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Abstract
We describe a set of probability distributions, dubbed compressible priors, whose
independent and identically distributed (iid) realizations result in p-compressible
signals. A signal x ∈ RN is called p-compressible with magnitude R if its sorted
coefficients exhibit a power-law decay as |x|(i) . R · i−d, where the decay rate d
is equal to 1/p. p-compressible signals live close to K-sparse signals (K � N )
in the `r-norm (r > p) since their best K-sparse approximation error decreases
withO

(
R ·K1/r−1/p

)
. We show that the membership of generalized Pareto, Stu-

dent’s t, log-normal, Fréchet, and log-logistic distributions to the set of compress-
ible priors depends only on the distribution parameters and is independent of N .
In contrast, we demonstrate that the membership of the generalized Gaussian dis-
tribution (GGD) depends both on the signal dimension and the GGD parameters:
the expected decay rate ofN -sample iid realizations from the GGD with the shape
parameter q is given by 1/ [q log (N/q)]. As stylized examples, we show via ex-
periments that the wavelet coefficients of natural images are 1.67-compressible
whereas their pixel gradients are 0.95 log (N/0.95)-compressible, on the average.
We also leverage the connections between compressible priors and sparse signals
to develop new iterative re-weighted sparse signal recovery algorithms that out-
perform the standard `1-norm minimization. Finally, we describe how to learn the
hyperparameters of compressible priors in underdetermined regression problems
by exploiting the geometry of their order statistics during signal recovery.

1 Introduction
Many problems in signal processing, machine learning, and communications can be cast as a linear
regression problem where an unknown signal x ∈ RN is related to its observations y ∈ RM via

y = Φx+ n. (1)

In (1), the observation matrix Φ ∈ RM×N is a non-adaptive measurement matrix with random
entries in compressive sensing (CS), an over-complete dictionary of features in sparse Bayesian
learning (SBL), or a code matrix in communications [1, 2]. The vector n ∈ RM usually accounts
for physical noise with partially or fully known distribution, or it models bounded perturbations in
the measurement matrix or the signal.

Because of its theoretical and practical interest, we focus on the instances of (1) where there are
more unknowns than equations, i.e.,M < N . Hence, determining x from y in (1) is ill-posed: ∀v ∈
kernel (Φ), x+v defines a solution space that produces the same observations y. Prior information
is therefore necessary to distinguish the true x among the infinitely many possible solutions. For
instance, CS and SBL frameworks assume that the signal x belongs to the set of sparse signals. By
sparse, we mean that at most K out of the N signal coefficients are nonzero where K � N . CS
and SLB algorithms then regularize the solution space by signal priors that promote sparseness and
they have been extremely successful in practice in a number of applications even if M � N [1–3].

Unfortunately, prior information by itself is not sufficient to recover x from noisy y. Two more
key ingredients are required: (i) the observation matrix Φ must stably embed (or encode) the set of
signals x into the space of y, and (ii) a tractable decoding algorithm must exist to map y back to
x. By stable embedding, we mean that Φ is bi-Lipschitz where the encoding x → Φx is one to
one and the inverse mapping ∆ = {∆ (Φx) → x} is smooth. The bi-Lipschitz property of Φ is
crucial to ensure the stability in decoding x by controlling the amount by which perturbations of the
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observations are amplified [1, 4]. Tractable decoding is important for practical reasons as we have
limited time and resources, and it can clearly restrict the class of usable signal priors.

In this paper, we describe compressible prior distributions whose independent and identically dis-
tributed (iid) realizations result in compressible signals. A signal is compressible when sorted mag-
nitudes of its coefficients exhibit a power-law decay. For certain decay rates, compressible signals
live close to the sparse signals, i.e., they can be well-approximated by sparse signals. It is well-
known that the set of K-sparse signals has stable and tractable encoder-decoder pairs (Φ,∆) for M
as small as O(K log (N/K)) [1, 5]. Hence, an N -dimensional compressible signal with the proper
decay rate inherits the encoder-decoder pairs of its K-sparse approximation for a given approxima-
tion error, and can be stably embedded into dimensions logarithmic in N .

Compressible priors analytically summarize the set of compressible signals and shed new light on
underdetermined linear regression problems by building upon the literature on sparse signal recov-
ery. Our main results are summarized as follows:
1) By using order statistics, we show that the compressibility of the iid realizations of generalized
Pareto, Student’s t, Fréchet, and log-logistics distributions is independent of the signals’ dimension.
These distributions are natural members of compressible priors: they truly support logarithmic di-
mensionality reduction and have important parameter learning guarantees from finite sample sizes.
We demonstrate that probabilistic models for the wavelet coefficients of natural images must also be
a natural member of compressible priors.
2) We point out a common misconception about the generalized Gaussian distribution (GGD): GGD
generates signals that lose their compressibility as N grows. For instance, special cases of the GGD
distribution, e.g., Laplacian distribution, are commonly used as sparsity promoting priors in CS and
SBL problems where M is assumed to grow logarithmically with N [1–3, 6]. We show that signals
generated from Laplacian distribution can only be stably embedded into lower dimensions that grow
proportional to N . Hence, we identify an inconsistency between the decoding algorithms motivated
by the GGD distribution and their sparse solutions.
3) We use compressible priors as a scaffold to build new decoding algorithms based on Bayesian
inference arguments. The objective of these algorithms is to approximate the signal realization from
a compressible prior as opposed to pragmatically producing sparse solutions. Some of these new
algorithms are variants of the popular iterative re-weighting schemes [3,6–8]. We show how the tun-
ing of these algorithms explicitly depends on the compressible prior parameters, and how to learn
the parameters of the signal’s compressible prior on the fly while recovering the signal.

The paper is organized as follows. Section 2 provides the necessary background on sparse signal
recovery. Section 3 mathematically describes the compressible signals and ties them with the order
statistics of distributions to introduce compressible priors. Section 4 defines compressible priors,
identifies common misconceptions about the GGD distribution, and examines natural images as in-
stances of compressible priors. Section 5 derives new decoding algorithms for underdetermined
linear regression problems. Section 6 describes an algorithm for learning the parameters of com-
pressible priors. Section 7 provides simulations results and is followed by our conclusions.
2 Background on Sparse Signals
Any signal x ∈ RN can be represented in terms of N coefficients αN×1 in a basis ΨN×N via
x = Ψα. Signal x has a sparse representation if onlyK � N entries ofα are nonzero. To account
for sparse signals in an appropriate basis, (1) should be modified as y = Φx+ n = ΦΨα+ n.

Let ΣK denote the set of all K-sparse signals. When Φ in (1) satisfies the so-called restricted
isometry property (RIP), it can be shown that ΦΨ defines a bi-Lipschitz embedding of ΣK into
RM [1,4,5]. Moreover, RIP implies the recovery of K-sparse signals to within a given error bound,
and the best attainable lower bounds for M are related to the Gelfand width of ΣK , which is log-
arithmic in the signal dimension, i.e., M = O(K log (N/K)) [5]. Without loss of generality, we
restrict our attention in the sequel to canonically sparse signals and assume that Ψ = I (the N ×N
identity matrix) so that x = α.

With the sparsity prior and RIP assumptions, inverse maps can be obtained by solving the following
convex problems:

∆1(y) = arg min ‖x′‖1 s.t. y = Φx′,

∆2(y) = arg min ‖x′‖1 s.t. ‖y −Φx′‖2 ≤ ε,
∆3(y) = arg min ‖x′‖1 + τ‖y −Φx′‖22,

(2)
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where ε and τ are constants, and ‖x‖r , (
∑

i |xi|r)1/r. The decoders ∆i (i = 1, 2) are known as
basis pursuit (BP) and basis pursuit denoising (BPDN), respectively; and, ∆3 is a scalarization of
BPDN [1, 9]. They also have the following deterministic worst-case guarantee when Φ has RIP:

‖x−∆(y)‖2 ≤ C1
‖x− xK‖1√

K
+ C2‖n‖2, (3)

where C1,2 are constants, xK is the best K-term approximation, i.e., xK = arg min‖x′‖0≤K ‖x−
x′‖r for r ≥ 1, and ‖x‖0 is a pseudo-norm that counts the number of nonzeros of x [1, 4, 5].
Note that the error guarantee (3) is adaptive to each given signal x because of the definition of xK .
Moreover, the guarantee does not assume that the signal is sparse.
3 Compressible Signals, Order Statistics and Quantile Approximations
We define a signal x as p-compressible if it lives close to the shell of the weak-`p ball of radius
R (sw`p(R)–pronounced as swell p). Defining x̄i = |xi|, we arrange the signal coefficients xi in
decreasing order of magnitude as

x̄(1) ≥ x̄(2) ≥ . . . ≥ x̄(N). (4)

Then, when x ∈ sw`p(R), the i-th ordered entry x̄(i) in (4) obeys

x̄(i) . R · i−1/p, (5)

where . means “less than or approximately equal to.” We deliberately substitute . for ≤ in the
p-compressibility definition of [1] to reduce the ambiguity of multiple feasible R and p values. In
Section 6, we describe a geometric approach to learn R and p so that R · i−1/p ≈ x̄(i).

Signals in sw`p(R) can be well-approximated by sparse signals as the best K-term approximation
error decays rapidly to zero as

‖x− xK‖r . (r/p− 1)−1/r RK1/r−1/p, when p < r. (6)

Given M , a good rule of thumb is to set K = M/[C log(N/M)] (C ≈ 4 or 5) and use (6) to predict
the approximation error for the decoders ∆i in Section 2. Since the decoding guarantees are bounded
by the best K-term approximation error in `1 (i.e., r = 1; cf. (3)), we will restrict our attention to
x ∈ sw`p where p < 1. Including p = 1 adds a logarithmic error factor to the approximation errors,
which is not severe; however, it is not considered in this paper to avoid a messy discussion.

Suppose now the individual entries xi of the signal x are random variables (RV) drawn iid with
respect to a probability density function (pdf) f(x), i.e., xi ∼ f(x) for i = 1, . . . , N . Then, x̄(i)’s
in (4) are also RV’s and are known as the order statistics (OS) of yet another pdf f̄(x̄), which can
be related to f(x) in a straightforward manner: f̄(x̄) = f(x̄) + f(−x̄). Note that even though the
RV’s xi (hence, x̄i) are iid, the RV’s x̄(i) are statistically dependent.

The concept of OS enables us to create a link between signals summarized by pdf’s and their com-
pressibility, which is a deterministic property after the signals are realized. The key to establish-
ing this link turns out to be the parameterized form of the quantile function of the pdf f̄(x̄). Let
F̄ (x̄) =

∫ x̄

0
f̄(v)dv be the cumulative distribution function (CDF) and u = F̄ (x̄). The quantile

function F̄ ?(u) of f̄(x̄) is then given by the inverse of its CDF: F̄ ?(u) = F̄−1(u). We will refer to
F̄ ?(u) as the magnitude quantile function (MQF) of f(x).

A well-known quantile approximation to the expected OS of a pdf is given by [10]:

E[x̄(i)] = F̄ ?
(

1− i

N + 1

)
, (7)

whereE[·] is the expected value. Moreover, we have the following moment matching approximation

x̄(i) ∼ N

(
E[x̄(i)],

i
N

(
1− i

N

)
N
[
f
(
E[x̄(i)]

)]2
)
, (8)

which can be used to quantify how much the actual realizations x̄(i) deviate from E[x̄(i)]. For
instance, these deviations for i > K can be used to bound the statistical variations of the best K-
term approximation error. In practice, the deviations are relatively small for compressible priors.
In Sections 4–6, we will use the quantile approximation in (7) as our basis to motivate the set of
compressible priors, derive recovery algorithms for x, and learn the parameters of compressible
priors during recovery.
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Table 1: Example distributions and the sw`p(R) parameters of their iid realizations
Distribution pdf R p

Generalized Pareto q
2λ

(
1 +

|x|
λ

)−(q+1)
λN1/q q

Student’s t Γ((q+1)/2)√
2πλΓ(q/2)

(
1 + x2

λ2

)−(q+1)/2 [
2Γ((q+1)/2)√
πqΓ(q/2)

]1/q
λN1/q q

Fréchet (q/λ) (x/λ)−(q+1) e−(x/λ)−q λN1/q q

Log-Logistic (q/λ)(x/λ)q−1

[1+(x/λ)q ]2
λN1/q q

Generalized Gaussian q
2λΓ(1/q) e−(|x|/λ)q λmax {1,Γ (1 + 1/q)} log1/q (N/q) q log (N/q)

Weibull (q/λ) (x/λ)q−1 e−(x/λ)q λ log1/q N q logN

Gamma 1
λΓ(q) (x/λ)q−1 e−x/λ λmax {1,Γ (1 + 1/q)q} log (qN) log (qN)

Log-Normal q√
2πx

e−(q log(x/λ))2/2 λe
√

2 logN/q √
2 logNq

4 Compressible Priors
A compressible prior f(x;θ) in `r is a pdf with parameters θ whose MQF satisfies

F̄ ?
(

1− i

N + 1

)
. R(N,θ) · i−1/p(N,θ), where R > 0 and p < r. (9)

Table 4 lists example pdf’s, parameterized by θ = (q, λ) � 0, and the sw`p(R) parameters of their
N -sample iid realizations. In this paper, we fix r = 1 (cf. Section 3); hence, the example pdf’s are
compressible priors whenever p < 1. In (9), we make it explicit that the sw`p(R) parameters can
depend on the parameters θ of the specific compressible prior as well as the signal dimension N .
The dependence of the parameter p on N is of particular interest since it has important implications
in signal recovery as well as parameter learning from finite sample sizes, as discussed below.

We define natural p-compressible priors as the set Np of compressible priors such that p = p(θ) < 1
is independent of N , ∀f(x;θ) ∈ Np. It is possible to prove that we can capture most of the `1-
energy in an N -sample iid realization from a natural p-compressible prior by using a constant K,
i.e., ‖x − xK‖1 ≤ ε‖x‖1 for any desired 0 < ε � 1 by choosing K = d(p/ε)

p
1−p e. Hence,

N -sample iid signal realizations from the compressible priors in Np can be truly embedded into
dimensions M that grow logarithmically with N with tractable decoding guarantees due to (3). Np

members include the generalized Pareto (GPD), Fréchet (FD), and log-logistic distributions (LLD).

It then only comes as a surprise that generalized Gaussian distribution (GGD) is not a natural p-
compressible prior since its iid realizations lose their compressibility asN grows (cf. Table 4). While
it is common practice to use a GGD prior with q ≤ 1 for sparse signal recovery, we have no recov-
ery guarantees for signals generated from GGD when M grows logarithmically with N in (1).1 In
fact, to be p-compressible, the shape parameter of a GGD prior should satisfy q = NeW−1(−p/N),
where W−1(·) is the Lambert W -function with the alternate branch. As a result, the learned GGD
parameters from dimensionality-reduced data will in general depend on the dimension and may not
generalize to other dimensions. Along with GGD, Table 4 shows how Weibull, gamma, and log-
normal distributions are dimension-restricted in their membership to the set of compressible priors.

Wavelet coefficients of natural images provide a stylized example to demonstrate why we should
care about the dimensional independence of the parameter p.2 As a brief background, we first note
that research in natural image modeling to date has had two distinct approaches, with one focus-
ing on deterministic explanations and the other pursuing probabilistic models [12]. Deterministic
approaches operate under the assumption that the natural images belong to Besov spaces, having a
bounded number of derivatives between edges. Unsurprisingly, wavelet thresholding is proven near-
optimal for representing and denoising Besov space images. As the simplest example, the magnitude
sorted discrete wavelet coefficients w̄(i) of a Besov q-image should satisfy w̄(i) = R · i−1/q . The
probabilistic approaches, on the other hand, exploit the power-law decay of the power spectra of im-
ages and fit various pdf’s, such as GGD and the Gaussian scale mixtures, to the histograms of wavelet

1To illustrate the issues with the compressibility of GGD, consider the Laplacian distribution (LD: GGD
with q = 1), which is the conventional convex prior for promoting sparsity. Via order statistics, it is possible
to show that x̄(i) ≈ λ log N

i
for xi ∼ GGD(1, λ). Without loss of generality, let us judiciously pick λ =

1/ logN so that R = 1. Then, we have ‖x‖1 ≈ N − 1 and ‖x − xK‖1 ≈ N −K log (N/K) −K. When
we only have K terms to capture (1− ε) of the `1 energy (ε� 1) in the signal x, we need K ≈ (1−

√
ε)N .

2Here, we assume that the reader is familiar with the discrete wavelet transform and its properties [11].
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coefficients while trying to simultaneously capture the dependencies observed in the marginal and
joint distributions of natural image wavelet coefficients. Probabilistic approaches are quite important
in image compression because optimal compressors quantize the wavelet coefficients according to
the estimated distributions, dictating the image compression limits via Shannon’s coding theorem.

We conjecture that probabilistic models that summarize the wavelet coefficients of natural images
belong to the set of natural (non-iid) p-compressible priors. We base our claim on two observations:
1) Due to the multiscale nature of the wavelet transform, the decay profile of the magnitude sorted
wavelet coefficients are scale-invariant, i.e., preserved at different resolutions, where lower resolu-
tions inherit the highest resolution. Hence, probabilistic models that explain the wavelet transform of
any signals should exhibit this decay profile inheritance property. 2) The magnitude sorted wavelet
coefficients of natural images exhibit a constant decay rate, as expected of Besov space images.
Section 7.2 demonstrates the ideas using natural images from the Berkeley natural images database.
5 Signal Decoding Algorithms
Convex problems to recover sparse or compressible signals in (2) are usually motivated by Bayesian
inference. In a similar fashion, we formalize two new decoding algorithms below by assuming prior
distributions on the signal x and the noise n, and then asking inference questions given y in (1).
5.1 Fixed point continuation for a non-iid compressible prior
The multivariate Lomax distribution (MLD) provides an elementary example of a non-iid compress-

ible prior. The pdf of the distribution is given by MLD(x; q,λ) ∝
(

1 +
∑N
i=1 λ

−1
i |xi|

)−q−N
[13].

For MLD, the marginal distribution of the signal coefficients is GPD, i.e., xi ∼ GPD(x; q, λi).
Moreover, given n-realizations x1:n of MLD (n ≤ N ), the joint marginal distribution of xn+1:N is
MLD(xn+1:N ; q + k,λn+1:N

(
1 +

∑n
i=1 λ

−1
i |xi|

)−1
). In the sequel, we assume λi = λ ∀i, for which

it can be proved that MLD is compressible with p = 1 [14]. For now, we will only demonstrate
this property via simulations in Section 7.1. With the MLD prior on x, we focus on only two op-
timization problems below, one based on BP and the other based on maximum a posteriori (MAP)
estimation. Other convex formulations, such as BPDN (∆2 in (2)) and LASSO [15], trivially follow.

1) BP Decoder: When there is no noise, the observations are given by y = Φx, which has infinitely
many solutions, as discussed in Section 1. In this case, we can exploit the MLD likelihood function
to regularize the solution space. For instance, when we ask for the solution that maximizes the MLD
likelihood given y, it is easy to see that we obtain the BP decoder formulation, i.e., ∆1(y) in (2).

2) MAP Decoder: Suppose that the noise coefficients (ni’s in (1)) are iid Gaussian with zero mean
and variance σ2, ni ∼ N (n; 0, σ2). Although many inference questions are possible, here we seek
the mode of the posterior distribution to obtain a point estimate, also known as the MAP estimate.
Since we have f(y|x) = N (y −Φx; 0, σ2IM×M ) and f(x) =MLD(x; q, λ), the MAP estimate can
be derived using the Bayes rule as x̂MAP = arg maxx′ f(y|x′)f(x′), which is explicitly given by

x̂MAP = arg min
x′
‖y −Φx′‖22 + 2σ2(q +N) log

(
1 + λ−1‖x′‖1

)
. (10)

Unfortunately, we stumble upon a non-convex problem in (10) during our quest for the MAP es-
timate. We circumvent the non-convexity in (10) using a majorization-minimization idea where
we iteratively obtain a tractable upperbound on the log-term in (10) using the following inequality:
∀u, v ∈ (0,∞), log u ≤ log v + u/v − 1. After some straightforward calculus, we obtain the
iterative decoder below, indexed by k, where x̂{k} is the k-th iteration estimate (x̂{0} = 0):

x̂{k} = arg min
x′
‖y −Φx′‖22 + νk‖x′‖1, where νk =

2σ2(q +N)

λ+ ‖x̂{k−1}‖1
. (11)

The decoding approach in (11) can be viewed as a continuation (or a homotopy) algorithm where a
fixed point is obtained at each iteration, similar to [16]. This decoding scheme has provable, linear
convergence guarantees when ‖x̂{k}‖1 is strictly increasing� (equivalently, νk �) [16].
5.2 Iterative `s-decoding for iid scale mixtures of GGD
We consider a generalization of GPD and the Student’s t distribution, which we will denote as
the generalized Gaussian gamma scale mixture distribution (SMD, in short), whose pdf is given
by SMD(x; q, λ, s) ∝ (1 + |x|s /λs)−(q+1)/s. The additional parameter s of SMD modulates its
OS near the origin. It can be proved that SMD is p-compressible with p = q [14]. SMD, for
instance, arises through the following interaction of the gamma distribution and GGD: x = a−1/sb,
a ∼ Gamma(a; q/s, λ−s), and b ∼ GGD(b; s, 1). Given a, the distribution of x is a scaled GGD:
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f(x|a) ∼ GGD(x; s, a−1). Marginalizing a from f(x|a), we reach the SMD as the true underlying
distribution of x. SMD arise in multiple contexts, such as the SLB framework that exploit Student’s
t (i.e., s = 2) for learning problems [2], and the Laplacian and Gaussian scale mixtures (i.e., s = 1
and 2, respectively) that model natural images [17, 18].

Due to lack of space, we only focus on noiseless observations in (1). We assume that x is an N -
sample iid realization from SMD(x; q, λ, s) with known parameters (q, λ, s) � 0 and choose a solu-
tion x̂ that maximizes the SMD likehood to find the true vector x among the kernel of Φ:

x̂ = max
x′

SMD(x; q, λ, s) = min
x′

∑
i

log
(
1 + λ−s |xi|s

)
, s.t. y = Φx′. (12)

The majorization-minimization trick in Section 5.1 also circumvents the non-convexity in (12):

x̂{k} = min
x′

∑
i

wi,{k} |xi|s , s.t. y = Φx′; where wi,{k} =
(
λs +

∣∣xi,{k}∣∣s)−1
. (13)

The decoding scheme in (13) is well-known as the iterative re-weighted `s algorithms [7, 19–21].

6 Parameter Learning for Compressible Distributions
While deriving decoding algorithms in Section 5, we assumed that the signal coefficients xi are
generated from a compressible prior f(x;θ) and that θ is known. We now relax the latter assumption
and discuss how to simultaneously estimate x and learn the parameters θ.

When we visualize the joint estimation of x and θ from y in (1) as a graphical model, we imme-
diately realize that x creates a Markov blanket for θ. Hence, to determine θ, we have to estimate
the signal coefficients. When Φ has the stable embedding property, we know that the decoding al-
gorithms can obtain x with approximation guarantees, such as (3). Then, given x, we can choose
an estimator for θ via standard Bayesian inference arguments. Unfortunately, this argument leads to
one important road block: estimation of the signal x without knowing the prior parameters θ.

A näive approach to overcoming this road block is to split the optimization space and alternate
on x and θ while optimizing the Bayesian objective. Unfortunately, there is one important and
unrecognized bug in this argument: the estimated signal values are in general not iid, hence we
would be minimizing the wrong Bayesian objective to determine θ. To see this, we first note that the
recovered signals x̂ in general consist of M � N non-zero coefficients that mimic the best K-term
approximation of the signal xK and some other coefficients that explain the small tail energy. We
then recall from Section (3) that the coefficients of xK are statistically dependent. Hence, at least
partially, the significant coefficients of x̂ are also dependent. One way to overcome this dependency
issue is to treat the recovered signals as if they are drawn iid from a censored GPD. However, the
optimization becomes complicated and the approach does not provide any additional guarantees.

As an alternative, we propose to exploit geometry and use the consensus among the coefficients
in fitting the sw`p(R) parameters via the auxiliary signal estimates x̂{k} during iterative recovery.
To do this, we employ Fischler and Bolles’ probabilistic random sampling consensus (RANSAC)
algorithm [22] to fit a line, whose y-intercept is logR(N,θ) and whose slope is 1/p(N,θ):

log
∣∣x̂i,{k}∣∣ = logR(N,θ)− 1

p(N,θ)
log i, for i = 1, . . . ,K; where K = M/[C log(N/M)], (14)

whereC ≈ 4, 5 as discussed in Section. 3. RANSAC provides excellent results with high probability
even if the data contains significant outliers. Because of its probabilistic nature, it is computationally
efficient. The RANSAC algorithm requires a threshold to gate the observations and count how much
a proposed solution is supported by the observations [22]. We determine this threshold by bounding
the tail probability that the OS of a compressible prior will be out of bounds. For the pseudo-code
and further details of the RANSAC algorithm, cf. [22].
7 Experiments
7.1 Order Statistics
To demonstrate the sw`p(R) decay profile of p-compressible priors, we generated iid realizations
of GGD with q = 1 (LD) and GPD with q = 1, and (non-iid) realizations of MLD with q = 1 of
varying signal dimensions N = 10j , where j = 2, 3, 4, 5. We sorted the magnitudes of the signal
coefficients, normalized them by their corresponding value of R. We then plotted the results on a
log-log scale in Fig. 1. At http://dsp.rice.edu/randcs, we provide a MATLAB routine (randcs.m) so
that it is easy to repeat the same experiment for the rest of the distributions in Table 4.
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(a) LD (iid) (b) GPD (iid) (c) MLD

Figure 1: Numerical illustration of the sw`p(R) decay profile of three different pdfs.

To live in sw`p(1) with 0 < p ≤ 1, the slope of the resulting curve must be less than or equal to−1.
Figure 1(a) illustrates that the iid LD slope is much greater than −1 and moreover logarithmically
grows with N . In contrast, Fig. 1(b) shows that iid GPD with q = 1 exhibits the constant slope of
−1 that is independent of N . MLD with q = 1 also delivers such a slope (Fig. 1(c)). The latter two
distributions thus produce compressible signal realizations, while the Laplacian does not.

7.2 Natural Images
We investigate the images from the Berkeley natural images database in the context of p-
compressible priors. We randomly sample 100 image patches of varying sizes N = 2j × 2j

(j = 3, . . . , 8), take their wavelet transforms (scaling filter: daub2), and plot the average of their
magnitude ordered wavelet coefficients in Figs. 2(a) and (b) (solid lines). Figure 2(c) also illustrates
the OS of the pixel gradients, which are of particular interest in many applications.

Along with the wavelet coefficients, Fig. 2(a) superposes the expected OS of GPD with q = 1.67
and λ = 10 (dashed line), given by x̄(i){GPD(q, λ)} = λ

[
(N + 1)1/qi−1/q − 1

]
(i = 1, . . . , N ).

Although wavelet coefficients of natural images do not follow an iid distribution, they exhibit a
constant decay rate, which can be well-approximated by an iid GPD distribution. This apparent
constant decay rate is well-explained by the decay profile inheritance of the wavelet transform across
different resolutions and supports the Besov space assumption used in the deterministic approaches.
The GPD rate of q = 1.67 implies a disappointing O(K−0.1) approximation rate in the `2-norm
vs. the theoretical O(K−0.5) rate [23]. Moreover, we lose all the guarantees in the `1-norm.
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Figure 2: Approximation of the order statistics and histograms of natural images with GPD and GGD.

In contrast, Fig. 2(b) demonstrates the GGD histogram fits to the wavelet coefficients, where the
GGD exponent q ∈ [0.5, 1] depends on the particular dimension and decreases as N increases. The
histogram matching is common practice in the existing probabilistic approaches (e.g., [18]) to de-
termine pdf’s that explain the statistics of natural images. Typically, least square error metrics or
Kullback-Liebler (KL) divergence measures are used. Although the GGD fit via histogram matching
in Fig. 2(b) deceptively appears to fit a small number of coefficients, we emphasize the log-log scale
of the plots and mention that there is a significant number of coefficients in the narrow space where
the GGD distribution is a good fit. Unfortunately, these approaches approximate the wavelet coeffi-
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Figure 3: Improvements afforded by re-weighted `1-decoding (a) with known parameters θ and (b) with
learning. (c) The learned sw`p exponent of the GPD distribution with q = 0.4 via the RANSAC algorithm.

cients of natural images that have almost no approximation power of the overall image. Moreover,
the learned GGD distribution is dimension dependent, assigns lower probability to the large coeffi-
cients that explain the image well, and predicts a mismatched OS of natural images (cf.Fig. 2(b)).

Figure 2(c) compares the magnitude ordered pixel gradients of the images (solid lines) with the
expected OS of GGD (dashed line). From the figure, it appears that the natural image pixel gradients
lose their compressibility as the image dimensions grow, similar to the GGD, Weibull, gamma, and
log-normal distributions. In the figure, the GGD parameters are given (q, λ) = (0.95, 25).

7.3 Iterative `1 Decoding
We repeat the compressible signal recovery experiment in Section 3.2 of [7] to demonstrate the
performance of our iterative `s decoder with s = 1 in (13). We first randomly sample a signal
x ∈ RN (N = 256) where the signal coefficients are iid from the GPD distribution with q = 0.4
and λ = (N + 1)−1/q so that the E[x̄(1)] ≈ 1. We set M = 128 and draw a random M ×N matrix
with iid Gaussian entries to obtain y = Φx. We then decode signals via (13) where maximum
iterations is set to 5, with the knowledge of the signal parameters and with learning. During the
learning phase, we use log(2) as the threshold for the RANSAC algorithm. We set the maximum
iteration count of RANSAC to 500.

The results of a Monte Carlo run with 100 independent realizations are illustrated in Fig. 3. In
Figs. 3(a) and (b), the plots summarize the average improvement over the standard decoder ∆1(y)
via the histograms of ‖x − x̂{4}‖2/‖x − ∆1(y)‖2, which have mean and standard deviation
(0.7062, 0.1380) when we know the parameters of the GPD (a) and (0.7101, 0.1364) when we learn
the parameters of the GPD via RANSAC (b). The learned sw`p exponent is summarized by the his-
togram in Fig. 3(c), which has mean and standard deviation (0.3757, 0.0539). Hence, we conclude
that the our alternative learning approach via the RANSAC algorithm is competitive with knowing
the actual prior parameters that generated the signal. Moreover, the computational time of learning
is insignificant compared to time required by the state-of-the art linear SPGL algorithm [24].

8 Conclusions3

Compressible priors create a connection between probabilistic and deterministic models for signal
compressibility. The bridge between these seemingly two different modeling frameworks turns out
to be the concept of order statistics. We demonstrated that when the p-parameter of a compressible
prior is independent of the ambient dimension N , it is possible to have truly logarithmic embedding
of its iid signal realizations. Moreover, the learned parameters of such compressible priors are di-
mension agnostic. In contrast, we showed that when the p-parameter depends on N , we have many
restrictions in signal embedding and recovery as well as in parameter learning. We illustrated that
wavelet coefficients of natural images can be well approximated by the generalized Pareto prior,
which in turn predicts a disappointing approximation rate for image coding with the näive sparse
model and for CS image recovery from measurements that grow only logarithmically with the im-
age dimension. We motivated many of the existing sparse signal recovery algorithm as instances of
a corresponding compressible prior and discussed parameter learning for these priors from dimen-
sionality reduced data. We hope that the iid compressibility view taken in this paper will pave the
way for a better understanding of probabilistic non-iid and structured compressibility models.

3We thank R. G. Baraniuk, M. Wakin, M. Davies, J. Haupt, and J. P. Slavinksy for useful discussions.
Supported by ONR N00014-08-1-1112, DARPA N66001-08-1-2065, ARO W911NF-09-1-0383 grants.
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