Submanifold density estimation

Arkadas Ozakin Alexander Gray
Georgia Tech Research Institute College of Computing
Georgia Insitute of Technology Georgia Institute of Technology
ar kadas. ozaki n@tri . gatech. edu agray@c. gat ech. edu
Abstract

Kernel density estimation is the most widely-used pratticethod for accurate
nonparametric density estimation. However, long-stagdiorst-case theoretical
results showing that its performance worsens exponentidth the dimension

of the data have quashed its application to modern highsineal datasets for
decades. In practice, it has been recognized that often datehhave a much
lower-dimensional intrinsic structure. We propose a smailification to ker-

nel density estimation for estimating probability densitgctions on Riemannian
submanifolds of Euclidean space. Using ideas from Rienzamngeometry, we
prove the consistency of this modified estimator and showttieconvergence
rate is determined by the intrinsic dimension of the subifiodchi We conclude

with empirical results demonstrating the behavior presidiy our theory.

1 Introduction: Density estimation and the curse of dimensonality

Kernel density estimation (KDE) [8] is one of the most poputeethods for estimating the under-
lying probability density function (PDF) of a dataset. Rblygspeaking, KDE consists of having
the data points “contribute” to the estimate at a given pagtording to their distances from the
point. In the simplest multi-dimensional KDE [3], the estitaf,,,(yo) of the PDFf(y,) at a point
yo € RY is given in terms of a samplgy1, ...,y } as,

o) = 23 ot (122l @

whereh,,, > 0, the bandwidth is chosen to approach to zero at a suitable rate as the number
m of data points increases, add : [0.co) — [0,00) is a kernel functionthat satisfies certain
properties such as boundedness. Various theorems exibeatifferent types of convergence of
the estimator to the correct result and the rates of conneryeThe earliest result on the pointwise
convergence rate in the multivariable case seems to be @ivi}, where it is stated that under
certain conditions fo and K, assumingy,, — 0 andmh,, — oc asm — oo, the mean squared

error in the estimatg (y,) of the density at a point goes to zero with the rateSE|f,.. (yo)] =

~ 2
E [(fm(yo) — f(yo)) ] =0 (h;‘n + m—,lLN) asm — oo. If h,, is chosen to be proportional to
m~ Y/ (N+4) one gets,

MSELfo ()] = O () @

asm — oo. This is an example of aurse of dimensionalitythe convergence rate slows as the
dimensionalityN of the data set increases. In Table 4.2 of [12], Silvermanatestnates how the
sample size required for a given mean square error for timaatst of a multivariable normal distri-
bution increases with the dimensionality. The numbers B®H#iscouraging as the formula 2.



One source of optimism towards various curses of dimenBigrigthe fact that although the data
for a given problem may have many features, in realityititensic dimensionality of the “data
subspace” of the full feature space may be low. This may résuhere being no curse at all, if
the performance of the method/algorithm under considaratan be shown to depend only on the
intrinsic dimensionality of the data. Alternatively, one@ynbe able to avoid the curse by devising
ways to work with the low-dimensional data subspace by udingensional reduction techniques
on the data. One example of the former case is the resultsaresteneighbor search [6, 2] which
indicate that the performance of certain nearest-neigbdanch algortihms is determined not by the
full dimensionality of the feature space, but only on theiirgic dimensionality of the data subspace.

Riemannian manifolds. In this paper, we will assume that the data subspace is a Rigara
manifold. Riemannian manifolds provide a generalizatibthe notion of a smooth surface R?

to higher dimensions. As first clarified by Gauss in the twmehsional case (and by Riemann in
the general case) it turns out thatrinsic features of the geometry of a surface such as lengths of
its curves or intrinsic distances between its points, etm,be given in terms of the so-called metric
tensot g without referring to the particular way the the surface isedded inR®. A space whose
geometry is defined in terms of a metric tensor is called a Rierian manifold (for a rigorous
definition, see, e.g., [5, 7, 1]).

Previous work. In [9], Pelletier defines an estimator of a PDF on a Riemanmianifold M by
using the distances measured dhvia its metric tensor, and obtains the same convergence rate
as in (2), with N being replaced by the dimensionality of the Riemannian fo&hi Thus, if we
know that the data lives on a Riemannian manifdfd the convergence rate of this estimator will
be determined by the dimensionality df, instead of the full dimensionality of the feature space
on which the data may have been originally sampled. Whilenéerésting generalization of the
usual KDE, this approach assumes that the data manifoid known in advance, and that we have
access to certain geometric quantities related to this foldrsuch as intrinsic distances between
its points and the so-calleeblume density functionThus, this Riemannian KDE cannot be used
directly in a case where the data lives orusknowrRiemannian submanifold &%. Certain tools
from existing nonlinear dimensionality reduction methadsild perhaps be utilized to estimate
the quantities needed in the estimator of [9], however, aenstiaightforward method that directly
estimates the density of the data as measured in the sulispisrable.

Other related works include [13], where the authors proppseibmanifold density estimation
method that uses a kernel function with a variable covaddna do not present theorerical re-
sults, [4] where the author proposes a method for doing tleastimation on a Riemannian man-
ifold by using the eigenfunctions of the Laplace-Beltramperator, which, as in [9], assumes that
the manifold is known in advance, together with intricatemgetric information pertaining to it, and
[10, 11], which discuss various issues related to stasistica Riemannian manifold.

This paper. In this paper, we propose a direct way to estimate the deobEuclidean data that
lives on a Riemannian submanifold &Y with known dimensiom < N. We prove the pointwise
consistency of the estimator, and prove bounds on its cgewee rates given in terms of the intrinsic
dimension of the submanifold the data lives in. This is amepla of the avoidance of the curse of
dimensionality in the manner mentioned above, by a methaase/performance depends on the
intrinsic dimensionality of the data instead of the full éinsionality of the feature space. Our
method is practical in that it works with Euclidean distasmioaR” . In particular, we do not assume
any knowledge of the quantities pertaining to the intrirggometry of the underlying submanifold
such as its metric tensor, geodesic distances betweeniitis pits volume form, etc.

2 The estimator and its convergence rate

Motivation. In this paper, we are concerned with the estimation of a PR@FIies on an (un-
known) n-dimensional Riemannian submanifald of RV, whereN > n. Usual, N-dimensional
kernel density estimation would not work for this probleings if interpreted as living oRY, the

1The metric tensor can be thought of as giving the “infinitedidistance’ds between two points whose
coordinates differ by the infinitesimal amouritg)*, . . ., dy”™) asds® = > 9isdy'dy’.



underlying PDF would involve a “delta function” that vaneshwhen one moves away fraki, and
“becomes infinite” onM/ in order to have proper normalization. More formally, tedimensional
probability measure for such andimensional PDF o/ will have support only ord/, will not be
absolutely continuous with respect to the Lebesgue measuRé’, and will not have a probability
density function orR” . If one attempts to use the usuai;dimensional KDE for data drawn from
such a probability measure, the estimator will “try to cangee to a singular PDF, one that is infinite
on M, zero outside.

In order to estimate the probability density function bh by using data given iiRY, we pro-
pose a simple modification of usual KDE &1V, namely, to use a kernel that is normalized for
n-dimensions instead d¥, while still using the Euclidean distancesit¥. The intuition behind
this approach is based on three facts: 1) For small distaacesdimensional Riemannian mani-
fold “looks like” R™, and densities ifR™ should be estimated by andimensional kernel, 2) For
points of M that are close enough to each other, the intrinsic distaaxeseasured oM/ are close

to Euclidean distances as measurefkih, and, 3) For small bandwidths, the main contribution to
the estimate at a point comes from data points that are ne@hus, as the number of data points
increases and the bandwidth is taken to be smaller and spedkimating the density by using a
kernel normalized fon-dimensions and distances as measurefinshould give a result closer
and closer to the correct value.

We will next give the formal definition of the estimator matted by these considerations, and state
our theorem on its asymptotics. As in the original work ofZear[8], the proof that the estimator
is asymptotically unbiased consists of proving that as #edlvidth converges to zero, the kernel
function becomes a “delta function”. This result is alsoduseshowing that with an appropriate
choice of vanishing rate for the bandwidth, the variance amnishes asymptotically, hence the
estimator is pointwise consistent.

Statement of the theorem Let M be ann-dimensional, embedded, complete Riemannian sub-
manifold of RY (n < N) with an induced metrig and injectivity radius,; > 0.? Letd(p, q) be

the length of a length-minimizing geodesiciii betweerp, ¢ € M, and letu(p, ¢) be the geodesic
(linear) distance betwegnandq as measured iRY. Note thatu(p, ¢) < d(p, ¢). We will use the
notationu,(q) = u(p, ¢) andd,(q) = d(p, ¢). We will denote the Riemannian volume measure on
M by V, and the volume form byV’.

Theorem 2.1. Let f : M — [0,00) be a probability density function defined di (so that the
related probability measure igV’), and K : [0,00) — [0,00) be a continous function that sat-
isfies vanishes outside, 1), is differentiable with a bounded derivative |0, 1), and satisfies,
f” <1 K(||z||)d"z = 1. Assumef is differentiable to second order in a neighborhoocbof M,

and for a sampleq, . . ., ¢, of sizem drawn from the density, define an estlmatofm(p) of f(p)

as, .
_%; K<%W> 3)

whereh,,, > 0. If h,, satisfieslim,,—.oc b, = 0 andlim,,_,., mh}}, = oo, then, there exists
non-negative numbers,., Cy, andCy such that for alln > m, we have,

MSE ()] = B | (7n(0) - 1) | < Cont + 2

(4)

If h,,, is chosen to be proportional ta~'/("+4) this givesE {(fm(p) - f(p))ﬂ = O (—tr7y)

asm — 00.

Thus, the convergence rate of the estimator is given as i8][3yith the dimensionality replaced
by the intrinsic dimensiom of M. The proof will follow from the two lemmas below on the
convergence rates of the bias and the variance.

2The injectivity radius-;,,; of a Riemannian manifold is a distance such that all geogesies (i.e., curves
with zero intrinsic acceleration) of length less than; minimize the length between their endpoints. On a
complete Riemannian manifold, there exists a distanceamizing geodesic between any given pair of points,
however, an arbitrary geodesic need not be distance mimgiZzor example, any two non-antipodal points
on the sphere can be connected with two geodesics with gifféengths, namely, the two pieces of the great
circle passing throught the points. For a detailed disoussf these issues, see, e.g., [1].



3 Preliminary results

The following theorem, which is analogous to Theorem 1A ij {8lls that up to a constant, the
kernel becomes a “delta function” as the bandwidth getslsmal

Theorem 3.1. Let K : [0,00) — [0, 00) be a continuous function that vanishes outditld ) and
is differentiable with a bounded derivative j0,1), and let{ : M — R be a function that is
differentiable to second order in a neighborhoogaf M. Let

1 up(q
a0 =7 [ (22 ) st avia), ©
M

whereh > 0 anddV (¢q) denotes the Riemannian volume formMdat pointg. Then, ash — 0,

&n(p) —€p) | K(lz])d"z = O(r%), (6)

Rn

wherez = (z1,...,2") denotes the Cartesian coordinates]@ﬁ andd"z = dz'...dz" denotes
the volume form om" In particular, limy, o &, (p (p) [pn K(||2]))d"z2.

Before proving this theorem, we prove some results on tfatiogel between:,(¢) andd,(q).
Lemma 3.1. There exisb,, > 0 andM,, > 0 such that for ally with d,,(¢) < 4., we have,

dp(q) > up(q) > dp(q) — M,, [dp(Q)]3 . (7)

] . up(q)
In particular, lim,_,, #(Z) =L

Proof. Let ¢y, (s) be a geodesic id/ parametrized by arclength with ¢(0) = p and initial ve-
locity = dc"o |._o = Vo Whens < ri,;, s is equal tod,(cy, (s)) [7, 1]. Now letxy,(s) be the
representation ofy,(s) in RY in terms of Cartesian coordinates with the originpatWe have
Up(cve(s)) = [xve(s)| and|[x}, (s)| = 1, which gives x, (s) - x{/ (s) = 0. Using these

we get, M‘ =1,and M‘ = 0. Let M3 > 0 be an upper bound on

ds ds?
s= =0
the absolute value of the third derivative @f(cy,(s)) for all s < r;,; and all unit lengthvy:

‘%‘ < M. Taylor's theorem gives,,(cy,(s)) = s + Ry, (s) where| Ry, (s)| < Ms%;.

Thus, (7) holds withM,,, = % for all r < r;,;. For later convenience, instead &f = 7y,
we will pick 4,,, as follows. The polynomial — M, r? is monotonically increasing in the interval
0<r< 1/1/ u,- We letd,, = min{ry,;,1/\/M,,}, so thatr — Mupr3 is ensured to be

monotonic for0 <r <6, O

Definition 3.2. For 0 < r; < 79, let,
Hp(rlaw) = inf{up(q) i1 < dp(Q) <72}, (8)
Hy(r) = Hp(r,00) =inf{uy(q) : r1 < dp(q)}, 9)
i.e.,Hy(r1,72) is the smallest-distance fromp among all points that haveédistance betweenry
andr;.

Since M is assumed to be an embedded submanifold, we Ri\e) > 0 for all » > 0. In the
below, we will assume that all radii are smaller thay);, in particular, a set of the forfy : r; <

dy(q) < r2} will be assumed to be non-empty and so, due to the completerfidg, to contain a
pomtq € M such thatl,(¢) = r1. Note that,

Hp(r1) = min{H (r1,r2), H(r2)} . (10)

Lemma 3.2. H,(r) is a non-decreasing, non-negative function, and there é)gips> OandMpy, >
0 suchthaty > H,(r) > r— My, r®, forall v < éy,. In particular, lim, g (T) —1.

3Primes denote differentiation with respect to s.



Proof. H,(r) is clearly non-decreasing arf,(r) < r follows fromu,(q) < d,(¢) and the fact
that there exists at least one pojnwith d,(¢) = r inthe set{q : » < d,(q)}

Letéy, = Hy(6.,) whered,, is as in the proof of Lemma 3.1 and let< 65,. Sincer < 0y, =
Hy(0u,) < du,, by Lemma 3.1 we have,

> up(r) >r— Mupr3 , (11)

forsomeM,, > 0. Now, sincer andr — Mupr?’ are both monotonic fa» < r < §,,, we have (see
figure)
r > Hy(r,0u,) > 1 — Mupr?’ . (12)

In particular, H(r,6,,) < r < du, = Hp(0u,), i.€, H(r,6,,) < Hp(dy,). Using (10) this
gives, H,(r) = Hy(r,d,,). Combining this with (12), we get > H,(r) > r — M, r* for all
r< 5Hp- O

Next we show that for all small enoudh there exists some radius, (k) such that for all pointg
with ad,(¢) > R,(h), we haveu,(q) > h. R,(h) will roughly be the inverse function d,, (r).

Lemma 3.3. Foranyh < Hp(rin;), let R,(h) = sup{r : Hp(r) < h}. Thenu,(¢) > h for all
q with d,(¢) > R,(h) and there exisbr, > 0 and Mg, > O such that for allh. < g, R,(h)
satisfies,

h < Ry(h) < h+ Mg, h*. (13)

In particular, limy, (h) =1.

Proof. Thatu,(q) > h whend,(g) > Rp(h) follows from the definitions. In order to show (13), we
will use Lemma 3.2. Letv(r) = r — My, r®, whereMy, is as in Lemma 3.2. Themy(r) is one-
to-one and continuous in the intervaK r < 6y, < d,,. Letg = a1 be the inverse function of
a in this interval. From the definition aR,(h) 1) and Lemma 3. 2, it follows that < R,(h) < 3(h)
forall h < a(dm,). Now, 3(0) = 0, ﬁ’(O) =1, 8”(0) = 0, so by Taylor's theorem and the fact
that the third derivative off is bounded in a neighborhood of 0, there exigt&nd Mz, such that
B(h) < h+ Mg, h? forall h < §,. Thus,

h < R,(h) < h+ Mg h?, 14
P P

forall h < 0r wheredr = min{a(dmn, ), dy}. O

Proof of Theorem 3.1.We will begin by proving that for small enough there is no contribution to
the integral in the definition ofy, (p) (see (5)) from outside the coordinate patch covered by nlorma
coordinates.

Let hy > 0 be such thatr,(ho) < 7, (such anhg exists sincdim;, o R,(h) = 0). For any
h < hg, all pointsq with d,(q) > r;,; will satisfy u,(¢) > h. This means ifx is small enough,
K(“PT(Q)) = 0 for all points outside the injectivity radius and we can pemi the integral in (5)
solely in the patch of normal coordinategat

For normal coordinateg = (y',...,y™) around the poinp with y(p) = 0, we haved,(q) =
lly(g)]| [7, 1]. With slight abuse of notation, we will write, (y(q)) = u,(q), £(y(q)) = £(¢) and
g(q) = g(y(q)), whereg is the metric tensor aof/.

SinceK(“PT(q)) = 0 for all ¢ with d,,(¢) > R,(h), we have,

_1 up(y) 1 m
n(p) = o /”y<Rp(h)K( Y )ﬁ(y)\/g(y)dy cdy", (15)

“Normal coordinates at a poiptin a Riemannian manifold are a close approximation to Ciamesoordi-
nates, in the sense that the components of the metric haighirsmfirst derivatives agb, andg;; (p) = d;; [1].
Normal coordinates can be defined in a “geodesic ball” ofusitéss tham;,, ;.



whereg denotes the determinant gfas calculated in normal coordinates. Changing the variable
integration toz = y/h, we get,

~ <) [ K(lal)aa =

/Z||<Rp(h)/ r (@) §(zh)V/g(ah)d"z - £(0) /I K(||z])d"z
—/HZSK(%(;}L) {(z )( g(zh)—l) 4"z +

/z||s1£(zm( ( (Zh)> (|Z|)>d"z+

[ K (eta) — @)+

llzll<1

up,(zh)
K(-2 ) (zh)+/g(zh)d"z
/1<|| <Ry (h)/h < h

Thus,

p)/K(HZIDd 2 < (16)
sup K (t). sup |£(zh)| . sup ‘\/ (zh) —1‘ / d"z + a7)
teR lz]|<1 lz)|<1 [|z]] <1
sup @)l sup K2 < Kl [ e 1®)
[|z]] <1 [|z]| <1 [|z]| <1
‘ / K (|12])(€(zh) — £(0))d 2| + (19)

llz]] <1

sup K (t) . sup vV g(zh) . sup |€(zh)]| / d"z. (20)
teR 1<||zl| <Ry (h) /R 1<||zl| <Ry (h)/h <zl <Ry (h)/h

Letting h — 0, the terms (17)-(20) approach zero at the following rates:

(17): K(t) is bounded and(y) is continuous ay = 0, so the first two terms can be bounded
by constants a& — 0. In normal coordinatey, g:;;(y) = d;; + O(|lyl|*) as|y|| — 0, so,

Sup” H<1‘\/ Zh —1‘ h2 ash — 0.
(18): SinceK is assumed to be differentiable with a bounded derivativi,ih), we getK (b) —
K(a) = O(b — a) asb — a. By Lemma 3.1 we havé# — |lz]| = O(h?) ash — 0. Thus,
K (%) — K(||z])) = O(h?) ash — 0.

(19): Sincet(y) is assumed to have partial derivatives up to second ordemigighborhood of
y(p) = 0, for ||z|| < 1, Taylor's theorem gives,

elat) = 6(0) + 1y 22

ash — 0. SmcejH j<1 2K (|[z]))d"z = 0, we getmz”Sl K(||z]))(&(zh) — £(0))d"z| = O(h?) as
h — 0.

(20): The first three terms can be bounded by constants. Byna®f3,R,(h) = h + O(h*) as
h — 0. A spherical shelll < ||z|]| < 1+ € has volumeO(¢) ase — 0*. Thus, the volume of
1 < ||lz|| < Ry(h)/hisO(R,(h)/h —1) = O(h?) ash — 0.

Thus, the sum of the terms (17-20)(%h?) ash — 0, as claimed in Theorem 3.1.

+ O(h?) (21)




4 Bias, variance and mean squared error

LetM, f, fm, K, pbeasin Theorem 2.1 and assuimg — 0 asm — co.
Lemma 4.1. Bias [fm(p)} = O(h2,), asm — co.

Proof. We haveBias|f,,(p)] = Bias [ﬁK (“PT(Q))} , sorecallingf,,, K(||z[|)d"z = 1, the lemma
follows from Theorem 3.1 witl§ replaced withf. O

Lemma 4.2. If in addition to h,,, — 0, we havemh!’, — oo asm — oo, then,Var[f,,(p)] =
0] (#), asm — oo.

Proof.
Varlfu)] = o Vor |k (2] (22)
(23)

Now,
o ) o (2] G ()
T e (8] [ (e

By Theorem 3.1, the integral in (25) convergesft®) | K?(||z||)d"z, so, the right hand side of

(25) isO (%) asm — oo. By Lemma 4.1 we have(E {%K (“g_f:’))}y — f2(p). Thus,

Var|fn(p)] = O ( L ) asm — oo. O

™
mh?,

Proof of Theorem 2.1 Finally, sinceMSE {fm(p)} = Bias®[f,n (p)] + Var[f,(p)], the theorem
follows from Lemma 4.1 and 4.2.

5 Experiments and discussion

We have empirically tested the estimator (3) on two datasktsnit normal distribution mapped
onto a piece of a spiral in the plane, so that 1 andN = 2, and a uniform distribution on the unit
discz? + y? < 1 mapped onto the unit hemispherelyy) — (z,y,1— /22 + y2), so thatn = 2
andN = 3. We picked the bandwidths to be proportionahto '/ ("+4) wherem is the number of
data points. We performed live-one-out estimates of thaitiean the data points, and obtained the
MSE for a range ofns. See Figure 5.

6 Conclusion and future work

We have proposed a small modification of the usual KDE in otderstimate the density of data
that lives on am-dimensional submanifold a&&*, and proved that the rate of convergence of the
estimator is determined by the intrinsic dimensiorThis shows that the curse of dimensionality in
KDE can be overcome for data with low intrinsic dimensionr @ethod assumes that the intrinsic
dimensionalityn is given, so it has to be supplemented with an estimator oflitmension. We
have assumed various smoothness properties for the suiofdahi, the densityf, and the kernel
K. We find it likely that our estimator or slight modificationsibwill be consistent under weaker
requirements. Such a relaxation of requirements would Ipametical consequences, since it is
unlikely that a generic data set lives on a smooth Riemammiamifold.



MEE Mean squared error for the hemi sphere data

VBE Mean squared error for the spiral data .
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Figure 1: Mean squared error as a function of the number of data paintthé spiral data (left) and the
hemisphere data. In each case, we fit a curve of the faf§%(m) = am?®, which gaveb = —0.80 for the

spiral andb = —0.69 for the hemisphere. Theorem 2.1 bounds the MSE 'y~ */("*%) which gives the
exponent as-0.80 for the spiral and-0.67 for the hemisphere.
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