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Abstract

We consider the reconstruction of sparse signals in the multiple measurement vec-
tor (MMV) model, in which the signal, represented as a matrix, consists of a set
of jointly sparse vectors. MMV is an extension of the single measurement vector
(SMV) model employed in standard compressive sensing (CS). Recent theoret-
ical studies focus on the convex relaxation of the MMV problem based on the
(2, 1)-norm minimization, which is an extension of the well-known 1-norm mini-
mization employed in SMV. However, the resulting convex optimization problem
in MMV is significantly much more difficult to solve than the one in SMV. Ex-
isting algorithms reformulate it as a second-order cone programming (SOCP) or
semidefinite programming (SDP) problem, which is computationally expensive
to solve for problems of moderate size. In this paper, we propose a new (dual)
reformulation of the convex optimization problem in MMV and develop an effi-
cient algorithm based on the prox-method. Interestingly, our theoretical analysis
reveals the close connection between the proposed reformulation and multiple ker-
nel learning. Our simulation studies demonstrate the scalability of the proposed
algorithm.

1 Introduction

Compressive sensing (CS), also known as compressive sampling, has recently received increasing
attention in many areas of science and engineering [3]. In CS, an unknown sparse signal is recon-
structed from a single measurement vector. Recent theoretical studies show that one can recover
certain sparse signals from far fewer samples or measurements than traditional methods [4, 8]. In
this paper, we consider the problem of reconstructing sparse signals in the multiple measurement
vector (MMV) model, in which the signal, represented as a matrix, consists of a set of jointly sparse
vectors. MMV is an extension of the single measurement vector (SMV) model employed in standard
compressive sensing.

The MMV model was motivated by the need to solve the neuromagnetic inverse problem that arises
in Magnetoencephalography (MEG), which is a modality for imaging the brain [7]. It arises from
a variety of applications, such as DNA microarrays [11], equalization of sparse communication
channels [6], echo cancellation [9], magenetoencephalography [12], computing sparse solutions to
linear inverse problems [7], and source localization in sensor networks [17]. Unlike SMV, the signal
in the MMV model is represented as a set of jointly sparse vectors sharing their common nonzeros
occurring in a set of locations [5, 7]. It has been shown that the additional block-sparse structure can
lead to improved performance in signal recovery [5, 10, 16, 21].

Several recovery algorithms have been proposed for the MMV model in the past [5, 7, 18, 24, 25].
Since the sparse representation problem is a combinatorial optimization problem and is in general
NP-hard [5], the algorithms in [18, 25] employ the greedy strategy to recover the signal using an
iterative scheme. One alternative is to relax it into a convex optimization problem, from which the
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global optimal solution can be obtained. The most widely studied approach is the one based on the
(2, 1)-norm minimization [5, 7, 10]. A similar relaxation technique (via the 1-norm minimization)
is employed in the SMV model. Recent studies have shown that most of theoretical results on the
convex relaxation of the SMV model can be extended to the MMV model [5], although further the-
oretical investigation is needed [26]. Unlike the SMV model where the 1-norm minimization can
be solved efficiently, the resulting convex optimization problem in MMV is much more difficult to
solve. Existing algorithms formulate it as a second-order cone programming (SOCP) or semdefinite
programming (SDP) [16] problem, which can be solved using standard software packages such as
SeDuMi [23]. However, for problems of moderate size, solving either SOCP or SDP is computa-
tionally expensive, which limits their use in practice.

In this paper, we derive a dual reformulation of the (2, 1)-norm minimization problem in MMV.
More especially, we show that the (2, 1)-norm minimization problem can be reformulated as a
min-max problem, which can be solved efficiently via the prox-method with a nearly dimension-
independent convergence rate [19]. Compared with existing algorithms, our algorithm can scale to
larger problems while achieving high accuracy. Interestingly, our theoretical analysis reveals the
close relationship between the resulting min-max problem and multiple kernel learning [14]. We
have performed simulation studies and our results demonstrate the scalability of the proposed algo-
rithm in comparison with existing algorithms.

Notations: All matrices are boldface uppercase. Vectors are boldface lowercase. Sets and spaces
are denoted with calligraphic letters. The p-norm of the vector v = (v1, · · · , vd)T ∈ IRd is defined

as ‖v‖p :=
(∑d

i=1 |vi|p
) 1

p

. The inner product on IRm×d is defined as 〈X,Y〉 = tr(XT Y). For

matrix A ∈ IRm×d, we denote by ai and ai the ith row and the ith column of A, respectively. The
(r, p)-norm of A is defined as:

‖A‖r,p :=

(
m∑

i=1

‖ai‖p
r

) 1
p

. (1)

2 The Multiple Measurement Vector Model

In the SMV model, one aims to recover the sparse signal w from a measurement vector b = Aw
for a given matrix A [3]. The SMV model can be extended to the multiple measurement vector
(MMV) model, in which the signal is represented as a set of jointly sparse vectors sharing a common
set of nonzeros [5, 7]. The MMV model aims to recover the sparse representations for SMVs
simultaneously. It has been shown that the MMV model provably improves the standard CS recovery
by exploiting the block-sparse structure [10, 21].

Specifically, in the MMV model we consider the reconstruction of the signal represented by a matrix
W ∈ IRd×n, which is given by a dictionary (or measurement matrix) A ∈ IRm×d and multiple
measurement vector B ∈ IRm×n such that

B = AW. (2)

Each column of A is associated with an atom, and a set of atom is called a dictionary. A sparse
representation means that the matrix W has a small number of rows containing nonzero entries.
Usually, we have m ¿ d and d > n.

Similar to SMV, we can use ‖W‖p,0 to measure the number of rows in W that contain nonzero en-
tries. Thus, the problem of finding the sparsest representation of the signal W in MMV is equivalent
to solving the following problem, a.k.a. the sparse representation problem:

(P0) : min
W

‖W‖p,0, s.t. AW = B. (3)

Some typical choices of p include p = ∞ and p = 2 [25]. However, solving (P0) requires enumer-
ating all subsets of the set {1, 2, · · · , d}, which is essentially a combinatorial optimization problem
and is in general NP-hard [5]. Similar to the use of the 1-norm minimization in the SMV model, one
natural alternative is to use ‖W‖p,1 instead of ‖W‖p,0, resulting in the following convex optimiza-
tion problem (P1):

(P1) : min
W

‖W‖p,1, s.t. AW = B. (4)
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The relationship between (P0) and (P1) for the MMV model has been studied in [5].

For p = 2, the optimal W is given by solving the following convex optimization problem:

min
W

1
2
‖W‖22,1 s.t. AW = B. (5)

Existing algorithms formulate Eq. (5) as a second-order cone programming (SOCP) problem or a
semidefinite programming (SDP) problem [16]. Recall that the optimizaiton problem in Eq. (5) is
equivalent to the following problem by removing the square in the objective:

min
W

1
2
‖W‖2,1 s.t. AW = B.

By introducing auxiliary variable ti(i = 1, · · · , d), this problem can be reformulated in the standard
second-order cone programming (SOCP) formulation:

min
W,t1,··· ,td

1
2

d∑

i=1

ti (6)

s.t. ‖Wi‖2 ≤ ti, ti ≥ 0, i = 1, · · · , d, AW = B.

Based on this SOCP formulation, it can also be transformed into the standard semidefinite program-
ming (SDP) formulation:

min
W,t1,··· ,td

1
2

d∑

i=1

ti (7)

s.t.
[

tiI WiT

Wi ti

]
≥ 0, ti ≥ 0, i = 1, · · · , d, AW = B.

The interior point method [20] and the bundle method [13] can be applied to solve SOCP and SDP.
However, they do not scale to problems of moderate size, which limits their use in practice.

3 The Proposed Dual Formulation

In this section we present a dual reformulation of the optimization problem in Eq. (5). First, some
preliminary results are summarized in Lemmas 1 and 2:
Lemma 1. Let A and X be m-by-d matrices. Then the following holds:

〈A,X〉 ≤ 1
2

(‖X‖22,1 + ‖A‖22,∞
)
. (8)

When the equality holds, we have ‖X‖2,1 = ‖A‖2,∞.

Proof. It follows from the definition of the (r, p)-norm in Eq. (1) that ‖X‖2,1 =
∑m

i=1 ‖xi‖2,
and ‖A‖2,∞ = max1≤i≤m ‖ai‖2. Without loss of generality, we assume that ‖ak‖2 =
max1≤i≤m ‖ai‖2 for 1 ≤ k ≤ m . Thus, ‖A‖2,∞ = ‖ak‖2, and we have

〈A,X〉 =
m∑

i=1

aixiT ≤
m∑

i=1

‖ai‖2‖xi‖2 ≤
m∑

i=1

‖ak‖2‖xi‖2 = ‖ak‖2
m∑

i=1

‖xi‖2

≤ 1
2


‖ak‖22 +

(
m∑

i=1

‖xi‖2
)2


 =

1
2

(‖A‖22,∞ + ‖X‖22,1

)
.

Clearly, the last inequality becomes equality when ‖X‖2,1 = ‖A‖2,∞.

Lemma 2. Let A and X be defined as in Lemma 1. Then the following holds:

max
X

{
〈A,X〉 − 1

2
‖X‖22,1

}
=

1
2
‖A‖22,∞.
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Proof. Denote the set Q = {k : 1 ≤ k ≤ m, ‖ak‖2 = max1≤i≤m ‖ai‖2}. Let {αk}m
k=1 be such

that αk = 0 for k /∈ Q, αk ≥ 0 for k ∈ Q, and
∑m

k=1 αk = 1. Clearly, all inequalities in the proof
of Lemma 1 become equalities if and only if we construct the matrix X as follows:

xk =
{

αkak, if k ∈ Q
0, otherwise.

(9)

Thus, the maximum of 〈A,X〉 − 1
2‖X‖22,1 is 1

2‖A‖22,∞, which is achieved when X is constructed
as in Eq. (9).

Based on the results established in Lemmas 1 and 2, we can derive the dual formulation of the
optimization problem in Eq. (5) as follows. First we construct the Lagrangian L:

L(W,U) =
1
2
‖W‖22,1 − 〈U,AW −B〉 =

1
2
‖W‖22,1 − 〈U,AW〉+ 〈U,B〉.

The dual problem can be formulated as follows:

max
U

min
W

1
2
‖W‖22,1 − 〈U,AW〉+ 〈U,B〉. (10)

It follows from Lemma 2 that

min
W

{
1
2
‖W‖22,1 − 〈U,AW〉

}
= min

W

{
1
2
‖W‖22,1 − 〈AT U,W〉

}
= −1

2
‖AT U‖22,∞.

Note that from Lemma 2, the equality holds if and only if the optimal W∗ can be represented as

W∗ = diag(α)AT U, (11)

where α = [α1, · · · , αd]T ∈ IRd, αi ≥ 0 if ‖(AT U)i‖2 = ‖AT U‖2,∞, αi = 0 if ‖(AT U)i‖2 <

‖AT U‖2,∞, and
∑d

i=1 αi = 1. Thus, the dual problem can be simplified into the following form:

max
U

−1
2
‖AT U‖22,∞ + 〈U,B〉. (12)

Following the definition of the (2,∞)-norm, we can reformulate the dual problem in Eq. (12) as a
min-max problem, as summarized in the following theorem:
Theorem 1. The optimization problem in Eq. (5) can be formulated equivalently as:

min∑d
i=1 θi=1,θi≥0

max
u1,··· ,un

n∑

j=1

{
uT

j bj − 1
2

d∑

i=1

θiuT
j Giuj

}
, (13)

where the matrix Gi is defined as Gi = aiaT
i (1 ≤ i ≤ d), and ai is the ith column of A.

Proof. Note that ‖AT U‖22,∞ can be reformulated as follows:

‖AT U‖22,∞ = max
1≤i≤d

{‖aT
i U‖22

}
= max

1≤i≤d
{tr(UT aiaT

i U)} = max
1≤i≤d

{tr(UT GiU)}

= max
θi≥0,

∑d
i=1 θi=1

d∑

i=1

θitr(UT GiU). (14)

Substituting Eq. (14) into Eq. (12), we obtain the following problem:

max
U

−1
2
‖AT U‖22,∞ + 〈U,B〉 ⇔ max

U
min∑d

i=1 θi=1,θi≥0
〈U,B〉 − 1

2

d∑

i=1

θitr(UT GiU). (15)

Since the Slater’s condition [2] is satisfied, the minimization and maximization in Eq. (15) can be
exchanged, resulting in the min-max problem in Eq. (13).

Corollary 1. Let (θ∗,U∗) be the optimal solution to Eq. (13) where θ∗ = (θ∗1 , · · · , θ∗d)T . If θ∗i > 0,
then ‖(AT U∗)i‖2 = ‖AT U∗‖2,∞.
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Based on the solution to the dual problem in Eq. (13), we can construct the optimal solution to the
primal problem in Eq. (5) as follows. Let W∗ be the optimal solution of Eq. (5). It follows from
Lemma 2 that we can construct W∗ based on AT U∗ as in Eq. (11). Recall that W∗ must satisfy
the equality constraint AW∗ = B. The main result is summarized in the following theorem:
Theorem 2. Given W∗ = diag(α)AT U∗, where α = [α1, · · · , αd] ∈ IRd, αi ≥ 0, αi > 0 only if
‖ (

AT U∗)i ‖2 = ‖AT U∗‖2,∞, and
∑d

i=1 αi = 1. Then, AW∗ = B if and only if (α,U∗) is the
optimal solution to the problem in Eq. (13).

Proof. First we assume that (α,U∗) is the optimal solution to the problem in Eq. (13). It follows
that the partial derivative of the objective function with respect to U∗ in Eq. (13) is 0, that is,

B−Adiag(α)AT U∗ = 0 ⇔ AW∗ = B.

Next we prove the reverse direction by assuming AW∗ = B. Since W∗ = diag(α)AT U∗, we have
0 = B−AW∗ = B−Adiag(α1, · · · , αd)AT U∗. (16)

Define the function φ(θ1, · · · , θd,U) as

φ(θ1, · · · , θd,U) = 〈U,B〉 − 1
2

d∑

i=1

θitr(UT GiU) =
n∑

j=1

{
uT

j bj − 1
2

d∑

i=1

θiuT
j Giuj

}
.

We consider the function φ(α1, · · · , αd,U) with fixed θi = αi(1 ≤ i ≤ d). Note that this function
is concave with respect to U, thus its maximum is achieved when its partial derivative with respect
to U is zero. It follows from Eq. (16) that ∂φ

∂U is zero when U = U∗. Thus, we have
∀U, φ(α1, · · · , αd,U) ≤ φ(α1, · · · , αd,U∗).

With a fixed U = U∗, φ(θ1, · · · , θd,U∗) is a linear combination of θi(1 ≤ i ≤ d) as:

φ(θ1, · · · , θd,U∗) = 〈U∗,B〉 − 1
2

d∑

i=1

θi‖(AT U∗)i‖22.

By the assumption, we have ‖(AT U∗)i‖ = ‖AT U∗‖2,∞, if αi > 0. Thus, we have

φ(α1, · · · , αd,U∗) ≤ φ(θ1, · · · , θd,U∗),∀θ1, · · · , θd satisfying
d∑

i=1

θi = 1, θi ≥ 0.

Therefore, for any U, θ1, · · · , θd such that
∑d

i=1 θi = 1, θi ≥ 0, we have
φ(α1, · · · , αd,U) ≤ φ(α1, · · · , αd,U∗) ≤ φ(θ1, · · · , θd,U∗), (17)

which implies that (α1, · · · , αd,U∗) is a saddle point of the min-max problem in Eq. (13). Thus,
(α,U∗) is the optimal solution to the problem in Eq. (13).

Theorem 2 shows that we can reconstruct the solution to the primal problem based on the solution to
the dual problem in Eq. (13). It paves the way for the efficient implementation based on the min-max
formulation in Eq.(13). In this paper, the prox-method [19], which is discussed in detail in the next
section, is employed to solve the dual problem in Eq. (13).

An interesting observation is that the resulting min-max problem in Eq. (13) is closely related to the
optimization problem in multiple kernel learning (MKL) [14]. The min-max problem in Eq. (13)
can be reformulated as

min∑d
i=1 θi=1,θi≥0

max
u1,··· ,un

n∑

j=1

{
uT

j bj − 1
2
uT

j Guj

}
, (18)

where the positive semidefinite (kernel) matrix G is constrained as a linear combination of a set of

base kernels
{
Gi = aiaiT

}d

i=1
as G =

∑d
i=1 θiGi.

The formulation in Eq. (18) connects the MMV problem to MKL. Many efficient algorithms [14,
22, 27] have been developed in the past for MKL, which can be applied to solve (13). In [27],
an extended level set method was proposed to solve MKL, which was shown to outperform the
one based on the semi-infinite linear programming formulation [22]. However, the extended level
set method involves a linear programming in each iteration and its theoretical convergence rate of
O(1/

√
N) (N denotes the number of iterations) is slower than the proposed algorithm presented in

the next section.
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4 The Main Algorithm

We propose to employ the prox-method [19] to solve the min-max formulation in Eq. (13), which has
a differentiable and convex-concave objective function. The algorithm is called “MMVprox”. The
prox-method is a first-order method [1, 19] which is specialized for solving the saddle point problem
and has a nearly dimension-independent convergence rate of O(1/N) (N denotes the number of
iterations). We show that each iteration of MMVprox has a low computational cost, thus it scales to
large-size problems.

The key idea is to convert the min-max problem to the associated variational inequality (v.i.) prob-
lem, which is then iteratively solved by a series of v.i. problems. Let z = (θ,U). The problem in
Eq. (13) is equivalent to the following associated v.i. problem [19]:

Find z∗ = (θ∗,U∗) ∈ S : 〈F (z∗), z− z∗〉 ≥ 0,∀z ∈ S,S = X × Y , (19)

where

F (z) =
(

∂

∂θ
φ(θ,U),− ∂

∂U
φ(θ,U)

)
(20)

is an operator constituted by the gradient of φ(·, ·), X = {θ ∈ IRd : ‖θ‖1 = 1, θi ≥ 0}, and
Y = IRm×n.

In solving the v.i. problem in Eq. (19), one key building block is the following projection problem:

Pz(z̄) = arg min
z̃∈S

[
1
2
‖z̃‖22 + 〈z̃, z̄− z〉

]
, (21)

where z̄ = (θ̄, Ū) and z̃ = (θ̃, Ũ). Denote (θ∗,U∗) = Pz(z̄). It is easy to verify that

θ∗ = arg min
θ̃∈X

1
2
‖θ̃ − (θ − θ̄)‖22, (22)

and
U∗ = U− Ū. (23)

Following [19], we present the pseudocode of the proposed MMVprox algorithm in Algorithm 1. In
each iteration, we compute the projection (21) so that wt,s is sufficiently close to wt,s−1 (controlled
by the parameter δ). It has been shown in [19] that, when γ ≤ 1√

2L
[L denotes the Lipschitz

continuous constant of the operator F (·)], the inner iteration converges within two iterations, i.e.,
wt,2 = wt,1 always holds. Moreover, Algorithm 1 has a global dimension-independent convergence
rate of O(1/N).

Algorithm 1 The MMVprox Algorithm

Input: A, B, γ, z0 = (θ0,U0), and δ
Output: θ, U and W.
Step t (t ≥ 1): Set wt,0 = zt−1 and find the smallest s = 1, 2, . . . such that

wt,s = Pzt−1(γF (wt,s−1)), ‖wt,s −wt,s−1‖2 ≤ δ.

Set zt = wt,s

Final Step: Set θ =
∑t

i=1 θi

t , U =
∑t

i=1 Ui

t , W = diag(θ)AT U.

Time Complexity It costs O(dmn) to evaluate the operator F (·) at a given point. θ∗ in Eq. (22)
involves the Euclidean projection onto the simplex [1], which can be solved in linear time, i.e., in
O(d); and U∗ in Eq. (23) can be analytically computed in O(mn) time. Recall that at each iteration
t, the inner iteration is at most 2. Thus, the time complexity for any given outer iteration is O(dmn).
Our analysis shows that MMVprox scales to large-size problems.

In comparison, the second-order methods such as SOCP have a much higher complexity per iter-
ation. According to [15], the SOCP in Eq. (6) costs O(d3(n + 1)3) per iteration. In MMV, d is
typically larger than m. In this case, the proposed MMVprox algorithm has a much smaller cost
per iteration than SOCP. This explains why MMVprox scales better than SOCP, as shown in our
experiments in the next section.
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Table 1: The averaged recovery results over 10 experiments (d = 100, m = 50, and n = 80).
Data set

√
‖W −Wp‖2F /(dn)

√
‖AWp −B‖2F /(mn)

1 3.2723e-6 1.4467e-5
2 3.4576e-6 1.8234e-5
3 2.6971e-6 1.4464e-5
4 2.4099e-6 1.4460e-5
5 2.9611e-6 1.4463e-5
6 2.5701e-6 1.4459e-5
7 2.0884e-6 1.4469e-5
8 2.3454e-6 1.4475e-5
9 2.6807e-6 1.4461e-5
10 2.7172e-6 1.4481e-5
Mean 2.7200e-6 1.4843e-5
Std 4.1728e-7 1.1914e-6

5 Experiments

In this section, we conduct simulations to evaluate the proposed MMVprox algorithm in terms of the
recovery quality and scalability.

Experiment Setup We generated a set of synthetic data sets (by varying the values of m, n, and
d) for our experiments: the entries in A ∈ IRm×d were independently generated from the standard
normal distributionN (0, 1); W ∈ IRd×n (the ground truth of the recovery problems) was generated
in two steps: (1) randomly select k rows with nonzero entries; (2) randomly generate the entries of
those k rows from N (0, 1). We denote by Wp the solution obtained from the proposed MMVprox
algorithm. Ideally, Wp should be close to W. Our experiments were performed on a PC with Intel
Core 2 Duo T9500 2.6G CPU and 4G RAM. We employed the optimization package SeDuMi [23]
for solving the SOCP formulation. All codes were implemented in Matlab. In all experiments, we
terminate MMVprox when the change of the consecutive approximate solutions is less than 1e-6.

Recovery Quality In this experiment, we evaluate the recovery quality of the proposed MMVprox
algorithm. We applied MMVprox on the data sets of size d = 100, m = 50, n = 80, and reported
the averaged experimental results over 10 random repetitions. We measured the recovery quality in
terms of the mean squared error:

√
‖W −Wp‖2F /(dn). We also reported

√
‖AWp −B‖2F /(mn),

which measures the violation of the constraint in Eq. (5). The experimental results are presented in
Table 1. We can observe from the table that MMVprox recovers the sparse signal successfully in all
cases.

Next, we study how the recovery error changes as the sparsity of W varies. Specifically, we applied
MMVprox on the data sets of size d = 100,m = 400, and n = 10 with k (the number of nonzero
rows of W) varying from 0.05d to 0.7d, and used

√
‖W −Wp‖2F /(dn) as the recovery quality

measure. The averaged experimental results over 20 random repetitions are presented in Figure 1.
We can observe from the figure that MMVprox works well in all cases, and a larger k (less sparse
W) tends to result in a larger recovery error.

0.05 0.2 0.35 0.5 0.7
0

0.5

1

1.5

2
x 10

−6

k/d

√

‖
W

−
W

p
‖
2 F

/
(d

n
)

Figure 1: The increase of the recovery error as the sparsity level decreases
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Scalability In this experiment, we study the scalability of the proposed MMVprox algorithm. We
generated a collection of data sets by varying m from 10 to 200 with a step size of 10, and setting
n = 2m and d = 4m accordingly. We applied SOCP and MMVprox on the data sets and recorded
their computation time. The experimental results are presented in Figure 2 (a), where the x-axis
corresponds to the value of m, and the y-axis corresponds to log(t), where t denotes the computa-
tion time (in seconds). We can observe from the figure that the computation time of both algorithms
increases as m increases and SOCP is faster than MMVprox on small problems (m ≤ 40); when
m > 40, MMVprox outperforms SOCP; when the value of m is large (m > 80), the SOCP for-
mulation cannot be solved by SeDuMi, while MMVprox can still be applied. This experimental
result demonstrates the good scalability of the proposed MMVprox algorithm in comparison with
the SOCP formulation.

50 100 150 200
−2

0

2

4

6

8

10

m

lo
g
(t

)

 

 

SOCP
MMV

prox

50 100 150 200
−10

−8

−6

−4

−2

0

2

4

m

lo
g
(t

)

 

 

SOCP
MMV

prox

(a) (b)

Figure 2: Scalability comparison of MMVprox and SOCP: (a) the computation time for both algorithms as the
problem size varies; and (b) the average computation time of each iteration for both algorithms as the problem
size varies. The x-axis denotes the value of m, and the y-axis denotes the computation time in seconds (in log
scale).

To further examine the scalability of both algorithms, we compare the execution time of each itera-
tion for both SOCP and the proposed algorithm. We use the same setting as in the last experiment,
i.e., n = 2m, d = 4m, and m ranges from 10 to 200 with a step size of 10. The time comparison
of SOCP and MMVprox is presented in Figure 2 (b). We observe that MMVprox has a significantly
lower cost than SOCP in each iteration (note that SOCP is not applicable for m > 80). This is
consistent with our complexity analysis in Section 4.

We can observe from Figure 2 that when m is small, the computation time of SOCP and MMVprox
is comparable, although MMVprox is much faster in each iteration. This is because MMVprox is a
first-order method, which has a slower convergence rate than the second-order method SOCP. Thus,
there is a tradeoff between scalability and convergence rate. Our experiments show the advantage of
MMVprox for large-size problems.

6 Conclusions
In this paper, we consider the (2, 1)-norm minimization for the reconstruction of sparse signals in
the multiple measurement vector (MMV) model, in which the signal consists of a set of jointly
sparse vectors. Existing algorithms formulate it as second-order cone programming or semdefinite
programming, which is computationally expensive to solve for problems of moderate size. In this
paper, we propose an equivalent dual formulation for the (2, 1)-norm minimization in the MMV
model, and develop the MMVprox algorithm for solving the dual formulation based on the prox-
method. In addition, our theoretical analysis reveals the close connection between the proposed
dual formulation and multiple kernel learning. Our simulation studies demonstrate the effectiveness
of the proposed algorithm in terms of recovery quality and scalability. In the future, we plan to
compare existing solvers for multiple kernel learning [14, 22, 27] with the proposed MMVprox
algorithm. In addition, we plan to examine the efficiency of the prox-method for solving various
MKL formulations.
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