by a phase shift which leads to the peak response across a population of 
motion energy neurons.  Across regions of different motions, there are clear discontinuities on the 
estimated velocity map.  The motion discontinuities can be detected by edge detectors on the 
velocity map to segment different motions.  However, this algorithm for motion discontinuities 
detection can’t discriminate between the object motion and uniform motions in contextual 
backgrounds. 

Here we propose a phase mechanism to detect differential motions inspired by the disparity energy 
model and adopt the center-surround inhibition mechanism to pop out the object motion from 
contextual background motions.  The motion differences between different spatial locations can be 
modeled in the similar way as the disparity model.  The motion energies from two neighboring 
locations are considered as the retinal images to the left and right eyes.  Thus, we can construct a 
differential motion opponency by placing two populations of phase shift motion energy neurons at 
different spatial locations and the energy ( )vEΔ Θ  of the opponency is the squared modulus of the 
averaged phase shift motion energies over space and phase, 
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where ( ), ,w x y Θ  is the profile for differential motion opponency and vΔ  is the velocity difference 
between the two spatial regions defined by the kernel ( ), ,w x y Θ .  Since ( ), ,w x y Θ  is intended to 
implement the functional role of spatial interactions, it is desired to be a separable function in space 
and phase domain and can be modeled by phase tuned summation of two spatial kernels, 
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where ( ),cw x y  and ( ),sw x y  are Gaussian kernels of different spatial sizes cσ  and sσ , and Θ  is 
the phase difference representing velocity difference between two spatial regions c and s.  
Substituting Eq. (9) into Eq. (8), the differential motion energy can be reformulated as 
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Figure 2. Two types of differential motion opponency constructions of (a) center-surrounding 
interaction and (b) left-right interaction.  Among cells in area MT with surrounding 
modulations, 25% of cells are with the antagonistic RF structure in the top row and another 
50% of cells have the integrative RF structure as shown in the bottom row. 
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( ), , ,v cE x y Φ  and ( ), , ,v sE x y Φ  are phase shift motion energies at location (x, y) and with phase  

shift Φ.  Utilizing the results in Eq. (5) and (6), Eq. (10) and (11) generate similar results, 
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According to above derivations, by varying the phase shift Θ between –π and π, the relative motion 
energy of the differential motion opponency can be modeled as population responses across a 
population of phase tuned motion opponencies.  The response is completely specified by three 
parameters oppS , oppP  and oppΘ . 

The schematic diagram of this opponency is illustrated in Figure 1(c).  The differential motion 
opponency is constituted by three stages.  At the first stage, a population of phase shift motion 
energy neurons is applied to be selective to different velocities.  At the second stage, motion 
energies from the first stage are weighted by kernels tuned to different spatial locations and phase 
shifts respectively for both spatial regions and two single differential motion signals in region c and 
region s are achieved by integrating responses from these two regions over space and phase tuning.  
Finally, the differential motion energy is computed by the squared modulus of the summation of the 
integrated motion signal in region c and phase shifted motion signal in region s.  The subscripts c 
and s represent two interacted spatial regions which are not limited to the center and surround 
regions.  The opponency could also be constructed by the neighboring left and right  
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Figure 3. (a) Phase map and (b) peak magnitude map are obtained from stimuli of two patches
of random dots moving with different velocities.  The two patches of stimuli are statistically 
independent but share the same spatial properties: dot size of 2 pixels, dot density of 10% and
dot coherence level of 100%.  The phase tuned population of motion energy neurons are 
applied to each patch of random dots with RF parameters: Ωt = 2π/8, Ωt = 2π/16, σx = 5 and τ
= 5.5.  For each combination of velocities from left and right patches, averaged phase shifts
over space and time are computed and so do the magnitudes of peak responses.  The unit for 
velocities is pixels per frame. 



spatial regions.  Figure 2 shows two types of structures for the differential motion opponency.  In 
[17], the authors demonstrates that among cells in area MT with surrounding modulations, 25% of 
cells are with the antagonistic RF structure as shown in Figure 2(a) and another 50% of cells have 
the integrative RF structure as shown in Figure 2(b). 

The velocity difference tuning of the opponency is determined by the phase shift parameter Θ 
combined with parameters of spatial and temporal frequencies for motion energy neurons.  The 
larger phase shift magnitude prefers the bigger velocity difference.  This phase tuning of velocity 
difference is consistent with the phase tuning of motion energy neurons.  Figure 3 shows the phase 
map obtained by using random dots stimuli with different velocities on two spatial patches (left and 
right patches with sizes of 128 pixels ൈ 128 pixels).  Along the diagonal line, velocities from left and 
right patches are equal to each other and therefore phase estimates are zeros along this line.  
Deviated from the diagonal line to upper-left and lower-right, the phase magnitudes increase while 
positive phases indicate larger left velocities and negative phases indicate larger right velocities.  
The phase tuning can give a good classification of velocity differences. 

4  Validation of  Differential  Motion Opponency 
Out derivation and analysis above show that the phase shift between two neighboring spatial regions 
is a good indicator for motion difference between these two regions.  In this section, we validate the 
proposed differential motion opponency by two sets of experiments, which show effects of both 
surrounding directions and speeds on the center motion. 
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Figure 4. Demonstrations of center-surround differential motion opponency, where (a) show 
the excitation of opposite directions outside the CRF and (b) show the inhibition by 
surrounding motions in same directions.  The center-surround inhibition models by Petkov, et 
al. [8] and Heeger, et al. [7] are shown in (c) and (d).  Responses above 1 indicate enhancement
and responses below 1 indicate suppressions. 



Physiological experiments [2][3] have demonstrated that the neuronal activities in the classical 
receptive field are suppressed by responses outside the CRF to stimuli with similar motions 
including both directions and speeds on the center and surrounding regions.  On the contrary, visual 
stimuli of opposite directions or quite different speeds outside the CRF enhance the responses in the 
CRF. In their experiments, they used a set of stimuli of random dots moving at different velocities, 
where there are small patches of moving random dots on the center. 

We tested the properties of the proposed opponency model for motion difference measurement by 
using similar random dots stimuli.  The random dots on background move with different speeds and 
in different direction but have the same statistical parameters: dot size of 2 pixels, dot density of 
10% and motion coherence level of 100%.  The small random dots patches are placed on the center 
of background stimuli to stimulate the neurons in the CRF.  These small patches share the same 
statistical parameters with background random dots but move with a constant velocity of 1 pixel per 
frame. 

Figure 4 shows results for the enhanced and suppressed responses in the CRF with varying 
surrounding directions.  The phase shift motion energy neurons had the same spatial and temporal 
frequencies and the same receptive field sizes, and were selective to vertical orientations.  The 
preferred spatial frequency was 2π/16 radian per pixel and the temporal frequency was 2π/16 radian 
per frame.  The sizes of RF in horizontal and vertical directions were respectively 5 pixels and 10 
pixels, corresponding to a spatial bandwidth of 1.96 octaves.  The time constant τ was 5.5 frames 
which resulted in a temporal bandwidth of 1.96 octaves.  As shown in Figure 4 (a) and (b), the 
surrounding motion of opposite direction gives the largest response to the motion in the CRF for the 
inhibitory interaction and the smallest response for the excitatory interaction.   

Results demonstrated in Figure 4 are consistent with physiological results reported in [3].  In Born’s 
paper, inhibitory cells show response enhancement and excitatory cells show response suppression 
when surrounding motions are in opposite directions.  The 3-dB bandwidth for the surrounding 
moving direction is about 135 degrees for the physiological experiments while the bandwidth is 
about 180 degrees for the simulation results in our proposed model. 

Models proposed by Petkov, et al. [8] and Heeger, et al. [7] also show clear inhibition between 
opposite motions.  The Petkov’s model achieves the surrounding suppression for each point in 
( ), ,x y t space by the subtraction between responses from that point and its surroundings and 
followed by a half-wave rectification, 
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Figure 5. The insensitivity of the proposed opponency model to absolute center and
surrounding velocities is demonstrated in (a), where responses are enhanced for all center 
velocities from -2 to 2 pixels per frame.  In (b), the model by Heeger, et al. [7] only shows 
enhancement when the center speed matches the preferred speed of 1.2 pixel per frame. 
Similarly, responses above 1 indicate enhancement and below 1 indicate suppressions.  In both
curves, the velocity differences between center and surrounding regions are maintained as a
constant of 3 pixels per frame. 



where ( ), , ,vE x y tθ  is the motion energy at location (x,y) and time t for a given preferred speed v and 
orientation θ, ( ), , ,vS x y tθ  is the average motion energy in the surrounding of point (x, y, t), 

( ), , ,vE x y tθ
%  is the suppressed motion energy and the factor α controls the inhibition strength.  The 

inhibition term is computed by weighted motion energy 

 ( ) ( ) ( ), , ,, , , , , ,v v vS x y t E x y t w x y tθ θ θ= ∗  (15) 

where ( ), , ,vw x y tθ  is the surround weighting function.   

The Heeger’s model constructs the center-surround motion opponent by computing the weighted 
sum of responses from motion selective cells, 
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where ( ),x yβ  is a center-surround weighting function and the motion energy at each point should 
be normalized across all cells with different tuning properties. 

As shown in Figure 4 (c) and (d) for results of Petkov’s and Heeger’s models, we replace the 
conventional frequency tuned motion energy neuron with our proposed phase tuned neuron.  The 
model by Petkov, et al. [8] is generally suppressive and only reproduces less suppression for 
opposite motions, which is inconsistent with results from [3].  The model by Heeger, et al. [7] has 
similar properties with our proposed model with respect to both excitatory and inhibitory 
interactions. 

To evaluate the sensitivity of the proposed opponency model to velocity differences, we did 
simulations by using similar stimuli with the above experiment in Figure 4 but maintaining a 
constant velocity difference of 3 pixels per frame between the center and surrounding random dot 
patches.  As shown in Figure 5, by varying the velocities of random dots on the center region, we 
found that responses by the proposed model are always enhanced independent upon absolute 
velocities of center stimuli, but responses by the Heeger’s model achieve the enhancement at a 
center velocity of 1.2 pixels per frame and maintain suppressed at other speeds. 

5  Discussion 
We proposed a new biologically plausible model of the differential motion opponency to model the 
spatial interaction property of motion energy neurons.  The proposed opponency model is motivated 
by the phase tuning mechanism of disparity energy neurons which infers the disparity information 
from the phase difference between complex valued responses to left and right retinal images.  
Hence, the two neighboring spatial areas can be considered as left and right images and the motion 
difference between these two spatial regions is detected by the phase difference between the 
complex valued responses at these two regions.  Our experimental results demonstrate a consistent 
conclusion with physiological experiments that motions of opposite directions and different speeds 
outside the CRF can show both inhibitive and excitatory effects on the CRF responses.  The 
inhibitive interaction helps to segment the moving object from backgrounds when fed back to 
low-level features such as edges, orientations and color information. 

Except providing a unifying phase mechanism in understanding neurons with different functional 
roles at different brain areas, the proposed opponency model could possibly provide a way to 
understand the motion integration and motion segmentation.  Integration and segmentation are two 
opposite motion perception tasks but co-exist to constitute two fundamental types of motion 
processing.  Segmentation is achieved by discriminating motion signals from different objects, 
which is thought to be due to the antagonistic interaction between center and surrounding RFs.  
Integration is obtained by utilizing the enhancing function of surrounding areas to CRF areas.  Both 
types of processing have been found in motion related areas including area MT and MST.  Tadin, et 
al. [18] have found that motion segmentation dominants at high stimulus contrast and gives the way 
to motion integration at low stimulus contrast.  Huang, et al. [19] suggests that the surrounding 
modulation is adaptive according to the visual stimulus such as contrasts and noise levels.  Since our 
proposed opponency model determines the functional role of neurons by only the phase shift 
parameter, this makes the proposed model to be an ideal candidate model for the adaptive 
surrounding modulation with the phase tuning between two spatial regions. 
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