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Abstract

This paper proposes a new algorithm for the linear least squares problem where
the unknown variables are constrained to be in a finite set. The factor graph that
corresponds to this problem is very loopy; in fact, it is a complete graph. Hence,
applying the Belief Propagation (BP) algorithm yields very poor results. The al-
gorithm described here is based on an optimal tree approximation of the Gaussian
density of the unconstrained linear system. It is shown that even though the ap-
proximation is not directly applied to the exact discrete distribution, applying the
BP algorithm to the modified factor graph outperforms current methods in terms
of both performance and complexity. The improved performance of the proposed
algorithm is demonstrated on the problem of MIMO detection.

1 Introduction

Finding the linear least squares fit to data is a well-known problem, with applications in almost ev-
ery field of science. When there are no restrictions on the variables, the problem has a closed form
solution. In many cases, a-priori knowledge on the values of the variables is available. One example
is the existence of priors, which leads to Bayesian estimators. Another example of great interest
in many applications is when the variables are constrained to a discrete finite set. This problem
has many diverse applications such as decoding of multi-input-multi-output (MIMO) digital com-
munication systems, GPS system ambiguity resolution [15] and many lattice problems in computer
science, such as finding the closest vector in a lattice to a given point inRn [1], and vector subset
sum problems which have applications in cryptography [11]. In contrast to the continuous linear
least squares problem, this problem is known to be NP hard.

This paper concentrates on the MIMO application. It should be noted, however, that the proposed
method is general and can be applied to any integer linear least-square problem. A multiple-input-
multiple-output (MIMO) is a communication system withn transmit antennas andm receive anten-
nas. The tap gain from transmit antennai to receive antennaj is denoted byHij . In each use of

the MIMO channel a vectorx = (x1, ..., xn)
⊤

is independently selected from a finite set of points
A according to the data to be transmitted, so thatx ∈ An. A standard example of a finite setA
in MIMO communication isA = {−1, 1} or more generallyA = {±1,±3, ...,±(2k+1)}. The
received vectory is given by:

y = Hx+ ǫ (1)

The vectorǫ is an additive noise in which the noise components are assumed to be zero mean,
statistically independent Gaussians with a known varianceσ2I. Them×n matrix H is assumed
to be known. (In the MIMO application we further assume thatH comprises iid elements drawn
from a normal distribution of unit variance.) The MIMO detection problem consists of finding the
unknown transmitted vectorx givenH andy. The task, therefore, boils down to solving a linear
system in which the unknowns are constrained to a discrete finite set. Since the noiseǫ is assumed
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to be additive Gaussian, the optimal maximum likelihood (ML) solution is:

x̂ = arg min
x∈An

‖Hx− y‖2 (2)

However, going over all the|A|n vectors is unfeasible when eithern or |A| are large.

A simple sub-optimal solution is based on a linear decision that ignores the finite set constraint:

z = (H
⊤

H)−1
H

⊤

y (3)

and then, neglecting the correlation between the symbols, finding the closest point inA for each
symbol independently:

x̂i = argmin
a∈A

|zi − a| (4)

This scheme performs poorly due to its inability to handle ill-conditioned realizations of the matrix
H. Somewhat better performance can be obtained by using a minimum mean square error (MMSE)
Bayesian estimation on the continuous linear system. Lete be the variance of a uniform distribution
over the members ofA. We can partially incorporate the information thatx ∈ An by using the prior
Gaussian distributionx ∼ N (0, eI). The MMSE estimation becomes:

E(x|y) = (H
⊤

H +
σ2

e
I)−1

H
⊤

y (5)

and then the finite-set solution is obtained by finding the closest lattice point in each component
independently. A vast improvement over the linear approaches described above can be achieved by
using sequential decoding:

• Apply MMSE (5) and choose the most reliable symbol, i.e. the symbol that corresponds to
the column with the minimal norm of the matrix:

(H
⊤

H +
σ2

e
I)−1

H
⊤

• Make a discrete symbol decision for the most reliable symbolx̂i. Eliminate the detected
symbol:

∑

j 6=i hjxj = y−hix̂i (hj is thej-th column ofH) to obtain a new smaller linear
system. Go to the first step to detect the next symbol.

This algorithm, known as MMSE-SIC [5], has the best performance for this family of linear-based
algorithms but the price is higher complexity. These linear type algorithms can also easily provide
probabilistic (soft-decision) estimates for each symbol. However, there is still a significant gap
between the detection performance of the MMSE-SIC algorithm and the performance of the optimal
ML detector.

Many alternative structures have been proposed to approach ML detection performance. For exam-
ple, sphere decoding algorithm (an efficient way to go over all the possible solutions) [7], approaches
using the sequential Monte Carlo framework [3] and methods based on semidefinite relaxation [17]
have been implemented. Although the detection schemes listed above reduce computational com-
plexity compared to the exhaustive search of ML solution, sphere decoding is still exponential in the
average case [9] and the semidefinite relaxation is a high-degree polynomial. Thus, there is still a
need for low complexity detection algorithms that can achieve good performance.

This study attempts to solve the integer least-squares problem using the Belief Propagation (BP)
paradigm. It is well-known (see e.g. [14]) that a straightforward implementation of the BP algorithm
to the MIMO detection problem yields very poor results since there are a large number of short
cycles in the underlying factor graph. In this study we introduce a novel approach to utilize the BP
paradigm for MIMO detection. The proposed variant of the BP algorithm is both computationally
efficient and achieves near optimal results.

2 The Loopy Belief Propagation Approach

Given the constrained linear systemy = Hx+ ǫ, and a uniform prior distribution onx, the posterior
probability function of the discrete random vectorx giveny is:

p(x|y) ∝ exp(−
1

2σ2
‖Hx− y‖2) , x ∈ An (6)
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The notation∝ stands for equality up to a normalization constant. Observing that‖Hx − y‖2 is
a quadratic expression, it can be easily verified thatp(x|y) is factorized into a product of two- and
single-variable potentials:

p(x1, .., xn|y) ∝
∏

i

ψi(xi)
∏

i<j

ψij(xi, xj) (7)

such that

ψi(xi) = exp(−
1

2σ2
y

⊤

hixi) , ψij(xi, xj) = exp(−
1

σ2
h

⊤

i hjxixj) (8)

wherehi is thei-th column of the matrixH. Since the obtained factors are simply a function of
pairs, we obtain a Markov Random Field (MRF) representation [18]. In the MIMO application
the (known) matrixH is randomly selected and therefore, the MRF graph is usually a completely
connected graph.

In a loop-free MRF graph the max-product variant of the BP algorithm always converges to the most
likely configuration (which corresponds to ML decoding in our case). For loop-free graphs, BP is
essentially a distributed variant of dynamic programming. The BP message update equations only
involve passing messages between neighboring nodes. Computationally, it is thus straightforward
to apply the same local message updates in graphs with cycles. In most such models, however,
this loopy BP algorithm will not compute exact marginal distributions; hence, there is almost no
theoretical justification for applying the BP algorithm. (One exception is that, for Gaussian graphs,
if BP converges, then the means are correct [16]). However, the BP algorithm applied to loopy
graphs has been found to have outstanding empirical success in many applications, e.g., in decoding
LDPC codes [6]. The performance of BP in this application may be attributed to the sparsity of the
graphs. The cycles in the graph are long, hence the graph have tree-like properties, so that messages
are approximately independent and inference may be performed as though the graph was loop-free.
The BP algorithm has also been used successfully in image processing and computer vision (e.g.
[4]) where the image is represented using a grid-structured MRF that is based on local connections
between neighboring nodes.

However, when the graph is not sparse, and is not based on local grid connections, loopy BP almost
always fails to converge. Unlike the sparse graphs of LDPC codes, or grid graphs in computer vision
applications, the MRF graphs of MIMO channels arecompletely connected graphs and therefore
the associated detection performance is poor. This has prevented the BP from being an asset for
the MIMO problem. Fig. 1 shows an example of a MIMO real-valued system based on an8 × 8
matrix andA = {−1, 1} (see the experiment section for a detailed description of the simulation
set-up). As can be seen in Fig. 1, the BP decoder based on the MRF representation (7) has very poor
results. Standard techniques to stabilize the BP iterations such as damping the message updates do
not help here. Even applying more advanced versions of BP (e.g. Generalized BP and Expectation
Propagation) to inference problems on complete MRF graphs yields poor results [12]. The problem
here is not in the optimization method but in the cost function that needs to be modified yield a good
approximate solution.

There have been several recent attempts to apply BP to the MIMO detection problem with good
results (e.g. [8, 10]). However in the methods proposed in [8] and [10] the factorization of the
probability function is done in such a way that each factor corresponds to a single linear equation.
This leads to a partition of the probability function into factors each of which is a function of all
the unknown variables. This leads to exponential computational complexity in computing the BP
messages. Shental et. al [14] analyzed the case where the matrixH is relatively sparse (and has
a grid structure). They showed that even under this restricted assumption the BP still does not
perform well. As an alternative method they proposed the generalized belief propagation (GBP)
algorithm that does work well on the sparse matrix if the algorithm regions are carefully chosen.
There are situations where the sparsity assumption makes sense (e.g. 2D intersymbol interference
(ISI) channels). However, in the MIMO channel model we assume that the channel matrix elements
are iid and Gaussian; hence we cannot assume that the channel matrixH is sparse.
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Figure 1: Decoding results for8 × 8 system,A = {−1, 1}.

3 The Tree Approximation of the Gaussian Density

Our approach is based on an approximation of the exact probability function:

p(x1, .., xn|y) ∝ exp(−
1

2σ2
‖Hx− y‖2) , x ∈ An (9)

that enables a successful implementation of the Belief Propagation paradigm. Since the BP al-
gorithm is optimal on loop-free factor graphs (trees) a reasonable approach is finding an optimal
tree approximation of the exact distribution (9). Chow and Liu [2] proposed a method to find a
tree approximation of a given distribution that has the minimum Kullback-Leibler distance to the
actual distribution. They showed that the optimal tree can be learned efficiently via a maximum
spanning tree whose edge weights correspond to the mutual information between the two variables
corresponding to the edges endpoints. The problem is that the Chow-Liu algorithm is based on the
(2-dimensional) marginal distributions. However, finding the marginal distribution of the probability
function (9) is, unfortunately, NP hard and it is (equivalent to) our final target.

To overcome this obstacle, our approach is based on applying the Chow-Liu algorithm on the distri-
bution corresponding to the unconstrained linear system. This distribution is Gaussian and therefore
it is straightforward in this case to compute the (2-dimensional) marginal distributions. Given the
Gaussian tree approximation, the next step of our approach is to apply the finite-set constraint and
utilize the Gaussian tree distribution to form a discrete loop free approximation ofp(x|y) which can
be efficiently globally maximized using the BP algorithm. To motivate this approach we first apply
a simplified version to derive the linear solution (4) described in Section 2.

Let z(y) = (H
⊤

H)−1
H

⊤

y be the least-squares estimator (3) andC = σ2(H
⊤

H)−1 is its variance.
It can be easily verified thatp(x|y) (9) can be written as:

p(x|y) ∝ f(x; z, C) = exp(−
1

2
(z − x)

⊤

C−1(z − x)) (10)

wheref(x; z, C) is a Gaussian density with meanz and covariance matrixC (to simplify notation
we ignore hereafter the constant coefficient of the Gaussian densities). Now, instead of marginalizing
the true distributionp(x|y), which is an NP hard problem, we approximate it by the product of the
marginals of the Gaussian densityf(x; z, C):

f(x; z, C) ≈
∏

i

f(xi; zi, Cii) = exp(−
(zi − xi)

2

2Cii

) (11)

From the Gaussian approximation (11) we can extract a discrete approximation:

p̂(xi = a|y) ∝ f(xi; zi, Cii) = exp(−
(zi − a)2

2Cii

) , a ∈ A (12)
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Input: A constrained linear LS problem:Hx+ ǫ = y, a noise levelσ2 and a finite symbol setA.

Goal: Find (approx. to)argminx∈An ‖Hx− y‖2

Algorithm:

• Computez = (H
⊤

H + σ2

e
I)−1

H
⊤

y andC = σ2(H
⊤

H + σ2

e
I)−1.

• Denote:

f(xi; z, C) = exp(−
1

2

(xi − zi)
2

Cii

)

f(xi|xj ; z, C) = exp(−
1

2

((xi − zi) − Cij/Cjj(xj − zj))
2

Cii − C2
ij/Cjj

)

• compute maximum spanning tree of then-node graph where the weight of thei-j edge
is the square of the correlation coefficient:

ρ2
ij = C2

ij/(CiiCjj)

Assume the tree is rooted at node ‘1’ and denote the parent of nodei by p(i).

• Apply BP on the loop free MRF:

p̂(x1, ..., xn|y) ∝ f(x1; z, C)

n
∏

i=2

f(xi|xp(i); z, C) x1, ..., xn ∈ A

to find the (approx. to the) most likely configuration.

Figure 2: The Gaussian Tree Approximation (GTA) Algorithm.

Taking the most likely symbol we obtain the sub-optimal linear solution (4).

Motivated by the simple product-of-marginals approximation described above, we suggest approx-
imating the discrete distributionp(x|y) via a tree-based approximation of the Gaussian distribution
f(x; z, C). Although the Chow-Liu algorithm was originally stated for discrete distributions, one
can easily verify that it also applies for the Gaussian case. Let

I(xi;xj) = logCii + logCjj − log

∣

∣

∣

∣

Cii Cij

Cji Cjj

∣

∣

∣

∣

= − log(1 − ρ2
ij)

be the mutual information ofxi andxj based on the Gaussian distributionf(x; z, C), whereρij is
the correlation coefficient betweenxi andxj . Let f̂(x) be the optimal Chow-Liu tree approximation
of f(x; z, C). We can assume, without loss of generality, thatf̂(x) is rooted atx1. f̂(x) is a loop-
free Gaussian distribution onx1, ..., xn, i.e.

f̂(x) = f(x1; z, C)

n
∏

i=2

f(xi|xp(i); z, C) , x ∈ Rn (13)

wherep(i) is the ‘parent’ of thei-th node in the optimal tree. The Chow-Liu algorithm guarantees
that f̂(x) is the optimal Gaussian tree approximation off(x; z, C) in the sense that the KL diver-
genceD(f ||f̂) is minimal among all the Gauss-Markov distributions onRn. We note in passing that
applying a monotonic function on the graph weights does not change the topology of the optimal
tree. Hence to find the optimal tree we can use the weightsρ2

ij instead of− log(1−ρ2
ij). The optimal

tree, therefore is one that maximizes the sum of the square correlation coefficients between adjacent
nodes.
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Our approximation approach is, therefore, based on replacing the true distributionp(x|y) with the
following approximation:

p̂(x1, ..., xn|y) ∝ f̂(x) = f(x1; z, C)

n
∏

i=2

f(xi|xp(i); z, C) , x ∈ An (14)

The probability function̂p(x|y) is a loop free factor graph. Hence the BP algorithm can be applied
to find its most likely configuration. An optimal BP schedule requires passing a message once for
each direction of each edge. The BP messages are first sent from leaf variables to the root and then
back to the leaves. We demonstrate empirically in the experiment section that the optimal solution
of p̂(x|y) is indeed nearly optimal forp(x|y).

The MMSE Bayesian approach (5) is known to be better than the linear based solution (4). In
a similar way we can consider a Bayesian version of the proposed Gaussian tree approximation.
We can partially incorporate the information thatx ∈ An by using the prior Gaussian distribution
x ∼ N (0, eI) such thate = 1

|A|

∑

a∈A a
2. This yields the posterior Gaussian distribution:

f(x|y)(x|y) ∝ exp(−
1

2e
‖x‖2 −

1

2σ2
‖Hx− y‖2) (15)

∝ exp(−
1

2
(x − E(x|y))

⊤

(H
⊤

H +
σ2

e
I)(x − E(x|y))

such thatE(x|y) = (H
⊤

H + σ2

e
I)−1

H
⊤

y. We can apply the Chow-Liu tree approximation on
the Gaussian distribution (15) to obtain a ‘Bayesian’ Gaussian tree approximation forp(x|y). One
can expect that this yields is a better approximation of the discrete distributionp(x|y) than the tree
distribution that is based on the unconstrained distributionf(x; z, C) since it partially includes the
finite-set constraint. We show in Section 4 that the Bayesian version indeed yields better results.

To summarize, our solution to the constrained least squares problem is based on applying BP on
a Gaussian tree approximation of the Bayesian version of the continuous least-square case. We
dub this method “The Gaussian-Tree-Approximation (GTA) Algorithm”. The GTA algorithm is
summarized in Fig. 3. We next compute the complexity of the GTA algorithm. The complexity
of computing the covariance matrix(H

⊤

H + σ2

e
I)−1 is O(n3), the complexity of the Chow-Liu

algorithm (based on Prim’s algorithm for finding the minimum spanning tree) isO(n2) and the
complexity of the BP algorithm isO(|A|2n).

4 Experimental Results

In this section we provide simulation results for the GTA algorithm over various MIMO systems.
We assume a frame length of 100, i.e. the channel matrixH is constant for 100 channel uses.
The channel matrix comprised iid elements drawn from a zero-mean normal distribution of unit
variance. We used104 realizations of the channel matrix. This resulted in106 vector messages. The
performance of the proposed algorithm is shown as a function of the variance of the additive noise
σ2. The signal-to-noise ratio (SNR) is defined as10 log10(Es/N0) whereEs/N0 = ne

σ2 (n is the
number of variables,σ2 is the variance of the Gaussian additive noise, ande is the variance of the
uniform distribution over the discrete setA).

Fig. 3 shows the symbol error rate (SER) versus SNR for a10×10, |A| = 8, MIMO system and
for a20×20, |A| = 4, MIMO system. Note that the algorithm was applied in Fig. 3 to a real world
practical application (MIMO communication) using real world parameters. Unlike other areas (e.g
computer vision, bioinformatics) here the real world performance analysis is based on extensive
simulations of the communication channel. Note that a20 × 20 fully connected MRF is not a small
problem and unlike the Potts model that is defined on a grid MRF, the BP and it variants do not
work here. The performance of the GTA method was compared to the MMSE and the MMSE-
SIC algorithms (see Section 2). The GTA algorithm differs from these algorithms in two ways.
The first is a Markovian approximation off(x; z, C) instead of a product of independent densities.
The second aspect is utilizing the optimal tree. To clarify the contribution of each component we
modified the GTA algorithm by replaced the Chow-Liu optimal tree by the tree1 → 2 → 3, ...,→ n.
We call this method the ‘Line-Tree’. As can be seen from Fig. 3, using the optimal tree is crucial
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to obtain improved results. Fig. 3b also shows results of the non-Bayesian variant of the GTA
algorithm. As can be seen, the Bayesian version yields better results. In Fig. 3a the two versions
yield the same results. It can be seen that the performance of the GTA algorithm is significantly
better than the MMSE-SIC (and its computational complexity is much smaller).
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(a)10 × 10, |A| = 8 (b) 20 × 20, |A| = 4

Figure 3: Comparative results of MMSE, MMSE-SIC and variants of the GTA.
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Figure 4: Comparative results of MMSE, MMSE-SIC and the GTA approximation followed by the
sum-product and max-product variants of the BP algorithm. The alphabet size is|A| = 8 and the
results are shown as a function of the matrix sizen× n.

Fig. 4 depicts comparative performance results as a function ofn, the size of the linear system. The
alphabet size in all the experiments was|A| = 8 and as in Fig. 3 each experiment was repeated
104×102 times. The performance of the GTA method was compared to the MMSE and the MMSE-
SIC algorithms (see Section 2). In Fig. 4a the noise variance was set toσ2 = 2.5 and in Fig. 4b to
σ2 = 0.25. In all cases the GTA was found to be better than the MMSE-SIC. The GTA algorithm
is based on an optimal Gaussian tree approximation followed by a BP algorithm. There are two
variants of the BP, namely the max-product (MP) and the sum-product (SP). Since the performance
is measured in symbol error-rate and not frame error-rate the SP should yield improved results. Note
that if the exact distribution was loop-free then SP would obviously be the optimal method when
the error is measured in number of symbols. However, since the BP is applied to an approximated
distribution the superiority of the SP is not straightforward. When the noise level is relatively high
the sum-product version is better than the max-product. When the noise level is lower there is no
significant difference between the two BP variants. Note that from an algorithmic point of view, the
MP unlike the SP, can be easily computed in the log domain.
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5 Conclusion

Solving integer linear least squares problems is an important issue in many fields. We proposed a
novel technique based on the principle of a tree approximation of the Gaussian distribution that cor-
responds to the continuous linear problem. The proposed method improved performance compared
to all other polynomial algorithms for solving the problem as demonstrated in simulations. As far
as we know this is the first successful attempt to apply the BP paradigm to completely connected
MRF. A main concept in the GTA model is the interplay between discrete and Gaussian models.
Such hybrid ideas can be considered also for discrete inference problems other than least-squares.
One example is the work of Opper and Winther who applied an iterative algorithm using a model
which is seen as discrete and Gaussian in turn to address Ising model problems [13]. Although the
focus of this paper is on an approach based on tree approximation, more complicated approxima-
tions such as multi-parent trees have potential to improve performance and can potentially provide a
smooth performance-complexity trade-off. Although the proposed method yields improved results,
the tree approximation we applied nay not be the best one (finding the best tree for the integer con-
strained linear problem is NP hard). It is left for future research to search for a better discrete tree
approximation for the constrained linear least squares problem.
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