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Abstract

We present a new framework for semi-supervised learning with sparse eigenfunc-
tion bases of kernel matrices. It turns out that when the data has clustered, that
is, when the high density regions are sufficiently separated by low density valleys,
each high density area corresponds to a unique representative eigenvector.
Linear combination of such eigenvectors (or, more precisely, of their Nystrom
extensions) provide good candidates for good classification functions when the
cluster assumption holds. By first choosing an appropriate basis of these eigen-
vectors from unlabeled data and then using labeled data with Lasso to select a
classifier in the span of these eigenvectors, we obtain a classifier, which has a very
sparse representation in this basis. Importantly, the sparsity corresponds naturally
to the cluster assumption.
Experimental results on a number of real-world data-sets show that our method
is competitive with the state of the art semi-supervised learning algorithms and
outperforms the natural base-line algorithm (Lasso in the Kernel PCA basis).

1 Introduction
Semi-supervised learning, i.e., learning from both labeled and unlabeled data has received con-
siderable attention in recent years due to its potential in reducing the need for expensive labeled
data. However, to make effective use of unlabeled examples one needs to make some assumptions
about the connection between the process generating the data and the process of assigning labels.
There are two important assumptions popular in semi-supervised learning community the “cluster
assumption” [CWS02] and the “manifold assumption” [BNS06] as well as a number of model-based
methods, such as Naive Bayes [HTF03]. In particular, the cluster assumption can be interpreted as
saying that two points are likely to have the same class labels if they can be connected by a path
passing through a high density area. In other words two high density areas with different class labels
must be separated by a low density valley.
In this paper, we develop a framework for semi-supervised learning when the cluster assumption
holds. Specifically, we show that when the high density areas are sufficiently separated, a few ap-
propriately chosen eigenfunctions of a convolution operator (which is the continuous counterpart
of the kernel matrix) represents the high density areas reasonably well. Under the ideal conditions
each high density area can be represented by a single unique eigenfunction called the “representa-
tive” eigenfunction. If the cluster assumption holds, each high density area will correspond to just
one class label and thus a sparse linear combination of these representative eigenfunctions would be
a good classifier. Moreover, the basis of such eigenfunctions can be learned using only the unlabeled
data by constructing the Nystrom extension of the eigenvectors of an appropriate kernel matrix.
Thus, given unlabeled data we construct the basis of eigenfunctions and then apply L1 penalized
optimization procedure Lasso [Tib96] to fit a sparse linear combination of the basis elements to
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the labeled data. We provide a detailed theoretical analysis of the algorithm and show that it is
comparable to the state-of-the-art on several common UCI datasets.
The rest of the paper is organized as follows. In section 2 we provide the proposed framework
for semi-supervised learning and describe the algorithm. In section 3 we provide an analysis of
this algorithm to show that it can consistently identify the correct model. In section 4 we provide
experimental results on synthetic and real datasets and finally we conclude with a discussion in
section 5.

2 Semi-supervised Learning Framework
2.1 Outline of the Idea
In this section we present a framework for semi-supervised learning under the cluster assumption.
Specifically we will assume that (i) data distribution has natural clusters separated by regions of low
density and (ii) the label assignment conforms to these clusters.
The recent work of [SBY08a, SBY08b] shows that if the (unlabeled) data is clustered, then for each
high density region there is a unique (representative) eigenfunction of a convolution operator, which
takes positive values for points in the chosen cluster and whose values are close to zero everywhere
else (no sign change). Moreover, it can be shown (e.g., [RBV08]) that these eigenfunctions can be
approximated from the eigenvectors of a kernel matrix obtained from the unlabeled data.
Thus, if the cluster assumption holds we expect each cluster to have exactly one label assignment.
Therefore eigenfunctions corresponding to these clusters should produce a natural sparse basis for
constructing a classification function.
This suggests the following learning strategy:

1. From unlabeled and labeled data obtain the eigenvectors of the Gaussian kernel matrix.
2. From these eigenvectors select a subset of candidate eigenvectors without sign change.
3. Using the labeled data, apply Lasso (sparse linear regression) in the constructed basis to

obtain a classifier.
4. Using the Nystrom extension (see [BPV03]), extend the eigenvectors to obtain the classifi-

cation function defined everywhere.

Connection to Kernel PCA ( [SSM98]). We note that our method is related to KPCA, where data is
projected onto the space spanned by the top few eigenvectors of the kernel matrix and classification
or regression task can be performed in that projected space. The important difference is that we
choose a subset of the eigenvectors in accordance to the cluster assumption. We note that the method
simply using the KPCA basis does not seem to benefit from unlabeled data and, in fact, cannot
outperform the standard fully supervised SVM classifier. On the other hand, our algorithm using a
basis subselection procedure shows results comparable to the state of the art.
This is due to two reasons. We will see that each cluster in the data corresponds to its unique
representative eigenvector of the kernel matrix. However, this eigenvector may not be among the
top eigenvectors and may thus be omitted when applying KPCA. Alternatively, if the representa-
tive eigenvector is included, it will be included with a number of other uninformative eigenvectors
resulting in poor performance due to overfitting.
We now proceed with the detailed discussion of our algorithm and its analysis.

2.2 Algorithm
The focus of our discussion will be binary classification in the semi-supervised setting. Given l
labeled examples {(xi, yi)}li=1 sampled from an underlying joint probability distribution PX ,Y ,
X ⊂ R

d,Y = {−1, 1}, where xis are the data points, yis are their corresponding labels and u
unlabeled examples {xi}l+ui=l+1 drawn iid from the marginal distribution PX , we choose a Gaus-
sian kernel k(x, z) = exp

(

−‖x−z‖2

2ω2

)

with kernel bandwidth ω to construct the kernel matrix K
where Kij = 1

uk(zi, zj). Let (λi,vi)
u
i=1 be the eigenvalue-eigenvector pair of K sorted by the

non-increasing eigenvalues. It has been shown ([SBY08a, SBY08b]) that when data distribution PX
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has clusters, for each high density region there is a unique representative eigenfunction of a convo-
lution operator that takes positive values around the chosen cluster and is close to zero everywhere
else. Moreover these eigenfunctions can be approximated from the eigenvectors of a kernel matrix
obtained from the unlabeled data ([RBV08]), thus for each high density region there is a unique rep-
resentative eigenvector of the kernel matrix that takes only positive or negative values in the chosen
cluster and is nearly zero everywhere else (no sign change).
If the cluster assumption holds, i.e., each high density region corresponds to a portion of a pure class,
then the classifier can be naturally expressed as a linear combination of the representative eigenfunc-
tions. representative eigenvector basis and a linear combination of the representative eigenvectors
will be a reasonable candidate for a good classification function. However, identifying representative
eigenvectors is not very trivial because in real life depending on the separation between high density
clusters the representative eigenvectors can have no sign change up to some small precision ε > 0.
Specifically, we say that a vector e = (e1, e2, ..., en) ∈ R

n has no sign change up to precision ε if
either ∀i ei > −ε or ∀i ei < ε. Let Nε be the set of indices of all eigenvectors that have no sign
change up to precision ε. If ε is chosen properly, Nε will contain representative eigenvectors (note
that the set Nε and the set {1, 2, ..., |Nε|} are not necessarily the same). Thus, instead of identifying
the representative eigenvectors, we carefully select a small set containing the representative eigen-
vectors. Our goal is to learn a linear combination of the eigenvectors

∑

i∈Nε
βivi which minimizes

classification error on the labeled examples and the coefficients corresponding to non-representative
eigenvectors are zeros. Thus, the task is more of model selection or sparse approximation.
Standard approach to get a sparse solution is to minimize a convex loss function V on the labeled
examples and apply a L1 penalty (on βis). If we select V to be square loss function, we end up
solving the L1 penalized least square or so called Lasso [Tib96], whose consistency property was
studied in [ZY06]. Thus we would seek a solution of the form

arg min
β

(y − Ψβ)T (y − Ψβ) + λ||β||L1 (1)

which is a convex optimization problem, where Ψ is the l × |Nε| design matrix whose ith column
is the first l elements of vNε(i), y ∈ R

l is the label vector, β is the vector of coefficients and λ is a
regularization parameter. Note that solving the above problem is equivalent to solving

arg min
β

(y − Ψβ)T (y − Ψβ) s.t.
∑

i∈Nε

|βi| ≤ t (2)

because for any given λ ∈ [0,∞), there exists a t ≥ 0 such that the two problems have
the same solution, and vice versa [Tib96]. We will denote the solution of Equation 2, by β̂.
To obtain a classification function which is defined everywhere, we use the Nystrom extension
of the ith eigenvector defined as ψi(x) = 1

λi

√
l+u

∑l+u
j=1 vi(xj)k(x,xj). Let the set T con-

tains indices of all nonzero β̂is. Using Nystrom extension, classification function is given by,
f(x) =

∑

i∈T β̂iψi(x) =
∑l+u
i=1 Wik(xi,x), where, W ∈ R

u is a weight vector whose ith ele-
ment is given by

Wi =
∑

j∈T

β̂jvj(xi)

λj
√
u

(3)

and can be computed while training.

Algorithm for Semi-supervised Learning

Input: {(xi, yi)}li=1, {xi}l+ui=l+1
Parameters: ω, t, ε

1. Construct kernel matrix K from l + u unlabeled examples {xi}l+ui=1 .
2. Select set Nε containing indices of the eigenvectors with no sign change up to precision ε.
3. Construct design matrix Ψ whose ith column is top l rows of vNε(i).

4. Solve Equation 2 to get β̂ and calculate weight vector W using Equation 3.
5. Given a test point x, predict its label as y = sign (

∑u
i=1 k(xi,x)Wi)

3



3 Analysis of the Algorithm
The main purpose of the analysis is, (i) to estimate the amount of separation required among the high
density regions which ensures that each high density region can be well represented by a unique
(representative) eigenfunction, (ii) to estimate the number of unlabeled examples required so that
eigenvectors of kernel matrix can approximate the eigenfunctions of a convolution operator (defined
below) and (iii) to show that using few labeled examples Lasso can consistently identify the correct
model consisting of linear combination of representative eigenvectors.
Before starting the actual analysis, we first note that the continuous counterpart of the Gram matrix
is a convolution operator LK : L2(X ,PX ) → L2(X ,PX ) defined by,

(LKf)(x) =

∫

X
k(x, z)f(z)dPX (z) (4)

The eigenfunctions of the symmetric positive definite operator LK will be denoted by φLi .
Next, we briefly discuss the effectiveness of model selection using Lasso (established by [ZY06])
which will be required for our analysis. Let β̂l(λ) be the solution of Equation 1 for a chosen
regularization parameter λ. In [ZY06] a concept of sign consistency was introduced which states
that Lasso is sign consistent if, as l tends to infinity, signs of β̂l(λ) matches with the signs of β∗ with
probability 1, where β∗ is the coefficients of the correct model. Note that since we are expecting a
sparse model, matching zeros of β̂l(λ) to the zeros of β∗ is not enough, but in addition, matching
the signs of the non zero coefficients ensures that the true model will be selected. Next, without loss
of generality assume β∗ = (β∗

1 , · · · , β∗
q , β

∗
q+1, · · · , β∗

|Nε|) has only first q terms non-zero, i.e., only
q predictors describe the model and rest of the predictors are irrelevant in describing the model. Now
let us write the first q and |Nε| − q columns of Ψ as Ψ(1) and Ψ(2) respectively. Let C = 1

lΨ
TΨ.

Note that, for a random design matrix, sign consistency is equivalent to irrepresentable condition
(see [ZY06]). When β∗ is unknown, in order to ensure that irrepresentable condition holds for all
possible signs, it requires that L1 norm of the regression coefficients corresponding to the irrelevant

predictors to be less than 1, which can be written as µΨ = maxψu
j ∈Ψ(2)

∣

∣

∣

∣

∣

∣

∣

∣

(

ΨT
(1)Ψ(1)

)T

ΨT
(1)ψ

u
j

∣

∣

∣

∣

∣

∣

∣

∣

1

<

1. The requirement µΨ < 1 is not new and have also appeared in the context of noisy or noiseless
sparse recovery of signal [Tro04, Wai06, Zha08]. Note that Lasso is sign consistent if irrepresentable
condition holds and the sufficient condition needed for irrepresentable condition to hold is given by
the following result,
Theorem 3.1. [ZY06] Suppose β∗ has q nonzero entries. Let the matrix C ′ be normalized version
of C such that C ′

ij =
Cij

Cii
and maxi,j,i6=j |C ′

ij | ≤ c
2q−1 for a constant 0 ≤ c < 1, then strong

irrepresentable condition holds.
Our main result in the following shows that this sufficient condition is satisfied with high probability
requiring relatively few labeled examples, as a result the correct model is identified consistently,
which in turn describes a good classification function.
Theorem 3.2. Let q be the minimum number of columns of the design matrix Ψ ∈ R

l×|Nε|, con-
structed from l labeled examples, that describes the sparse model. Then for any 0 < δ < 1, if

the number of unlabeled examples u satisfies u >
2048q2 log( 2

δ )
g2

Nmax
λ2

Nmax

, then with probability greater than

1 − δ
2 − 4 exp

(

− lλ2
Nmax

50q2

)

, maxi6=j |C ′
ij | < 1

2q−1 .

where λNmax
is the N th

max (to be defined later) largest eigenvalue of LK and gNmax
is the N th

max
eigengap. Note that in our framework, unlabeled examples help polynomially fast in estimating
the eigenfunctions while labeled examples help exponentially fast in identifying the sparse model
consisting of representative eigenfunctions. Interestingly, in semi-supervised learning setting, sim-
ilar role of labeled and unlabeled examples (in reducing classification error) has been reported in
literature [CC96, RV95, SB07, SNZ08].
3.1 Brief Overview of the Analysis
As a first step of our analysis, in section 3.2, we estimate the separation requirement among the
high density regions which ensures that each high density region (class) can be well represented
by a unique eigenfunction. This allows us to express the classification task in this eigenfunction
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basis where we look for a classification function consisting of linear combination of representative
eigenfunctions only and thus relate the problem to sparse approximation from the model selection
point of view, which is a well studied field [Wai06, ZH06, CP07].
As a second step in section 3.3, using perturbation results from [RBV08], we estimate the number of
unlabeled examples required to ensure that Nystrom extensions of eigenvectors of K approximate
the eigenfunctions of the convolution operator LK reasonably well with high probability.
Finally, as a third step in section 3.4, we establish a concentration inequality, which along with
result from the second step 2, ensures that as more and more labeled examples are used to fit the
eigenfunctions basis to the data, the probability that Lasso identifies correct model consisting of
representative eigenfunctions increases exponentially fast.
3.2 Separation Requirement
To motivate our discussion we consider binary classification problem where the marginal density
can be considered as a mixture model where each class has its own probability density function,
p1(x), p2(x) and corresponding mixing weights π1, π2 respectively. Thus, the density of the mixture
is p(x) = π1p1(x) + π2p2(x). We will use the following results from [SBY08a] specifying the
behavior of the eigenfunction of LK corresponding to the largest eigenvalue.
Theorem 3.3. [SBY08a] The top eigenfunction φL0 (x) of LK corresponding to the largest eigen-
value λ0, (1) is the only eigenfunction with no sign change, (2) has multiplicity one, (3) is non zero

on the support of the underlying density, (4) satisfies |φL0 (x)| ≤ 1
λ0

√

∫

k2(x, z)p(z)dz (Tail decay

property), where p is the underlying probability density function.

Note that the last (tail decay) property above is not restricted to the top eigenfunction alone
but is satisfied by all eigenfunctions of LK . Now, consider applying LK to the three cases
when the underlying probability distributions are p1, p2 and p. The largest eigenvalues and
corresponding eigenfunctions in the above three cases are λ1

0, λ
2
0, λ0 and φL,10 , φL,20 , φL0 respec-

tively. To show explicit dependency on the underlying probability distribution, we will denote
the corresponding operators as Lp1K , L

p2
K and LpK respectively. Clearly, LpK = π1L

p1
K + π2L

p2
K .

Then we can write, LpKφ
L,1
0 (x) =

∫

k(x, z)φL,10 (z)p(z)dz = π1λ
1
0

(

φL,10 + T1(x)
)

where,
T1(x) = π2

π1λ1
0

∫

k(x, z)φL,10 (z)p2(z)dz. In a similar way we can write, LpKφ
L,2
0 (x) =

π2λ
2
0

(

φL,20 + T2(x)
)

where, T2(x) = π1

π2λ2
0

∫

k(x, z)φL,20 (z)p1(z)dz. Thus, when T1(x) and
T2(x) are small enough then φL,10 and φL,20 are eigenfunctions of LpK with corresponding eigen-
values π1λ

1
0 and π2λ

2
0 respectively. Note that “separation condition” requirement refers to T1(x),

T2(x) being small, so that eigenfunctions corresponding to the largest eigenvalues of convolution
operator when applied to individual high density bumps are preserved in the case when convolution
operator is applied to the mixture. Clearly, we can not expect T1(x), T2(x) to arbitrarily small if
there is sufficient overlap between p1 and p2. Thus, we will restrict ourselves to the following class
of probability distributions for each individual class which has reasonably fast tail decay.
Assumption 1. For any 1/2 < η < 1, let M(η,R) be the class of probability distributions such
that its density function p satisfies
1)

∫

R p(x)d(x) = η where R is the minimum volume ball around the mean of the distribution.
2) For any positive t > 0, smaller than the radius of R, and for any point z ∈ X \ R with
dist(z,R) ≥ t, the volume S = {x ∈ (X \ R) ∩ B(z, 3t/

√
2)} has total probability mass

∫

S p(x)dx ≤ C1η exp
(

−dist2(z,R)
t2

)

for some C1 > 0.

where the distance between a point x and set D is defined as dist(x,D) = infy∈D ||x − y||. With
a little abuse of notation we will use p ∈ M(η,R) to mean that p is the probability density function
of a member of M(η,R). Now a rough estimate of separation requirement can be given by the
following lemma.
Lemma 3.1. Let p1 ∈ M(η,R1) and p2 ∈ M(η,R2) and let the minimum distance between R1,R2

be ∆. If ∆ = Ω∗
(

ω
√
d
)

then T1(x) and T2(x) can be made arbitrarily small for all x ∈ X .

The estimate of ∆ in the above lemma, where we hide the log factor by Ω∗, is by no means tight,
nevertheless, it shows that separation requirement refers to existence of a low density valley between
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two high density regions each corresponding to one of the classes. This separation requirement is
roughly of the same order required to learn mixture of Gaussians [Das99]. Note that, provided
separation requirement is satisfied, φL,10 and φL,20 are not necessarily the top two eigenfunctions of
LK corresponding to the two largest eigenvalues but can be quite far down the spectrum of LpK
depending on the mixing weights π1, π2. Next, the following lemma suggests that we can say more
about the eigenfunction corresponding to the largest eigenvalue.
Lemma 3.2. For any e

1+e < η < 1, let q ∈ M(η,R). If φL0 is the eigenfunction of LqK correspond-
ing to the largest eigenvalue λ0 then there exists a C1 > 0 such that

1) For all x ∈ X \ R, |φL0 (x)| ≤
√

(C1+η)

λ0
exp

(

−dist2(x,R)
2ω2

)

2) For all z ∈ R and x ∈ X \ R, |φL0 (z)| ≥ |φL0 (x)|

Thus for each class, top eigenfunction corresponding to the largest eigenvalue represents high den-
sity region reasonably well, outside high density region is has lower absolute value and decays
exponentially fast.
3.3 Finite Sample Results
We start with the following assumption.
Assumption 2. The Nmax largest eigenvalues of LK and K, where Nmax = maxi{i : i ∈ Nε}, are
simple and bounded away from zero.

Note that Nystrom extension ψis are eigenfunctions of an operator LK,H : H → H , where H
is the unique RKHS defined by the chosen Gaussian kernel and all the eigenvalues of K are also
eigenvalues of LK,H ([RBV08]). There are two implications of Assumption 2. The first one is due
to the bounded away from zero part, which ensures that if we restrict to ψi ∈ H corresponding to the
largest Nmax eigenvalues, then each of them is square integrable hence belongs to L2(X ,PX ). The
second implication due to the simple part, ensures that eigenfunctions corresponding to the Nmax

largest eigenvalues are uniquely defined and so are the orthogonal projections on to them. Note that
if any eigenvalue has multiplicity greater than one then the corresponding eigenspace is well defined
but not the individual eigenfunctions. Thus, Assumption 2 enables us to compare how close each ψi
is to some other function in L2(X ,PX ) in L2(X ,PX ) norm sense. Let gNmax

be theN th
max eigengap

when eigenvalues of LK are sorted in non increasing order. Then we have the following results.
Lemma 3.3. Suppose Assumption 2 holds and the top Nmax eigenvalues of LK and K are sorted in
the decreasing order. Then for any 0 < δ < 1 and for any i ∈ Nε, with probability at least (1 − δ),

‖ψi − φLi ‖L2(X ,PX ) = 2
gNmax

√

2 log(2/δ)
uλi

Corollary 3.1. Under the above conditions, for any 0 < δ < 1 and for any i, j ∈ Nε, with
probability at least (1 − δ) the following holds,

1)
∣

∣〈ψi, ψj〉L2(X ,PX )

∣

∣ ≤
(

8 log(2/δ)

g2
Nmax

√
λiλj

)

1
u +

(√
8 log(2/δ)

gNmax

(

1√
λi

+ 1√
λj

))

1√
u

2) 1 −
(

√

8 log(2/δ)
g2

Nmax
λi

)

1√
u
≤ ‖ψui ‖L2(X ,PX ) ≤ 1 +

(
√

8 log(2/δ)
g2

Nmax
λi

)

1√
u

3.4 Concentration Results
Having established that {ψi}i∈Nε

approximate the top Nε eigenfunctions of LK reasonably well,
next, we need to consider what happens when we restrict each of the ψis to finite labeled examples.
Note that the design matrix Ψ ∈ R

l×|Nε| is constructed by restricting the {ψj}j∈Nε
to l labeled data

points {xi}li=1 such that the ith column of Ψ is
(

ψNε(i)(x1), ψNε(i)(x2), · · · , ψNε(i)(xl)
)T ∈ R

l.
Now consider the |Nε| × |Nε| matrix C = 1

lΨ
TΨ where, Cij = 1

l

∑l
k=1 ψNε(i)(xk)ψNε(j)(xk).

First, applying Hoeffding’s inequality we establish,
Lemma 3.4. For all i, j ∈ Nε and ε1 > 0 the following two facts hold.

P

(
∣

∣

∣

1
l

∑l
k=1[ψi(xk)]

2 − E
(

[ψi(X)]2
)

∣

∣

∣
≥ ε1

)

≤ 2 exp
(

− lε21λ
2
i

2

)

P

(∣

∣

∣

1
l

∑l
k=1 ψi(xk)ψj(xk) − E (ψi(X)ψj(X))

∣

∣

∣
≥ ε1

)

≤ 2 exp
(

− lε21λiλj

2

)

Next, consider the |Nε| × |Nε| normalized matrix C ′ where C ′
ij =

Cij

Cii
and C ′

ii = 1. To en-
sure that Lasso will consistently choose the correct model we need to show (see Theorem 3.1) that
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maxi6=j |C ′
ij | < 1

2q−1 with high probability. Applying the above concentration result and finite
sample results yields Theorem 3.2.

4 Experimental Results

4.1 Toy Dataset
Here we present a synthetic example in 2-D. Consider a binary classification problem where the
positive examples are generated from a Gaussian distribution with mean (0, 0) and covariance ma-
trix [2 0; 0 2] and the negative examples are generated from a mixture of Gaussians having means
and covariance matrices (5, 5), [2 1; 1 2] and (7, 7), [1.5 0; 0 1.5] respectively. The correspond-
ing mixing weights are 0.4, 0.3 and 0.3 respectively. Left panel in Figure 1 shows the probability
density of the mixture in blue and representative eigenfunctions of each class in green and magenta
respectively using 1000 examples (positive and negative) drawn from this mixture. It is clear that
each representative eigenfunction represents high density area of a particular class reasonably well.
So intuitively a linear combination of them will represent a good decision function. In fact, the
right panel of Fig 1 shows the regularization path for L1 penalized least square regression with 20
labeled examples. The bold green and magenta lines shows the coefficient values for the representa-
tive eigenfunctions for different values of regularization parameter t. As can be seen, regularization
parameter t can be so chosen that the decision function will consist of a linear combination of repre-
sentative eigenfunctions only. Note that these representative eigenfunctions need not be the top two
eigenfunctions corresponding to the largest eigenvalues.
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Figure 1: Left panel: Probability density of the mixture in blue and representative eigenfunctions
in green and magenta. Right panel: Regularization path. Bold lines correspond to regularization
path associated with representative eigenfunctions.

4.2 UCI Datasets
In this set of experiment we tested the effectiveness of our algorithm (we call it SSL SEB) on some
common UCI datasets. We compared our algorithm with state of the art semi-supervised learning
(manifold regularization) method Laplacian SVM (LapSVM) [BNS06], fully supervised SVM and
also two other kernel sparse regression methods. In KPCA+L1 we selected top |Nε| eigenvectors,
and applied L1 regularization, in KPCA F+L1 we selected the top 20 (fixed) eigenvectors of Ku

and applied L1 regularization1, where as in KPCA max+L1 we selected top max eigenvectors, and
applied L1 regularization, where max is the maximum index of set of eigenvectors in Nε, that is the
index of the lowest eigenvector, chosen by our method. For both SVM and LapSVM we used RBF
kernel. In each experiment a specified number of examples (l) were randomly chosen and labeled
and the rest (u) were treated as unlabeled test set. Such random splitting was performed 30 times
and the average is reported.
The results are reported in Table 1. As can be seen, for small number of labeled examples our method
convincingly outperform SVM and is comparable to LapSVM. The result also suggests that instead
of selecting top few eigenvectors, as is normally done in KPCA, selecting them by our method
and then applying L1 regularization yields better result. In particular, in case of IONOSPHERE
and BREAST-CANCER data sets top |Nε| (5 and 3 respectively) eigenvectors do not contain the
representative ones. As a result in these two cases KPCA+L1 performs very poorly. Table 2 shows
that the solution obtained by our method is very sparse, where average sparsity is the average number
of non-zero coefficients.
We note that our method does not work equally well for all datasets, and has generally higher
variability than LapSVM.

1We also selected 100 top eigenvectors and applied L
1 penalty but it gave worse result.
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DATA SET IONOSPHERE HEART WINE BREAST-CANCER VOTING
d=33, l+u=351 d=13, l+u=303 d=13, l+u=178 d=30, l+u=569 d=16, l+u=435

# Labeled Data l=10 l=20 l=30 l=10 l=20 l=30 l=10 l=20 l=5 l=10 l=10 l=15

SSL SEB 78.26 85.84 87.25 75.45 77.34 79.92 93.01 98.95 96.68 98.66 86.85 87.84

±13.56 ±10.61 ±4.16 ±6.14 ±6.04 ±1.18 ±8.49 ±8.49 ±3.43 ±2.86 ±6.21 ±3.82

KPCA+L
1 65.15 65.66 69.57 66.82 70.36 75.16 93.47 98.75 70.26 73.95 86.85 87.84

±8.82 ±9.81 ±9.89 ±7.94 ±8.41 ±6.68 ±10.06 ±3.89 ±14.43 ±13.68 ±6.21 ±3.82

KPCA F+L
1 64.92 67.43 69.43 60.91 67.32 71.46 79.82 87.32 63.04 81.44 71.78 77.38

±10.13 ±11.68 ±11.26 ±7.33 ±7.01 ±5.91 ±10.29 ±8.56 ±12.29 ±13.12 ±12.65 ±10.43

KPC max+L
1 59.76 64.73 66.89 57.26 60.16 63.36 84.62 89.96 59.32 73.95 71.78 77.38

±10.23 ±11.62 ±12.45 ±5.16 ±6.69 ±6.15 ±9.63 ±9.26 ±15.18 ±8.97 ±12.65 ±10.43

SVM 65.16 72.09 79.8 64.61 73.16 76.55 83.98 88.12 72.83 97.32 81.53 88.51

±10.87 ±10.04 ±9.94 ±11.63 ±5.95 ±4.29 ±10.25 ±11.68 ±17.56 ±8.65 ±16.05 ±5.88

LapSVM 71.17 77.18 81.32 74.91 75.33 77.43 98.33 97.67 98.95 99.72 89.52 89.97

±7.33 ±4.07 ±3.81 ±5.55 ±6.08 ±3.14 ±5.33 ±1.57 ±2.32 ±1.42 ±1.43 ±1.26

Table 1: Classification Accuracies for different UCI datasets
DATA SET IONOSPHERE HEART WINE BREAST-CANCER VOTING
SSL SEB 2.83 / 5 4.63 / 9 3.52 / 6 2.10 / 3 2.02 / 3
KPCA+L

1 3.23 / 5 5.84 / 9 3.8 / 6 2.78 / 3 2.02/ 3
KPCA F+L

1 6.05 / 20 8.11 / 20 6.12 / 20 4.70 / 20 3.05 / 20
KPC max+L

1 6.85 / 23 16.42 / 78 6.07 /16 10.81 / 57 2.02 / 3

Table 2: Average sparsity of our method for different UCI datasets. The notation A/B represents
average sparsity A and number of eigenvectors (|Nε| or 20).

4.3 Handwritten Digit Recognition
In this set of experiments we applied our method to the 45 binary classification problems that arise
in pairwise classification of handwritten digits and compare its performance with LapSVM. For
each pairwise classification problem, in each trial, 500 images of each digit in the USPS training
set were chosen uniformly at random out of which 20 images were labeled and the rest were set
aside for testing. This trial was repeated 10 times. For the LapSVM we set the regularization
terms and the kernel as reported by [BNS06] for a similar set of experiments, namely we set γAl =
0.005, γI l

(u+l)2 = 0.045 and chose a polynomial kernel of degree 3. The results are shown2 in Figure2.
As can be seen our method is comparable to LapSVM.
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Figure 2: Classification results for USPS dataset
We also performed multi-class classification on USPS dataset. In particular, we chose all the images
of digits 3, 4 and 5 from USPS training data set (there were 1866 in total) and randomly labeled
10 images from each class. Rest of the 1836 images were set aside for testing. Average prediction
accuracy of LapSVM, after repeating this procedure 20 times, was 90.14% as compared to 87.53%
of our method.
5 Conclusion
In this paper we have presented a framework for spectral semi-supervised learning based on the
cluster assumption. We showed that the cluster assumption is equivalent to the classifier being
sparse in a certain appropriately chosen basis and demonstrated how such basis can be computed
using only unlabeled data. We have provided theoretical analysis of the resulting algorithm and
given experimental results demonstrating that the resulting algorithm has performance comparable
to the state-of-the-art for a number of data sets and dramatically outperforms the natural baseline of
KPCA + Lasso.

2It turned out that the cases where our method performed very poorly, the respective distances between the
means of corresponding two classes were very small.
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