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Abstract

The recent introduction of indefinite SVM by Luss and d’Aspremont [15] has ef-
fectively demonstrated SVM classification with a non-positive semi-definite ker-
nel (indefinite kernel). This paper studies the properties of the objective function
introduced there. In particular, we show that the objective function is continuously
differentiable and its gradient can be explicitly computed. Indeed, we further show
that its gradient is Lipschitz continuous. The main idea behind our analysis is that
the objective function is smoothed by the penalty term, in its saddle (min-max)
representation, measuring the distance between the indefinite kernel matrix and
the proxy positive semi-definite one. Our elementary result greatly facilitates the
application of gradient-based algorithms. Based on our analysis, we further de-
velop Nesterov’s smooth optimization approach [17, 18] for indefinite SVM which
has an optimal convergence rate for smooth problems. Experiments on various
benchmark datasets validate our analysis and demonstrate the efficiency of our
proposed algorithms.

1 Introduction

Kernel methods [5, 24] such as Support Vector Machines (SVM) have recently attracted much atten-
tion due to their good generalization performance and appealing optimization approaches. The basic
idea of kernel methods is to map the data into a high dimensional (even infinite-dimensional) feature
space through a kernel function. The kernel function over samples forms a similarity kernel matrix
which is usually required to be positive semi-definite (PSD). The PSD property of the similarity
matrix ensures that the SVM can be efficiently solved by a convex quadratic programming.

However, many potential kernel matrices could be non-positive semi-definite. Such cases are quite
common in applications such as the sigmoid kernel [14] for various values of the hyper-parameters,
hyperbolic tangent kernels [25], and the protein sequence similarity measures derived from Smith-
Waterman and BLAST score [23]. The problem of learning with a non-PSD similarity matrix (in-
definite kernel) has recently attracted considerable attention [4, 8, 9, 14, 20, 21, 26]. One widely
used method is to convert the indefinite kernel matrix into a PSD one by using the spectrum trans-
formation. The denoise method neglects the negative eigenvalues [8, 21], flip [8] takes the absolute
value of all eigenvalues, shift [22] shifts eigenvalues to be positive by adding a positive constant, and
the diffusion method [11] takes the exponentials of eigenvalues. One can also see [26] for a detailed
coverage. However, useful information in the data could be lost in the above spectral transformations
since they are separated from the process of training classifiers. In [9], the classification problem
with indefinite kernels is regarded as the minimization of the distance between convex hulls in the
pseudo-Euclidean space. In [20], general Reproducing Kernel Kreı̌n spaces (RKKS) with indefinite
kernels are introduced which allows a general representer theorem and regularization formulations.

Luss and d’Aspremont [15] recently proposed a regularized formulation for SVM classification
with indefinite kernel. Training a SVM with an indefinite kernel was viewed as a learning the kernel
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matrix problem [13] i.e. learning a proxy PSD kernel matrix to approximate the indefinite one.
Without realizing that the objective function is differentiable, the authors quadratically smoothed
the objective function, and then formulated two approximate algorithms including the projected
gradient method and the analytic center cutting plane method.

In this paper we follow the formulation of SVM with indefinite kernels proposed in [15]. We mainly
establish the differentiability of the objective function (see its precise definition in equation (3)) and
prove that it is, indeed, differentiable with Lipschitz continuous gradient. This elementary result
suggests there is no need to smooth the objective function which greatly facilitates the application
of gradient-based algorithms. The main idea behind our analysis is from its saddle (min-max) rep-
resentation which involves a penalty term in the form of Frobenius norm of matrices, measuring
the distance between the indefinite kernel matrix and the proxy PSD one. This penalty term can be
regarded as a Moreau-Yosida regularization term [12] to smooth out the objective function.

The paper is organized as follows. In Section 2, we review the formulation of indefinite SVM
classification presented in [15]. Our main contribution is outlined in Section 3. There, we first show
that the objective function of interest is continuously differentiable and its gradient function can
be explicitly computed. Indeed, we further show that its gradient is Lipschitz continuous. Based
on our analysis, in Section 4 we propose a simplified formulation of the projected gradient method
presented in [15] and show that it has a convergence rate ofO(1/k) where k is the iteration number.
We further develop Nesterov’s smooth optimization approach [17, 18] for indefinite SVM which
has an optimal convergence rate of O(1/k2) for smooth problems. In Section 5, our analysis and
proposed optimization approaches are validated by experiments on various benchmark data sets.

2 Indefinite SVM Classification

In this section we review the regularized formulation of indefinite SVM presented in [15]. To this
end, we introduce some notation. Let Nn = {1, 2, . . . , n} for any n ∈ N and Sn be the space of
all n × n symmetric matrices. If A ∈ Sn is positive semi-definite, we write it as A º 0. The
cone of PSD matrices is denoted by Sn

+. For any A,B ∈ Rn×n, 〈A,B〉F := Tr(A>B) where
Tr(·) denotes the trace of a matrix. Finally, the Frobenius norm over the vector space Sn is denoted,
for any A ∈ Sn, by ‖A‖F := (Tr(A>A))

1
2 . The standard Euclidean norm and inner product are

respectively denoted by ‖ · ‖ and 〈·, ·〉.
Let a set of training samples be given by inputs x = {xi ∈ Rd : i ∈ Nn} and outputs y = {yi ∈
{±1} : i ∈ Nn}. Suppose that K is a positive semi-definite kernel matrix (proxy kernel matrix)
on inputs x. Let matrix Y = diag(y), vector e be an n-dimensional vector of all ones and C be a
positive trade-off parameter. Then, the dual formulation of 1-norm soft margin SVM [5, 24] is given
by

maxα α>e− 1
2α>Y KY α

s.t. α>y = 0, 0 ≤ α ≤ C.

Since we assume that K is positive semi-definite, the above problem is a standard convex quadratic
program [2] and a global solution can be efficiently obtained by, e.g., the primal-dual interior
method. Suppose now we are only given an indefinite kernel matrix K0 ∈ Sn. Luss and
d’Aspremont [15] proposed the following max-min approach to simultaneously learn a proxy PSD
kernel matrix K for the indefinite matrix K0 and the SVM classification:

minK maxα α>e− 1
2α>Y KY α + ρ‖K −K0‖2F

s.t. α>y = 0, 0 ≤ α ≤ C, K º 0.
(1)

Let Q1 = {α ∈ Rn : α>y = 0, 0 ≤ α ≤ C} and L(α, K) = α>e− 1
2α>Y KY α + ρ‖K −K0‖2F .

By the min-max theorem [2], problem (1) is equivalent to
max
α∈Q1

min
K∈Sn

+

L(α, K). (2)

For simplicity, we refer to the following function defined by
f(α) = min

K∈Sn
+

L(α, K) (3)

as the objective function. It is obviously concave since f is the minimum of a sequence of concave
functions. We also call the associated function L(α, K) the saddle representation of the objective
function f .
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For fixed α ∈ Q1, the optimization K(α) = arg minKº0 L(α, K) is equivalent to a projection to
the semi-definite cone Sn

+. Indeed, it was shown in [15] that the optimal solution is given by

K(α) = (K0 + Y αα>Y/(4ρ))+ (4)

where, for any matrix A ∈ Sn, the notation A+ denotes the positive part of A by simply setting
its negative eigenvalues to zero. The optimal solution (α∗,K∗) ∈ Q1 × Sn

+ to the above min-max
problem is a saddle point of L(α, K) (see e.g. [2]), i.e. for any α ∈ Q1,K ∈ Sn

+ there holds
L(α, K∗) ≤ L(α∗,K∗) ≤ L(α∗,K). For a matrix A ∈ Sn, denote its maximum eigenvalue by
λmax(A). The next lemma tells us that the optimal solution K∗ belongs to a bounded domain in
Sn

+.
Lemma 1. Problem (2) is equivalent to the formulation maxα∈Q1 minK∈Q2 L(α, K) and the ob-
jective function can be defined by

f(α) = min
K∈Q2

L(α, K) (5)

where Q2 :=
{

K ∈ Sn
+ : λmax(K) ≤ λmax(K0) + nC2

4ρ

}
.

Proof. By the saddle theorem [2], we have L(α∗,K∗) = minK∈Q2 L(α∗,K). Combining this
with equation (4) yields that K∗ = K(α∗) = (K0 + Y α∗(α∗)>Y/(4ρ))+. We can easily see
λmax(K∗) ≤ λmax(K0 + Y α∗(α∗)>Y/(4ρ) ≤ λmax(K0) + λmax(Y α∗(α∗)>Y/(4ρ)

) ≤
λmax(K0) + ‖α∗‖2

4ρ , where the second to last inequality uses the property of maximum eigenval-
ues (e.g. [10, Page 201]) i.e. λmax(A + B) ≤ λmax(A) + λmax(B) for any A,B ∈ Sn. Note
that 0 ≤ α∗ ≤ C, ‖α∗‖2 ≤ nC2. Combining this with the above inequality yields the desired
lemma.

It is worthy of mentioning that it was shown in [18, Theorem 1] that a function g has a Lipschitz
continuous gradient if it enjoys a special structure: g(α) = min{〈Aα, K〉 + γd(K) : K ∈ Q}
where Q is a closed convex subset in a certain vector space and d(·) is a strongly convex function,
and, most importantly, A is a linear operator. Since the variable α appeared in a quadratic form, i.e.
α>Y KY α, in the objective function defined by (5), it can not be written as the above special form,
and hence the theorem there can not be applied to our case.

3 Differentiability of the Objective Function

The following lemma outlines a very useful characterization of differentiable properties of the opti-
mal value function [3, Theorem 4.1], essentially due to Danskin [7].
Lemma 2. Let X be a metric space and U be a normed space. Suppose that for all x ∈ X the
function L(α, ·) is differentiable, L(α, x) and ∂αL(α, x), the derivative of L(·, x), are continuous
on X × U and let Q be a compact subset of X . Define the optimal value function as f(α) =
infx∈Q L(α, x). The optimal value function is directionally differentiable. Furthermore, if for α ∈
U , L(α, ·) has a unique minimizer x(α) over Q then f is differentiable at α and the gradient of f is
given by ∇f(α) = ∂αL(α, x(α)).

Applying the above lemma to the objective function f defined by equation (5), we have:
Theorem 1. The objective function f defined by (3) (equivalently by (5)) is differentiable and its
gradient is given by

∇f(α) = e− Y (K0 + Y αα>Y/(4ρ))+Y α. (6)

Proof. We apply Lemma 2 with X = Sn and Q = Q2 ⊆ Sn, U = Q1 and x = K. To this
end, we first prove the uniqueness of K(α). Suppose there are two minimizers K1,K2 for problem
arg minK∈Sn

+
L(α, K). By the first order optimality condition, for the minimizer K1, we have that

〈∂KL(α, K1),K2 −K1〉F ≥ 0. Considering the minimizer K2, we also have 〈∂KL(α, K2),K1 −
K2〉F ≥ 0. Noting that ∂KL(α, K) = − 1

2Y αα>Y + 2ρ(K −K0) and adding the above two first-
order optimaility inequalities together, we have−‖K2−K1‖2F ≥ 0 which means that K1 = K2, and
hence completes the proof of the uniqueness of K(α). Now the desired result follows directly from
Lemma 2 by noting that the derivative of L w.r.t. the first argument ∂αL(α, K) = e− Y KY α.
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Indeed, we can go further to establish the Lipschitz continuity of ∇f based on the strongly convex
property of L(α, ·). To this end, we first establish a useful lemma.
Lemma 3. For any α1, α2 ∈ Q1, there holds ‖(K0 + Y α1α

>
1 Y/(4ρ))+ − (K0 +

Y α2α
>
2 Y/(4ρ))+‖F ≤ (‖α1‖+ ‖α2‖)‖α1 − α2‖/(4ρ).

Proof. Let ∂KL(α, ·) denote the gradient w.r.t. K. Now, consider the minimization prob-
lem arg minK∈Q2 L(α, K). By the first order optimality conditions, for any K ∈ Q2 there
holds 〈∂KL(α, K(α)),K − K(α)〉F ≥ 0. Applying the above inequality twice implies that
〈∂KL(α1,K(α1)),K(α2)−K(α1)〉F ≥ 0, and 〈∂KL(α2,K(α2)),K(α1)−K(α2)〉F ≥ 0. Con-
sequently, 〈∂KL(α1,K(α1)) − ∂KL(α2,K(α2)),K(α2) − K(α1)〉F ≥ 0. Substituting the fact
that ∂KL(α, K) = − 1

2Y αα>Y + 2ρ(K − K0) into the above equation, we have 4ρ‖K(α1) −
K(α2)‖2F ≤ 〈Y (α2α

>
2 − α1α

>
1 )Y, K(α2) − K(α1)〉F ≤ ‖Y (α2α

>
2 − α1α

>
1 )Y ‖F ‖K(α2) −

K(α1)‖F . Consequently,

‖K(α1)−K(α2)‖F ≤ ‖Y (α2α
>
2 − α1α

>
1 )Y ‖F

4ρ
≤ ‖(α2α

>
2 − α1α

>
1 )‖F

4ρ
(7)

where the last inequality follows from the fact that Y is an orthonormal matrix since yi ∈ {±1}
and Y = diag(y1, . . . , yn). Note that ‖α2α

>
2 − α1α

>
1 ‖F = ‖(α2 − α1)α>2 − α1(α1 − α2)>‖F ≤

(‖α1‖+‖α2‖)‖α1−α2‖. Putting this back into inequality (7) completes the proof of the lemma.

It is interesting to point out that the above lemma can be alternatively established by delicate tech-
niques in matrix analysis. To see this, recall that a spectral function G : Sn → Sn is defined
by applying a real-valued function g to the eigenvalues of its argument i.e. for any K ∈ Sn with
eigen-decomposition K = Udiag(λ1, . . . , λn)U>, G(K) := Udiag(g(λ1), . . . , g(λn))U>. The
perturbation inequality in matrix analysis [1, Lemma VII.5.5] shows that if g is Lipschitz continu-
ous with Lipschitz constant κ then ‖G(K1) − G(K2)‖F ≤ κ‖K1 − K2‖F , ∀K1,K2 ∈ Sn.
Applying the above inequality with g(t) = max(0, t) and K1 = K0 + Y α1α

>
1 Y/(4ρ) and

K2 = K0 + Y α2α
>
2 Y/(4ρ) implies equation (7), and hence Lemma 3. However, we prefer the

original proof presented for Lemma 3 since it explains more clearly how the strong convexity of the
regularization term ‖K −K0‖2F plays a critical role in the analysis.

From the above lemma, we can establish the Lipschitz continuity of the gradient of the objective
function.
Theorem 2. The gradient of the objective function given by (6) is Lipschitz continuous with Lipschitz
constant L = λmax(K0)+ nC2

ρ i.e. for any α1, α2 ∈ Q1 the following inequality holds ‖∇f(α1)−
∇f(α2)‖ ≤

[
λmax(K0)) + nC2/ρ

]‖α1 − α2‖.

Proof. For any α1, α2 ∈ Q1, from representation of∇f in Theorem 1 the term ‖∇f(α1)−∇f(α2)‖
can be bounded by{

‖Y [
(K0 + Y α1α

>
1 Y/(4ρ))+ − (K0 + Y α2α

>
2 Y/(4ρ))+

]
Y α1‖

}

+
{
‖Y (K0 + Y α2α

>
2 Y/(4ρ))+Y (α2 − α1)‖

}
.

(8)

Now it remains to estimate the two terms within parentheses on the right-hand side of inequality (8).
Let’s begin with the first one by applying Lemma 3.

‖Y (
(K0 + Y α1α

>
1 Y/(4ρ))+ − (K0 + Y α2α

>
2 Y/(4ρ))+

)
Y α1‖

≤ ‖Y (
(K0 + Y α1α

>
1 Y/(4ρ))+ − (K0 + Y α2α

>
2 Y/(4ρ))+

)
Y ‖F ‖α1‖

≤ ‖(K0 + Y α1α
>
1 Y/(4ρ)

)
+
− (

K0 + Y α2α
>
2 Y/(4ρ)

)
+
‖F ‖α1‖

≤ ‖α1‖ (‖α1‖+ ‖α2‖) ‖α1 − α2‖/(4ρ) ≤ nC2

2ρ ‖α1 − α2‖.
(9)

where the second inequality follows from the fact that Y is an orthonormal matrix. For the
second term on the right-hand side of inequality (8), we apply the fact proved in Theorem 1
that K(α) ∈ Q2 for any α ∈ Q1. Indeed, ‖Y (K0 + Y α2α

>
2 Y/(4ρ))+Y (α2 − α1)‖ ≤

λmax
(
Y (K0 +Y α2α

>
2 Y/(4ρ))+Y

)
‖α2−α1‖ ≤ λmax

(
(K0 +Y α2α

>
2 Y/(4ρ))+

)
‖α2−α1‖ ≤[

λmax(K0) + nC2

4ρ

]
‖α1 − α2‖. Putting this equation and (9) back into equality (8) completes the

proof of Theorem 2.
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Simplified Projected Gradient Method (SPGM)
1. Choose γ ≥ λmax(K0) + nC2

ρ . Let ε > 0, α0 ∈ Q1 be given and set k = 0.

2. Compute ∇f(αk) = e− Y
(
K0 + Y αkα>k Y/(4ρ)

)
+

Y αk .
3. αk+1 = PQ1 (αk +∇f(αk)/γ) .
4. Set k ← k + 1. Go to step 2 until the stopping criterion less than ε.

Table 1: Pseudo-code of projected gradient method

4 Smooth Optimization Algorithms

This section is based on the theoretical analysis above, mainly Theorem 2. We first outline a sim-
plified version of the projected gradient method proposed in [15] and show it has a convergence rate
of O(1/k) where k is the iteration number. We can further develop a smooth optimization approach
[17, 18] for indefinite SVM (5). This scheme has an optimal convergence rate O(1/k2) for smooth
problems which has been applied to various problems, e.g. [6].

4.1 Simplified Projected Gradient Method

In [15], the objective function was smoothed by adding a quadratic term (see details in Section 3
there) and then they proposed a projected gradient algorithm to solve this approximation problem.
Using the explicit gradient representation in Theorem 1 we formulate its simplified version in Table
1 where the projection PQ1 : Rn → Q1 is defined, for any β ∈ Rn, by

PQ1(β) = arg min
α∈Q1

‖α− β‖2. (10)

Indeed, from Theorem 2 we can further obtain the following result by developing the techniques in
Sections 2.1.5, 2.2.3 and 2.2.4 of [18].

Lemma 4. Let γ ≥
[
λmax(K0) + nC2

ρ

]
and {αk : k ∈ N} be given by the simplified projected

gradient method in Table 1. For any α ∈ Q1, the following inequality holds f(αk+1) ≥ f(α) +
γ〈αk − αk+1, α− αk〉+ γ

2 ‖αk − αk+1‖2.

Proof. We know from Theorem 2 that ∇f is Lipschitz continuous with Lipschitz constant L =
λmax(K0) + nC2

ρ , then we have f(α)− f(αk)−〈∇f(αk), α−αk〉 =
∫ 1

0
〈∇f(θα + (1− θ)αk)−

∇f(αk), α−αk〉dθ ≥ −L
∫ 1

0
(1− θ)‖α−αk‖2dθ ≥ −γ

2 ‖α−αk‖2. Applying this inequality with
α = αk+1 implies that

−f(αk)− 〈∇f(αk), αk+1 − αk〉 ≥ −f(αk+1)− γ

2
‖αk+1 − αk‖2. (11)

Let φ(α) = −f(αk) − ∇f(αk)(α − αk) + γ
2 ‖α − αk‖2 which implies that αk+1 =

arg minα∈Q1 φ(α). Then, by the first-order optimality condition over αk+1 there holds, for any
α ∈ Q1, 〈∇φ(αk), α−αk+1〉 ≥ 0, i.e. −〈∇f(αk), α−αk+1〉 ≥ γ〈αk+1−αk, αk+1−α〉. Adding
this equation and (11) together yields that −f(αk) − 〈∇f(αk), α − αk〉 ≥ −f(αk+1) + γ〈αk −
αk+1, α−αk〉+ γ

2 ‖αk−αk+1‖2. Also, since−f is convex,−f(α) ≥ −f(αk)−〈∇f(αk), α−αk〉.
Combining this with the above inequality finishes the proof of the lemma.

Theorem 3. Let γ ≥
[
λmax(K0) + nC2

ρ

]
and the iteration sequence {αk : k ∈ N} be given by the

simplified projected gradient method in Table 1. Then, we have that

f(αk+1) ≥ f(αk) +
γ

2
‖αk+1 − αk‖2, (12)

Moreover,
max
α∈Q1

f(α)− f(αk) ≤ γ

2k
‖α0 − α∗‖2 (13)

where α∗ is an optimal solution of problem maxα∈Q1 f(α).
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Nesterov’s Smooth Optimization Method (SMM)
1. Let ε > 0, k = 0 and initialize α0 ∈ Q1 and let L = λmax(K0)) + nC2/ρ.
2. Compute ∇f(αk) = e− Y

(
K0 + Y αkα>k Y/(4ρ)

)
+

Y αk .
3. Compute γk = PQ1 (αk +∇f(αk)/L) .
4. Compute βk = PQ1

(
α0 +

∑k
i=0(i + 1)∇f(αk)/(2L)

)
.

5. Set αk+1 = 2
k+3βk + k+1

k+3γk .
6. Set k ← k + 1. Go to step 2 until the stopping criterion less than ε.

Table 2: Pseudo-code of first-order Nesterov’s smooth optimization method

Proof. Applying Lemma 4 with α = αk yields inequality (12). To prove inequality (13), we first
apply Lemma 4 with α = α∗ to get that, for any i, maxα∈Q1 f(α)− f(αi) ≤ −γ〈αi − αi+1, α

∗ −
αi〉 − γ

2 ‖αi − αi+1‖2 = γ
2 ‖α∗ − αi‖2 − γ

2 ‖α∗ − αi+1‖2. Adding them over i from 0 and k − 1
and also, noting from (12) that {maxα∈Q1 f(α) − f(αk) : k ∈ N} is decreasing, we have that
k (maxα∈Q1 f(α)− f(αk)) ≤ ∑k−1

i=0 (maxα∈Q1 f(α)− f(αi+1)) ≤ γ
2 ‖α∗ − α0‖2. This com-

pletes the proof of the theorem.

From the above theorem, the sequence {f(αk) : k ∈ N} is monotonically increasing and the
iteration complexity of SPGM is O(L/ε) for finding an ε-optimal solution.

4.2 Nesterov’s Smooth Optimization Method

In [18, 17], Nesterov proposed an efficient smooth optimization method for solving convex pro-
gramming problems of the form

min
x∈U

g(x)

where g is a convex function with Lipschitz continuous gradient, and U is a closed convex set in Rn.
Specifically, suppose there exists L > 0 such that ‖∇g(x)−∇g(x′)‖ ≤ L‖x− x′‖, ∀x, x′ ∈ U.
The smooth optimization approach needs to introduce a proxy-function d(x) associated with the set
U . It is assumed to be continuous and strongly convex on U with convexity parameter σ > 0.
Let x0 = arg minx∈U d(x). Without loss of generality, assume that d(x0) = 0. Thus, strong
convexity of d means that , for any x ∈ U , d(x) ≥ 1

2σ‖x−x0‖2. Then, a specific first-order smooth
optimization scheme detailed in [18] can be then applied to the function g with convergence rate
in O(

√
L/ε). The first-order method needs to define a proxy-function associated with Q1. Here,

we define the proxy-function by d(α) = 1
2‖α − α0‖2 with α0 ∈ Q1. The Lipschitz constant of

−f is established in Theorem 2 given by L = λmax(K0) + nC2/ρ. Translating the first-order
Nesterov’s scheme [18, Section 3] to our problem (5), we can get the smooth optimization algorithm
for indefinite SVM, see its pseudo-code in Table 2. One can see [17] for its variants with general
step sizes.

The effectiveness of the first-order Nesterov’s algorithm largely depends on the Steps 2, 3 and 4 out-
lined in Table 2. By Theorem 1, the computation of∇f(αk) in Step 2 needs an eigen-decomposition.
Steps 3 and 4 are the projection problem (10) by replacing β respectively by αk + ∇f(αk)/L

and α0 +
∑k

i=0(i + 1)∇f(αi)/(2L). The convergence of this optimal method was shown in [18]:

maxα∈Q1 f(α) − f(γk) ≤ 4L‖α0−α∗‖2
(k+1)(k+2) where α∗ is one of the optimal solutions. It is worthy of

pointing out that either {f(αk) : k ∈ N} or {f(γk) : k ∈ N} may not monotonically increase,
however it can be made to monotonically increase by a simple modification of the algorithm [18].
In addition, the above estimation of the Lipschitz constant L could be loose in reality and one could
further accelerate the algorithm by using a line search scheme [16].

4.3 Related Work and Complexity Discussion

We list the theoretical time complexity of algorithms to run Indefinite SVM. It is worth noting that
the number of iterations to reach a target precision of ε means that −f(αk) − minα∈Q1 −f(α) =
maxα∈Q1 f(α) − f(αk) ≤ ε. However, this does not mean the dual gap as used in [15] is less
than ε. In [15], the objective function is smoothed by adding a quadratic term and then they further
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proposed a projected gradient algorithm and analytic center cutting plane method (ACCPM)1. As
proved in Theorem 3, the number of iterations of the projected gradient method is usually O(L/ε).
In each iteration, the main complexity cost O(n3) is from the eigen-decomposition. Hence, the
overall complexity of SPGM isO(n3L/ε). As discussed in [15], ACCPM has an overall complexity
is O(n4 log(1/ε)2) for finding an ε-optimal solution. However, this method needs to use interior
methods at each iteration which would be slow for large scale datasets.

Chen and Ye [4] reformulated indefinite SVM as an appealing semi-infinite quadratically constrained
linear programming (SIQCLP) without applying extra smoothing techniques. There, the algorithm
iteratively solves a linear programming with a finite number of quadratic constraints. The iteration
complexity of semi-infinite linear programming is usually O(1/ε3). In each iteration, one needs
to find maximum violation constraints which involves eigen-decomposition of complexity O(n3).
Hence, the overall complexity is ofO(n3/ε3). The main limitation of this approach is that one needs
to save the subset of increasing quadratically constrained conditions indexed by n× n matrices and
iteratively solve a quadratically constrained linear programming (QCLP). The QCLP sub-problem
can be solved by general software packages, e.g. Mosek (http://www.mosek.com/), which is gener-
ally slow in our experience. This tends to make the algorithm inefficient during the iteration process,
although pruning techniques were proposed to avoid too many quadratically constrained conditions.

Based on our theoretical results (Theorem 2), Nesterov’s smooth optimization method can be ap-
plied. The complexity of this smooth optimization method (SMM) mainly relies on the eigenvalue
decomposition on Step 2 listed in Table 2 which costs O(n3). Step 3 and 4 are projections onto
the convex region Q1 which costs O(n log n) as pointed out in [15]. The first-order smooth op-
timization approach [17, 18] has iteration complexity O(

√
L/ε) for finding an ε-optimal solution.

Consequently, the overall complexity isO(n3
√

L/ε). Hence, from theoretical comparison the com-
plexity of smoothing optimization is better than the simplified projected gradient method (SPGM)
and SIQCLP. Compared with ACCPM, SMM has better dependence on the sample number n but
with a worse precision i.e. worse dependence on ε.

5 Experimental Validation

We run our proposed smooth optimization approach and simplified projected gradient method on
various datasets to validate our analysis. The experiments are done on several benchmark data sets
from the UCI repository [19] including Sonar, Ionosphere, Heart, Pima Indians Diabetes, Breast
Cancer, and USPS with digits 3 and 5. For USPS dataset, we randomly select 600 samples for
each digit. All the results reported are based on 10 random training/test partition with ratio 4/1.
In each data split, as in [4] we first generate a Gaussian kernel matrix K with the hyper-parameter
determined by cross-validation on the training data using LIBSVM and then construct indefinite
matrices by adding a small noisy matrix i.e. K0 := K − 0.1Ê. Here, the noisy matrix Ê =
(E + E′)/2 where E is randomly generated by zero mean and identity covariance matrix. For all
methods, the parameters C and ρ for Indefinite SVM are tuned by cross-validation and we terminate
the algorithm if the relative change of the objective value is less than 10−6.

In Table 3, we report the average test set accuracy (%) and CPU time (seconds) across different
algorithms: smooth optimization method (SMM), simplified projected gradient method (SPGM),
analytic center cutting plane method (ACCPM), and semi-infinite quadratically constrained linear
programming (SIQCLP). For the QCLP sub-problem in the SIQCLP method, we use Mosek soft-
ware package (http://www.mosek.com/). We can see that test accuracies are statistically the same
across different algorithms, which validates our analysis on the objective function. In particular, we
observe that SMM is consistently more efficient than other methods, especially for a large number
of training samples. SIQCLP needs much more time since, in each iteration, it needs to solves a
quadratically constrained linear programming. In Figure 1, we plot the objective values versus iter-
ation on Sonar and Diabetes for SMM, SPGM, and ACCPM. The SIQCLP approach is not included
here since its objective value is not based on the iteration w.r.t. the variable α which does not di-
rectly yield an increasing iteration sequence of objective values in contrast to those of the other three
algorithms. From Figure 1, we can see that SMM converges faster than SPGM which is consistent
with the complexity analysis. The convergence of ACCPM is quite similar to SMM, especially for

1MATLAB codes are available in http://www.princeton.edu/ rluss/IndefiniteSVM.htm
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Data Size λmin λmax SMM SPGM ACCPM SIQCLP
Sonar 208 −1.38 21.47 76.34% 76.34% 75.12% 76.09%

0.74s 5.12s 3.20s 244.55s
Ionosphere 351 -2.08 101.34 93.14% 93.43% 93.54% 93.54%

5.47s 28.93s 22.73s 455.81s
Heart 270 -1.98 178.03 79.81% 79.44% 79.25% 79.25%

3.54s 12.05s 11.96s 689.17s
Diabetes 768 -3.44 539.12 70.00% 69.86% 70.52% 69.73%

39.93s 345.48s 678.85s 3134.31s
Breast-cancer 683 -2.87 290.41 95.93% 96.02% 96.02% 95.40%

5.71s 50.13s 212.96s 4610.82s
USPS-35 1200 −3.72 112.65 96.33% 96.33% 96.04% 95.54%

23.22s 236.00s 3713.05s 5199.17s

Table 3: Average test set accuracy (%) and CPU time in seconds (s) of different algorithms where
λmax(λmin) denotes the average maximum (minimum) eigenvalues of the indefinite kernel matrix
over training samples.
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Figure 1: Objective value versus iteration: Sonar (left) and Diabetes (right). Curves: SMM (blue),
SPGM (red) and ACCPM (black)

small-sized datasets which coincides with the complexity analysis in Section 4.3 since it generally
has a high precision. However, ACCPM needs more time in each iteration than SMM and this ob-
servation becomes more apparent for the relatively large datasets shown in the time comparison of
Table 3.

6 Conclusion

In this paper we analyzed the regularization formulation for training SVM with indefinite kernels
proposed by Luss and d’Aspremont [15]. We show that the objective function of interest is continu-
ously differentiable with Lipschitz continuous gradient. Our elementary analysis greatly facilitates
the application of gradient-based methods. We formulated a simplified version of the projected gra-
dient method presented in [15] and showed that it has a convergence rate of O(1/k). We further
developed Nesterov’s smooth optimization method [17, 18] for Indefinite SVM which has an opti-
mal convergence rate of O(1/k2) for smooth problems. Experiments on various datasets validate
our analysis and the efficiency of our proposed optimization approach. In future, we are planning to
further accelerate the algorithm by using a line search scheme [16]. We are also applying this method
to real biological datasets such as protein sequence analysis using sequence alignment measures.
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