A Parameter-free Hedging Algorithm

Kamalika Chaudhuri Yoav Freund Daniel Hsu
ITA, UC San Diego CSE, UC San Diego CSE, UC San Diego
kamal i ka@oe. ucsd. edu yfreund@icsd. edu dj hsu@s. ucsd. edu

Abstract

We study the problem of decision-theoretic online learn(indOL). Motivated
by practical applications, we focus on DTOL when the numbiections is very
large. Previous algorithms for learning in this framewodvé a tunable learning
rate parameter, and a barrier to using online-learning actpral applications is
that it is not understood how to set this parameter optimgdyticularly when the
number of actions is large.

In this paper, we offer a clean solution by proposing a novel aompletely
parameter-free algorithm for DTOL. We introduce a new notid regret, which
is more natural for applications with a large number of a®tioVe show that our
algorithm achieves good performance with respect to thismagion of regret; in
addition, it also achieves performance close to that of s bounds achieved
by previous algorithms with optimally-tuned parameters;aading to previous
notions of regret.

1 Introduction

In this paper, we consider the problem of decision-theomtiine learning (DTOL), proposed by
Freund and Schapire [1]. DTOL is a variant of the problem efdtion with expert advice [2, 3].
In this problem, a learner must assign probabilities to aifset of actions in a sequence of rounds.
After each assignment, each action incurs a loss (a vall@ 1f); the learner incurs a loss equal
to the expected loss of actions for that round, where theaapen is computed according to the
learner’s current probability assignment. Tilegret (of the learner) to an action is the difference
between the learner’s cumulative loss and the cumulatse db that action. The goal of the learner
is to achieve, on any sequence of losses, low regret to tlenaeith the lowest cumulative loss (the
best action).

DTOL is a general framework that captures many learninglprob of interest. For example, con-
sider tracking the hidden state of an object in a continutaie space from noisy observations [4].
To look at tracking in a DTOL framework, we set each actionealpath (sequence of states) over
the state space. The loss of an action at tinsethe distance between the observation at tiraed
the state of the action at tinteand the goal of the learner is to predict a path which hasdlose

to that of the action with the lowest cumulative loss.

The most popular solution to the DTOL problem is the Hedgerdlgm [1, 5]. In Hedge, each action
is assigned a probability, which depends on the cumulatis® of this action and a parametealso
called thdearning rate By appropriately setting the learning rate as a functiothefiteration [6, 7]
and the number of actions, Hedge can achieve a regret uppedbd byO(v/T In N), for each
iterationT’, where NV is the number of actions. This bound on the regret is optiraahare is a

Q(VTIn N) lower-bound [5].
In this paper, motivated by practical applications suctrasking, we consider DTOL in the regime

where the number of actions is very large. A major barrier to using online-learning foagtical
problems is that whe®V is large, it is not understood how to set the learning ratg, 6] suggest

Total loss

« >

€
Actions

Figure 1: A new notion of regret. Suppose each action is atuira line, and the total losses are
as given in the plot. The regret to the teguantile is the difference between the learner’s tota los
and the total loss of the worst action in the indicated irdbof measure.

settingn as a fixed function of the number of actioNs However, this can lead to poor performance,
as we illustrate by an example in Section 3, and the degadati performance is particularly
exacerbated a8’ grows larger. One way to address this is by simultaneousining multiple
copies of Hedge with multiple values of the learning rated ahoosing the output of the copy
that performs the best in an online way. However, this soituts impractical for real applications,
particularly asV is already very large. (For more details about these salstiplease see Section 4.)

In this paper, we take a step towards making online learniagerpractical by proposing a novel,
completely adaptive algorithm for DTOL. Our algorithm isled NormalHedge. NormalHedge
is very simple and easy to implement, and in each round, iplsinmvolves a single line search,
followed by an updating of weights for all actions.

A second issue with using online-learning in problems swgtracking, whereV is very large, is
that the regret to thbest actionis not an effective measure of performance. For problemis asc
tracking, one expects to have a lot of actions that are closke action with the lowest loss. As
these actions also have low loss, measuring performanteraspect to a small group of actions
that perform well is extremely reasonable — see, for exanktpire 1.

In this paper, we address this issue by introducing a nevwonadf regret, which is more natural
for practical applications. We order the cumulative lossfesll actions from lowest to highest and
define theaegret of the learner to the topquantileto be the difference between the cumulative loss
of the learner and thV |-th element in the sorted list.

We prove that for NormalHedge, the regret to the daquantile of actions is at most

@) (,/T1n1+1n2N> ,
€

which holdssimultaneously for all” ande. If we sete = 1/N, we get that the regret to the best
action is upper-bounded b9 (/7' In N + In? N'), which is only slightly worse than the bound

achieved by Hedge with optimally-tuned parameters. Natiae in our regret bound, the term
involving 7" has no dependence @¥i. In contrast, Hedge cannot achieve a regret-bound of this
nature uniformly for alle. (For details on how Hedge can be modified to perform with aw n
notion of regret, see Section 4).

NormalHedge works by assigning each actica potential; actions which have lower cumulative
loss than the algorithm are assigned a potereﬁ@l(R?,t/%t), whereR; ; is the regret of action

1 andc, is an adaptive scale parameter, which is adjusted from omedréo the next, depending
on the loss-sequences. Actions which have higher cumaltiss than the algorithm are assigned
potentiall. The weight assigned to an action in each round is then ptiopal to the derivative of its
potential. One can also interpret Hedge as a potentialdbalgerithm, and under this interpretation,
the potential assigned by Hedge to actiois proportional toexp(nR; ;). This potential used by
Hedge differs significantly from the one we use. Althougheotbotential-based methods have been
considered in the context of online learning [8], our paedritinction is very novel, and to the best

Initially: SetR; o =0, p;1 = 1/N for eachi.
Fort=1,2,...

1. Each actiori incurs los; ;.
Learner incurs losés , = Z£i1pi,t£i,t-
Update cumulative regret®; , = R; ;1 + ({4, — ¢;,,) for eachi.

Finde, > 0 satisfying+ S | exp (([RQ#)Z) —c.

Ct

Wb

P . [Ri,e]+ ([Ri,e]4)? ;
5. Update distribution for rountl+ 1: p; ;41 o= exp Se, for each:.

Figure 2: The Normal-Hedge algorithm.

of our knowledge, has not been studied in prior work. Our ptechniques are also different from
previous potential-based methods.

Another useful property of NormalHedge, which Hedge dodspossess, is that it assigns zero
weight to any action whose cumulative loss is larger thanctiraulative loss of the algorithm it-
self. In other words, non-zero weights are assigned onlyctiorass which perform better than the
algorithm. In most applications, we expect a small set ofattigons to perform significantly better
than most of the actions. The regret of the algorithm is guaed to be small, which means that the
algorithm will perform better than most of the actions andasthssign them zero probability.

[9, 10] have proposed more recent solutions to DTOL in whinghregret of Hedge to the best action
is upper bounded by a function @&f the loss of the best action, or by a function of the variatiion
the losses. These bounds can be sharper than the boundespieitt td". Our analysis (and in fact,
to our knowledge, any analysis based on potential funciionise style of [11, 8]) do not directly
yield these kinds of bounds. We therefore leave open thetignes finding an adaptive algorithm
for DTOL which has regret upper-bounded by a function thaietels on the loss of the best action.

The rest of the paper is organized as follows. In Section 2prggide NormalHedge. In Section
3, we provide an example that illustrates the suboptimalitytandard online learning algorithms,
when the parameter is not set properly. In Section 4, we dis®elated Work. In Section 5, we
present some outlines of the proof. The proof details arbérBupplementary Materials.

2 Algorithm

2.1 Setting

We consider the decision-theoretic framework for onlirseéng. In this setting, the learner is given
access to a set d¥ actions, whergV > 2. In roundt, the learner chooses a weight distribution
pt = (p14,--.,pN,¢) Over the actiong, 2, ..., N. Each action incurs a losg, ;, and the learner
incurs the expected loss under this distribution:

N
gA,t = Zpi,t‘gi,b
i=1

The learner’s instantaneous regret to an actionoundt isr; ; = {4+ — ¢; +, and its (cumulative)
regret to an actionin the first¢ rounds is

¢
R = E T
T=1

We assume that the lossgg lie in an interval of length (e.g.[0, 1] or [-1/2, 1/2]; the sign of the
loss does not matter). The goal of the learner is to minintiedumulative regreR; ; to any action
¢ (in particular, the best action), for any valuetof

2.2 Normal-Hedge

Our algorithm, Normal-Hedge, is based on a potential famcteminiscent of the half-normal dis-
tribution, specifically

2
d(x,c) = exp (W) forr e R,e>0 Q)
c
where[z]+ denoteanax{0,z}. Itis easy to check that this function is separately conmexandc,

differentiable, and twice-differentiable exceptat 0.

In addition to tracking the cumulative regrd®s ; to each actior after each round, the algorithm
also maintains a scale parametgr This is chosen so that the average of the potential, over all
actionsi, evaluated af?; , andc;, remains constant at

We observe that sineg(z, ¢) is convex inc > 0, we can determine; with a line search.

The weight assigned tdn roundt is set proportional to the first-derivative of the potentisfaluated
at Ri,t—l andc;_1:

[Ris—1]+ exp (([leh)z) .

2¢1

0
Pit X %ﬂﬂ% C)

T=Rit—1,c=ct—1 Ct—1
Notice that the actions for whicR; ;1 < 0 receive zero weight in round

We summarize the learning algorithm in Figure 2.

3 Anlllustrative Example

In this section, we present an example to illustrate thaingethe parameters of DTOL algorithms
as a function oflV, the total number of actions, is suboptimal. To do this, wenjgare the perfor-
mance of NormalHedge with two representative algorithmeeraion of Hedge due to [7], and the
Polynomial Weights algorithm, due to [12, 11]. Our experirisewith this example indicate that the
performance of both these algorithms suffer because ofutheimal setting of the parameters; on
the other hand, NormalHedge automatically adapts to treedeguences of the actions.

The main feature of our example is that the effective numbactionsn (i.e.the number of distinct
actions) is smaller than the total number of actidfisNotice that without prior knowledge of the
actions and their loss-sequences, one cannot determieff¢lséive number actions in advance; as a
result, there is no direct method by which Hedge and Polyabwieights could set their parameters
as a function oh.

Our example attempts to model a practical scenario whereofira finds multiple actions with
loss-sequences which are almost identical. For examplieitracking problem, groups of paths
which are very close together in the state space, will havg clese loss-sequences. Our example
indicates that in this case, the performance of Hedge an&dhmomial Weights will depend on
the discretization of the state space, however, Normalkledlj comparatively unaffected by such
discretization.

Our example has four parameters; the total number of actions;, the effective number of actions
(the number of distinct actions};, the (effective) number of good actions; andvhich indicates
how much better the good actions are compared to the restl\sif is the number of rounds.

The instantaneous losses of theactions are represented byNa x 7" matrix va”“; the loss of
actions in roundt is the (4, ¢)-th entry in the matrix. The construction of the matrix is aldws.
First, we construct a (preliminary) x 7' matrix A,, based on the? x 2¢ Hadamard matrix, where
n = 291 — 2. This matrix A,, is obtained from th&? x 2¢ Hadamard matrix by (1) deleting
the constant row, (2) stacking the remaining rows on top eif thegations, (3) repeating each row

horizontally7'/2¢ times, and finally, (4) halving the first column. We shay for concreteness:

—la 41 —1 +1]-1 41 —1 +1]-1 +1 -1 +1
12 =1 41 +1|—-1 -1 +1 +1|-1 -1 +1 +1
—12 41 41 —1|-1 41 +1 —1|-1 +1 +1 -1
12 —1 41 —1|+1 -1 +1 —1|+41 —1 +1 -1
1s 41 =1 —1|+1 41 -1 —1|+1 +1 -1 -1
1/ =1 —1 41| +1 -1 —1 41|41 —1 -1 +1

Ag

If the rows of A,, give the losses fon actions over time, then it is clear that on average, no action
is better than any other. Therefore for large enoigtor these losses, a typical algorithm will
eventually assign all actions the same weight. NowAgt be the same ad,, except that is
subtracted from each entry of the fikstows, e.g.

- 41— —-1—-¢ +l—-¢e|-1-¢ 41— —-1—¢ +1l-¢
—lfo—e —1—¢ +l—-¢ 4l—-c|-1—-¢ —-1l—e¢ +1—¢ +1l-—c¢

452 S| +1 -1 ~1 +1 +1 ~1
6 = 1 -1 +1 -1 +1 -1 +1 —1
1 41 ~1 ~1 +1 +1 ~1 ~1

lfs -1 -1 +1 +1 -1 ~1 +1

Now, when losses are given byz;*, the firstk actions (the good actions) perform better than the
remainingn — k; so, for large enougfl’, a typical algorithm will eventually recognize this and
assign the firsk actions equal weights (giving little or no weight to the rémiag n — k). Finally,
we artificially replicate each action (each roW)n times to yield the final loss matriBf\;k’ for N
actions:
Ak
e,k

n

B = N/n replicates ofAS".

e,k
A

The replication of actions significantly affects the bebawf algorithms that set parameters with
respect to the number of actiong which is inflated compared to the effective number of action
NormalHedge, having no such parameters, is completelyffestafl by the replication of actions.

We compare the performance of NormalHedge to two other septative algorithms, which we
call “Exp” and “Poly”. Exp is a time/variation-adaptive &on of Hedge (exponential weights)

due to [7] (roughlyy), = O(y/(log N)/Var;), whereVar, is the cumulative loss variance). Poly

is polynomial weights [12, 11], which has a parameiehat is typically set as a function of the
number of actions; we spt= 21n N as is recommended to guarantee a regret bound comparable to
that of Hedge.

Figure 3 shows the regrets to the best action versus theagiph factorN/n, where the effective
number of actions is held fixed. Recall that Exp and Poly have parameters shtredpect to the
number of actionsv.

We see from the figures that NormalHedge is completely uaiEteby the replication of actions;
no matter how many times the actions may be replicated, tHerpgance of NormalHedge stays
exactly the same. In contrast, increasing the replicatatof affects the performance of Exp and
Poly: Exp and Poly become more sensitive to the changes itotaosses of the actions.g.the
base of the exponent in the weights assigned by Exp increatesV); so when there are multiple
good actionsi(e. k > 1), Exp and Poly are slower to stabilize their weights oves¢hgood actions.
Whenk = 1, Exp and Poly actually perform better using the inflated #&fu(as opposed te), as
this causes the slight advantage of the single best actibe tnagnified. However, this particular
case is an anomaly; this does not happen evelk fer 2. We note that if the parameters of Exp
and Poly were set to be a function of instead ofN, then, then their performance would also
not depend on the replication factor (the peformance woeldhle same as th&/n = 1 case).
Therefore, the degradation in performance of Exp and Po$piely due to the suboptimality in
setting their parameters.

® ® 650
© 2 E T
& 3505) P -
@ L i 6001 |~ — —poly. .-]
L S T - _ -
& 300(S T S -~ Normal -
& - £
T = H— ® L _
c * o — 5550 -
g 250F T e e —31 5 * B
bt Exp. R = 5000 - e]
%209 -~ —Poly. S~ % Foo TR o = —— 3
= - e S _ — —
B 150 —-—Normal * - 1 R
g -
14 14

100 0 ! 1 ! 2 3 400 0 ! 1 : 2 3

10 10 10 10 10 10 10 10
Replication factor Replication factor
o 900 900
©o %
N Exp. i § Exp. ¥
& 800r | pgy, -] %soof ~ — —Poly. . -
o T —
£ —— - & —-—-Normal -
700} Normal P S 700 -
g —-* £ -
— I *

2 600f o s 1 5 6008 -7 o
8 -7 e g L7 e
s T T El e
e e ® S00F —
=3 " =3 —
g g

0 5 S " R T T A

10 10 10 10 10 10 10 10
Replication factor Replication factor

Figure 3: Regrets to the best action affee= 32768 rounds, versus replication factdf/n. Recall,
k is the (effective) number of good actions. Here, werfix 126 ande = 0.025.

4 Related work

There has been a large amount of literature on various aspe&TOL. The Hedge algorithm of
[1] belongs to a more general family of algorithms, calleel éixponential weights algorithms; these
are originally based on Littlestone and Warmuth’s Weightkjority algorithm [2], and they have
been well-studied.

The standard measure of regret in most of these works is ¢netr® the best action. The original
Hedge algorithm has a regret bound@®@f./T log N). Hedge uses a fixed learning rajdor all
iterations, and requires one to seas a function of the total number of iteratiof's As a result,

its regret bound also holds only for a fixdd The algorithm of [13] guarantees a regret bound
of O(v/T'log N) to the best action uniformly for all' by using a doubling trick. Time-varying
learning rates for exponential weights algorithms weresatered in [6]; there, they show that if
n: = +/81n(N)/t, then using exponential weights with= 7, in roundt guarantees regret bounds
of vV2T'In N + O(In N) for anyT. This bound provides a better regret to the best action trean w

do. However, this method is still susceptible to poor penance, as illustrated in the example in
Section 3. Moreover, they do not consider our notion of regre

Though not explicitly considered in previous works, the @xgntial weights algorithms can be
partly analyzed with respect to the regret to the teguantile. For anyfixed ¢, Hedge can be
modified by setting; as a function of this such that the regret to the tepquantile is at most
O(y/Tlog(1/€)). The problem with this solution is that it requires tlae learning rate to be

set as a function of that particular (roughlyn = /(log1/¢)/T). Therefore, unlike our bound,
this bound does not hold uniformly for all One way to ensure a bound for aluniformly is to
runlog N copies of Hedge, each with a learning rate set as a functiendifferent value ot. A
final master copy of the Hedge algorithm then looks at the givdibies given by these subordinate
copiesto give the final probabilities. However, this pragedadds an additiv® (/T loglog N)
factor to the regret to the quantile of actions, foanye. More importantly, this procedure is also
impractical for real applications, where one might be ayeaorking with a large set of actions.
In contrast, our solution NormalHedge is clean and simpid,vae guarantee a regret bound for all
values ofe uniformly, without any extra overhead.

More recent work in [14, 7, 10] provide algorithms with sificéntly improved bounds when the
total loss of the best action is small, or when the total yenein the losses is small. These bounds
do not explicitly depend off’, and thus can often be sharper than ones that do (includirsy. a'e
stress, however, that these methods use a different ndti@yet, and their learning rates depend
explicitly on N.

Besides exponential weights, another important class fi@mhearning algorithms are the poly-

nomial weights algorithms studied in [12, 11, 8]. These atgms too require a parameter; this
parameter does not depend on the number of roliidwit depends crucially on the number of ac-
tions N. The weight assigned to actioin roundt is proportional tq[R; ;1])?~! for somep > 1;

settingp = 21In N yields regret bounds of the forRy2eT’(In N — 0.5) for any T". Our algorithm
and polynomial weights share the feature that zero weiggivisn to actions that are performing
worse than the algorithm, although the degree of this wedghtsity is tied to the performance of
the algorithm. Finally, [15] derive a time-adaptive vaioat of the follow-the-(perturbed) leader
algorithm [16, 17] by scaling the perturbations by a paramgtat depends on botland V.

5 Analysis

5.1 Mainresults

Our main result is the following theorem.

Theorem 1. If Normal-Hedge has access 16 actions, then for all loss sequences, forialtor all
0 <e<landforall0 < < 1/2,the regret of the algorithm to the tapquantile of the actions is
at most

¢u+maﬁ»Cm+5wﬁ+1mkaﬁf+mN0.

In particular, withe = 1/N, the regret to the best action is at most

161n® N ,10.2
¢u+mm(auwwﬁ+6§ (§2+mN0.

The valued in Theorem 1 appears to be an artifact of our analysis; weldithie sequence of rounds
into two phases — the length of the first is controlled by tHeeaf / — and bound the behavior of
the algorithm in each phase separately. The following tanpillustrates the performance of our
algorithm for large values of, in which case the effect of this first phase (and dhe the bound)
essentially goes away.

Corollary 2. If Normal-Hedge has access 1% actions, then, as — oo, the regret of Normal-
Hedge to the top-quantile of actions approaches an upper bound of

V3t(1 +1n(1/€)) + o(t) .
In particular, the regret of Normal-Hedge to the best actapproaches an upper bound of of
V3t(1+In N) + o(t) .

The proof of Theorem 1 follows from a combination of Lemmagi3and 5, and is presented in
detail at the end of the current section.

5.2 Regret boundsfrom the potential equation

The following lemma relates the performance of the algaritt timet to the scale;.
Lemma 3. At any timet, the regret to the best action can be bounded as

max R; ¢y <+/2¢(InN +1).
Moreover, for any) < e < 1 and anyt, the regret to the top-quantile of actions is at most

V2ei(In(1/e) +1).

Proof. We useF; to denote the actions that have non-zero weight on iteratidhe first part of the
lemma follows from the fact that, for any actiore E:,

o () ey (B S5 o (W) i,

i'=1
which impliesR; ; < \/2¢,(In N + 1).

For the second part of the lemma, Ief; denote the regret of our algorithm to the action with the
eN-th highest regret. Then, the total potential of the actiwith regrets greater than or equal to

R, is at least
) 2
eN exp <([R’2t]+)> < Ne

Ct

from which the second part of the lemma follows. O

5.3 Boundson thescale ¢; and the proof of Theorem 1

In Lemmas 4 and 5, we bound the growth of the seales a function of the time

The main outline of the proof of Theorem 1 is as follows. Aéncreases monotonically with we
can divide the roundsinto two phaseg, < ty andt > tq, wheret, is the first time such that

41n* N L 16N

0 53
for some fixed) € (0,1/2). We then show bounds on the growthgffor each phase separately.
Lemma 4 shows that; is not too large at the end of the first phase, while Lemma 5 @®uine

per-round growth of; in the second phase. The proofs of these two lemmas are guitlvéd, so
we defer them to the supplementary appendix.

Lemma4. For any timet,

Cty =

Ct+1 S 2Ct(1 +11’1N) + 3.

Lemma 5. Suppose that at some timg c;, > % + 168N where0 < § < 3 is a constant.

Then, for any time > ¢,

3
Ct4+1 — C¢ S 5(1 + 49196) .

We now combine Lemmas 4 and 5 together with Lemma 3 to proventie theorem.

Proof of Theorem 1Let ¢, be the first time at which;, > % + 168X Then, from Lemma 4,

Cto < 2¢p—1(1+1InN) + 3,
which is at most
8In® N N 341n* N LB2IN 8In® N N 811n2N'
5 53 53) 83
The last inequality follows becaugé > 2 andd < 1/2. By Lemma 5, we have that for any> ¢,

3
¢ < 5 (1449.198)(t — to) + cr.

Combining these last two inequalities yields

8ln® N N 811n* N
) 5
Now the theorem follows by applying Lemma 3. O

3
e < 5(1+49.199)t +

References

(1]
(2]
(3]
(4]
(5]
(6]
(7]
(8]

&l
[10]

[11]
[12]

[13]
[14]
[15]

[16]

Y. Freund and R. E. Schapire. A decision-theoretic generalizafiom-dine learning and an application
to boosting.Journal of Computer and System Sciené&&s119-139, 1997.

N. Littlestone and M. Warmuth. The weighted majority algorithninformation and Computatign
108:212-261, 1994.

V. Vovk. A game of prediction witih expert advicdournal of Computer and System Sciené&ég2):153—
173, 1998.

K. Chaudhuri, Y. Freund, and D. Hsu. Tracking using explanabiased modeling, 2009.
arXiv:0903.2862.

Y. Freund and R. E. Schapire. Adaptive game playing using multiplieaveights.Games and Economic
Behavior 29:79-103, 1999.

P. Auer, N. Cesa-Bianchi, and C. Gentile. Adaptive and self-dention-line learning algorithmgournal
of Computer and System Sciend&$(1), 2002.

N. Cesa-Bianchi, Y. Mansour, and G. Stoltz. Improved secamigobounds for prediction with expert
advice.Machine Learning66(2—3):321-352, 2007.

N. Cesa-Bianchi and G. Lugosi. Potential-based algorithms in onpliediction and game theorja-
chine Learning51:239-261, 2003.

N. Cesa-Bianchi and G. LugodPrediction, Learning and Game€ambridge University Press, 2006.

E. Hazan and S. Kale. Extracting certainty from uncertainty: Rdgyanded by variation in costs. In
COLT, 2008.

C. Gentile. The robustness pfnorm algorithmsMachine Learning53(3):265-299, 2003.

A. J. Grove, N. Littlestone, and D. Schuurmans. General agevee results for linear discriminant
updatesMachine Learning43(3):173-210, 2001.

N. Cesa-Bianchi, Y. Freund, D. Haussler, D. P. Hembold, Rsdhapire, and M. Warmuth. How to use
expert adviceJournal of the ACM44(3):427-485, 1997.

R. Yaroshinsky, R. El-Yaniv, , and S. Seiden. How to better ugeet advice. Machine Learning
55(3):271-309, 2004.

M. Hutter and J. Poland. Adaptive online prediction by following theyr®ed leaderJournal of Machine
Learning Researcl6:639-660, 2005.

J. Hannan. Approximation to bayes risk in repeated pagntributions to the Theory of Gamex97—-
139, 1957.

[17] A. Kalai and S. Vempala. Efficient algorithms for the online optimizatidournal of Computer and

System Sciencegsl(3):291-307, 2005.

