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Abstract

We develop a structured output model for object category detection that explicitly
accounts for alignment, multiple aspects and partial truncation in both training and
inference. The model is formulated as large margin learning with latent variables
and slack rescaling, and both training and inference are computationally efficient.

We make the following contributions: (i) we note that extending the Structured
Output Regression formulation of Blaschko and Lampert [1] to include a bias term
significantly improves performance; (ii) that alignment (to account for small rota-
tions and anisotropic scalings) can be included as a latent variable and efficiently
determined and implemented; (iii) that the latent variable extends to multiple as-
pects (e.g. left facing, right facing, front) with the same formulation; and (iv),
most significantly for performance, that truncated and truncated instances can be
included in both training and inference with an explicit truncation mask.

We demonstrate the method by training and testing on the PASCAL VOC 2007
data set — training includes the truncated examples, and in testing object instances
are detected at multiple scales, alignments, and with significant truncations.

1 Introduction

There has been a steady increase in the performance of object category detection as measured by the
annual PASCAL VOC challenges [3]. The training data provided for these challenges specifies if an
object is truncated — when the provided axis aligned bounding box does not cover the full extent of
the object. The principal cause of truncation is that the object partially lies outside the image area.
Most participants simple disregard the truncated training instances and learn from the non-truncated
ones. This is a waste of training material, but more seriously many truncated instances are missed
in testing, significantly reducing the recall and hence decreasing overall recognition performance.

In this paper we develop a model (Fig. 1) which explicitly accounts for truncation in both train-
ing and testing, and demonstrate that this leads to a significant performance boost. The model is
specified as a joint kernel and learnt using an extension of the structural SVM with latent variables
framework of [13]. We use this approach as it allows us to address a second deficiency of the pro-
vided supervision — that the annotation is limited to axis aligned bounding boxes, even though the
objects may be in plane rotated so that the box is a loose bound. The latent variables allow us to
specify a pose transformation for each instances so that we achieve a spatial correspondence be-
tween all instances with the same aspect. We show the benefits of this for both the learnt model and
testing performance.

Our model is complementary to that of Felzenszwalb et al. [4] who propose a latent SVM frame-
work, where the latent variables specify sub-part locations. The parts give their model some toler-
ance to in plane rotation and foreshortening (though an axis aligned rectangle is still used for a first



Figure 1: Model overview. Detection examples on the VOC images for
the bicycle class demonstrate that the model can handle severe trunca-
tions (a-b), multiple objects (c), multiple aspects (d), and pose variations
(small in-plane rotations) (e). Truncations caused by the image bound-
ary, (a) & (b), are a significant problem for template based detectors,
since the template can then only partially align with the image. Small
in-plane rotations and anisotropic rescalings of the template are approxi-
mated efficiently by rearranging sub-blocks of the HOG template (white
boxes in (e)).

stage as a “root filter””) but they do not address the problem of truncation. Like them we base our
implementation on the efficient and successful HOG descriptor of Dalal and Triggs [2].

Previous authors have also considered occlusion (of which truncation is a special case). Williams et
al. [11] used pixel wise binary latent variables to specify the occlusion and an Ising prior for spatial
coherence. Inference involved marginalizing out the latent variables using a mean field approxima-
tion. There was no learning of the model from occluded data. For faces with partial occlusion, the
resulting classifier showed an improvement over a classifier which did not model occlusion. Others
have explicitly included occlusion at the model learning stage, such as the Constellation model of
Fergus et al. [5] and the Layout Consistent Random Field model of Winn et al. [12]. There are nu-
merous papers on detecting faces with various degrees of partial occlusion from glasses, or synthetic
truncations [6, 7].

Our contribution is to define an appropriate joint kernel and loss function to be used in the context
of structured output prediction. We then learn a structured regressor, mapping an image to a list
of objects with their pose (or bounding box), while at the same time handling explicitly truncation
and multiple aspects. Our choice of kernel is inspired by the restriction kernel of [1]; however, our
kernel performs both restriction and alignment to a template, supports multiple templates to handle
different aspects and truncations, and adds a bias term which significantly improves performance.

We refine pose beyond translation and scaling with an additional transformation selected from a
finite set of possible perturbations covering aspect ratio change and small in plane rotations. Instead
of explicitly transforming the image with each element of this set (which would be prohibitively ex-
pensive) we introduce a novel approximation based on decomposing the HOG descriptor into small
blocks and quickly rearranging those. To handle occlusions we selectively switch between an object
descriptor and an occlusion descriptor. To identify which portions of the template are occluded we
use a field of binary variables. These could be treated as latent variables; however, since we consider
here only occlusions caused by the image boundaries, we can infer them deterministically from the
position of the object relative to the image boundaries. Fig. 1 illustrates various detection examples
including truncation, multiple instances and aspects, and in-plane rotation.

In training we improve the ground-truth pose parameters, since the bounding boxes and aspect asso-
ciations provided in PASCAL VOC are quite coarse indicators of the object pose. For each instance
we add a latent variable which encodes a pose adjustment. Such variables are then treated as part of
learning using the technique presented in [13]. However, while there the authors use the CCCP algo-
rithm to treat the case of margin rescaling, here we show that a similar algorithm applies to the case
of slack rescaling. The resulting optimization alternates between optimizing the model parameters
given the latent variables (a convex problem solved by a cutting plane algorithm) and optimizing the
latent variable given the model (akin to inference).



The overall method is computationally efficient both in training and testing, achieves very good
performances, and it is able to learn and recognise truncated objects.

2 Model

Our purpose is to learn a function y = f(x), € X, y € ) which, given an image x, returns the
poses y of the objects portrayed in the image. We use the structured prediction learning framework
of [9, 13], which considers along with the input and output variables x and y, an auxiliary latent
variable h € H as well (we use h to specify a refinement to the ground-truth pose parameters). The
function f is then defined as f(x;w) = §x(w) where

(Fx(w), hy(w)) = argmax F(x,y,h;w), F(x,y,hjw) = (w,¥(x,y,h)), (D
(y,h)eYxH

and ¥(x,y,h) € R? is a joint feature map. This maximization estimates both y and h from the
data x and corresponds to performing inference. Given training data (x1,y1),..., (Xn,yn~), the
parameters w are learned by minimizing the regularized empirical risk

1 ol R
R(w) = §Hw||2 ty Z A(ys, yi(w), hi(w)), where y;(w)=yx, (w), hi(w)=hy,(w).
= @)

Here A(y;,y,h) > 0is an appropriate loss function that encodes the cost of an incorrect prediction.

In this section we develop the model ¥(x,y,h), or equivalently the joint kernel function
K(x,y,h, x|y, h') = (U(x,y,h), ¥(x,y’,h’)), in a number of stages. We first define the kernel
for the case of a single unoccluded instance in an image including scale and perturbing transforma-
tions, then generalise this to include truncations and aspects; and finally to multiple instances. An
appropriate loss function A(y;,y,h) is subsequently defined which takes into account the pose of
the object specified by the latent variables.

2.1 Restriction and alignment kernel

Denote by R a rectangular region of the image x, and by x| the image cropped to that rectangle.
A restriction kernel [1] is the kernel K ((x, R), (x',R')) = Kimage(X|r, X'|r) Where Kimage is an
appropriate kernel between images. The goal is that the joint kernel should be large when the two
regions have similar appearance.

Our kernel is similar, but captures both the idea of restriction and alignment. Let Ry be a reference
rectangle and denote by R(p) = g, Ry the rectangle obtained from Ry, by a geometric transformation
9p R? — R2. We call p the pose of the rectangle R(p). Let X be an image defined on the reference
rectangle Ry and let H(%) € R? be a descriptor (e.g. SIFT, HOG, GIST [2]) computed from the
image appearance. Then a natural definition of the restriction and alignment kernel is

K((X,p), (X/,P/)) = Kdescr(H(X§p)7 H(Xl;p/)) 3)

where K yescr i an appropriate kernel for descriptors, and H (x; p) is the descriptor computed on the
transformed patch x as H (x;p) = H(g, 'x).

Implementation with HOG descriptors. Our choice of the HOG descriptor puts some limits on
the space of poses p that can be efficiently explored. To see this, it is necessary to describe how
HOG descriptors are computed.

The computation starts by decomposing the image x into cells of d x d pixels (here d = 8). The
descriptor of a cell is the nine dimensional histogram of the orientation of the image gradient inside
the cell (appropriately weighed and normalized as in [2]). We obtain the HOG descriptor of a
rectangle of w X h cells by stacking the enclosed cell descriptors (this is a 9 x w X h vector). Thus,
given the cell histograms, we can immediately obtain the HOG descriptors H (x, y) for all the cell-
aligned translations (x,y) of the dw x dh pixels rectangle. To span rectangles of different scales
this construction is simply repeated on the rescaled image g; 'x, where g,(z) = 7z is a rescaling,
v > 0, and s is a discrete scale parameter.



To further refine pose beyond scale and translation, here we consider an additional perturbation g,
indexed by a pose parameter t, selected in a set of transformations g1, ..., gr (in the experiments
we use 16 transformations, obtained from all combinations of rotations of 5 and £10 degrees and
scaling along = of 95%, 90%, 80% and 70%). Those could be achieved in the same manner as
scaling by transforming the image g, 1x for each one, but this would be very expensive (we would
need to recompute the cell descriptors every time). Instead, we approximate such transformations
by rearranging the cells of the template (Fig. 1 and 2). First, we partition the w x h cells of the
template into blocks of m x m cells (e.g. m = 4). Then we transform the center of each block
according to g; and we translate the block to the new center (approximated to units of cells). Notice
that we could pick m = 1 (i.e. move each cell of the template independently), but we prefer to use
blocks as this accelerates inference (see Sect. 4).

Hence, pose is for us a tuple (z, y, s,t) representing translation, scale, and additional perturbation.
Since HOG descriptors are designed to be compared with a linear kernel, we define

K((x,p), (¥, p)) = (¥(x,p), ¥(x',p')),  ¥(x,p)=H(x;p). )

2.2 Modeling truncations

If part of the object is occluded (either by clutter or by the image boundaries), some of the descriptor
cells will be either unpredictable or undefined. We explicitly deal with occlusion at the granularity
of the HOG cells by adding a field of w x h binary indicator variables v € {0, 1}*". Here v; = 1
means that the j-th cell of the HOG descriptor H(x, p) should be considered to be visible, and
v; = 0 that it is occluded. We thus define a variant of (4) by considering the feature map

1®1 H(x,
U(x,p,v) = ((Lﬂi Lg)v)gé(ig) é) HI')()x,p) ®

where 1, is a d-dimensional vector of all ones, ® denotes the Kroneker product, and ® the Hadamard
(component wise) product. To understand this expression, recall that H is the stacking of w x h 9-
dimensional histograms, so for instance (v ® 1) ® H(x,p) preserves the visible cells and nulls the
others. Eq. (5) is effectively defining a template for the object and one for the occlusions.

Notice that v are in general latent variables and should be estimated as such. However here we
note that the most severe and frequent occlusions are caused by the image boundaries (finite field of
view). In this case, which we explore in the experiments, we can write v = v(p) as a function of
the pose p, and remove the explicit dependence on v in ¥. Moreover the truncated HOG cells are
undefined and can be assigned a nominal common value. So here we work with a simplified kernel,
in which occlusions are represented by a scalar proportional to the number of truncated cells:

\IJ(X,p) _ (v(p)fh]ﬁ)h?(;)ﬂ(x’p) (6)

2.3 Modeling aspects

A template model works well as long as pose captures accurately enough the transformations result-
ing from changes in the viewing conditions. In our model, the pose p, combined with the robustness
of the HOG descriptor, can absorb a fair amount of viewpoint induced deformation. It cannot, how-
ever, capture the 3D structure of a physical object. Therefore, extreme changes of viewpoint require
switching between different templates. To this end, we augment pose with an aspect indicator a (so
that pose is the tuple p = (z, y, s, t, a)), which indicates which template to use.

Note that now the concept of pose has been generalized to include a parameter, a, which, differently
from the others, does not specify a geometric transformation. Nevertheless, pose specifies how the
model should be aligned to the image, i.e. by (i) choosing the template that corresponds to the
aspect a, (ii) translating and scaling such template according to (z,y, s), and (iii) applying to it
the additional perturbation g;. In testing, all such parameters are estimated as part of inference.
In training, they are initialized from the ground truth data annotations (bounding boxes and aspect
labels), and are then refined by estimating the latent variables (Sect. 2.4).



We assign each aspect to a different “slot” of the feature vector ¥(x, p). Then we null all but the
one of the slots, as indicated by a:

5a:1‘I’1(X§P)

U(x,p) = @)

0a=aT a(x;D)

where W, (x; p) is a feature vector in the form of (6). In this way, we compare different templates
for different aspects, as indicated by a.

The model can be extended to capture symmetries of the aspects (resulting from symmetries of the
objects). For instance, a left view of a bicycle can be obtained by mirroring a right view, so that the
same template can be used for both aspects by defining

U (x;p) = ba=tefe Viett (X; P) + Sa=right f1ip Wrignt (x5 p), 3)

where flip is the operator that “flips” the descriptor (this can be defined in general by computing the
descriptor of the mirrored image, but for HOG it reduces to rearranging the descriptor components).

The problem remains of assigning aspects to the training data. In the Pascal VOC data, objects are
labeled with one of five aspects: front, left, right, back, undefined. However, such assignments may
not be optimal for use in a particular algorithm. Fortunately, our method is able to automatically
reassign aspects as part of the estimation of the hidden variables (Sect. 2.4 and Fig. 2).

2.4 Latent variables

The PASCAL VOC bounding boxes yield only a coarse estimate of the ground truth pose parameters
(e.g. they do not contain any information on the object rotation) and the aspect assignments may
also be suboptimal (see previous section). Therefore, we introduce latent variables h = (dp) that
encode an adjustment to the ground-truth pose parameters y = (p). In practice, the adjustment dp
is a small variation of translation x, y, scale s, and perturbation ¢, and can switch the aspect a all
together.

We modify the feature maps to account for the adjustment in the obvious way. For instance (6)

becomes

_ |(w(p+0p) ©@19) © H(x,p + dp)
U(x,p,0p) = wh — Iz(p + 6p)| (9)

2.5 Variable number of objects: loss function, bias, training

So far, we have defined the feature map ¥(x,y) = ¥(x;p) for the case in which the label y = (p)
contains exactly one object, but an image may contain no or multiple object instances (denoted
respectively y = eand y = (p1, ..., pn)). We define the loss function between a ground truth label
y; and the estimated output y as

0 ify,=y=e¢,
Alyiy) = q 1 —overl(B(p), B(p)) ify;=(p)andy = (p'), (10)
1 ify,2candy =¢, ory; =candy # ¢,

where B is the ground truth bounding box, and B’ is the prediction (the smallest axis aligned bound-
ing box that contains the warped template g, Ro). The overlap score between B and B’ is given by
overl(B,B’) = |BN B’|/|B U B’|. Note that the ground truth poses are defined so that B(p;)
matches the PASCAL provided bounding boxes [1] (or the manually extended ones for the trun-
cated ones).

The hypothesis y = € (no object) receives score F'(x, ¢;w) = 0 by defining U(x,¢) = 0 as in [1].
In this way, the hypothesis y = (p) is preferred to y = ¢ only if F(x,p;w) > F(x,¢e;w) = 0,
which implicitly sets the detection threshold to zero. However, there is no reason to assume that this
threshold should be appropriate (in Fig. 2 we show that it is not). To learn an arbitrary threshold,
it suffices to append to the feature vector W(x,p) a large constant xpi,s, so that the score of the
hypothesis y = (p) becomes F'(x, (p); w) = (w, U(X, p)) + KbiasWhias- Note that, since the constant
is large, the weight wy;,s remains small and has negligible effect on the SVM regularization term.



Finally, an image may contain more than one instance of the object. The model can be extended
to this case by setting F'(x,y;w) = Zle F(x,p;;w) + R(y), where R(y) encodes a “repul-
sive” force that prevents multiple overlapping detections of the same object. Performing infer-
ence with such a model becomes however combinatorial and in general very difficult. Fortu-
nately, in training the problem can be avoided entirely. If an image contains multiple instances,
the image is added to the training set multiple times, each time “activating” one of the instances,
and “deactivating” the others. Here “deactivating” an instance simply means removing it from
the detector search space. Formally, let pg be the pose of the active instance and pi,...,pN
the poses of the inactive ones. A pose p is removed from the search space if, and only if,
max; overl(B(p), B(p;)) > max{overl(B(p), B(py)),0.2}.

3 Optimisation

Minimising the regularised risk R(w) as defined by Eq. (2) is difficult as the loss depends on w

through §;(w) and h;(w) (see Eq. (1)). It is however possible to optimise an upper bound (derived
below) given by

1
§||wH2 Z( Iineaif(x’?-( yl7y>h) [1+ <w7\I’(X27Y7h)> - <7~U7‘I’(Xz>yﬁh:(w))>] (]])
Here h}(w) = argmaxy, ¢y, (w, ¥(x;, 5, h)) completes the label (y;, h(w)) of the sample x; (of
which only the observed part y; is known from the ground truth).

Alternation optimization. Eq. (11) is not a convex energy function due to the dependency of h (w)
on w. Similarly to [13], however, it is possible to find a local minimum by alternating optimizing w
and estimating h}. To do this, the CCCP algorithm proposed in [13] for the case of margin rescaling,
must be extended to the slack rescaling formulation used here.

Starting from an estimate w, of the solution, define h}, = h;(w;), so that, for any w,

(w, (xi, yi, by (w))) = max(w, W(x;, 5, b)) > (w, ¥(xi, yi, hiy))

and the equality holds for w = w;. Hence the energy (11) is bounded by

N Z max YZa Y, h) [1 + <w7 \IJ(X“ Yy, h)> - <w7 \IJ(XM Yi, h;kt)>] (12)

2 ( Jh)eYxH

and the bound is strict for w = w;. Optimising (12) will therefore result in an improvement of the
energy (11) as well. The latter can be carried out with the cutting-plane technique of [9].

Derivation of the bound (11). The derivation involves a sequence of bounds, starting from

A, yi(w), hi(w)) < Alys, Fa(w), Ba(w)) [1+ (w, @i, i (w), by (w))) = w, lxi, yi, bl ()]
13)
This bound holds because, by construction, the quantity in the square brackets is not smaller than

one, as can be verified by substituting the definitions of y;(w), h;(w) and h?(w). We further upper
bound the loss by

A(yl7y’b(w)7ﬁ’b(w)) < A(y’uyvh) [1 + <w7\11(xi7y7h)> - <w7 W(Xl’ylvh:(w))” y=5, (w),heh; (w)

< A(y:,y,h)[1 LU (x4,y,h)) — (w, U(x;,y:, hi
< mmax Ay, h) 1+ (w0 (x,y,h) = (w, ¥(xi, yi, hi(w)))]

(14)

Substituting this bound into (2) yields (11). Note that §;(w) and h;(w) are defined as the max-
imiser of (w, ¥(x;,y, h)) alone (see Eq. 1), while the energy maximised in (14) depends on the loss
A(y;,y,h) as well.
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Figure 2: Effect of different model components. The left panel evaluates the effect of differ-
ent components of the model on the task of learning a detector for the left-right facing PASCAL
VOC 2007 bicycles. In order of increasing AP (see legend): baseline model (see text); bias term
(Sect. 2.5); detecting trunctated instances, training on truncated instances, and counting the trun-
cated cells as a feature (Sect.: 2.2); with searching over small translation, scaling, rotation, skew
(Sect. 2.1). Right panel: (a) Original VOC specified bounding box and aspect; (b) alignment and as-
pect after pose inference — in addition to translation and scale, our templates are searched over a set
of small perturbations. This is implemented efficiently by breaking the template into blocks (dashed
boxes) and rearranging those. Note that blocks can partially overlap to capture foreshortening. The
ground truth pose parameters are approximate because they are obtained from bounding boxes (a).
The algorithm improves their estimate as part of inference of the latent variables h. Notice that not
only translation, scale, and small jitters are re-estimated, but also the aspect subclass can be updated.
In the example, an instance originally labeled as misc (a) is reassigned to the left aspect (b).

4 Experiments

Data. As training data we use the PASCAL VOC annotations. Each object instance is labeled
with a bounding box and a categorical aspect variable (left, right, front, back, undefined). From
the bounding box we estimate translation and scale of the object, and we use aspect to select one
of multiple HOG templates. Symmetric aspects (e.g. left and right) are mapped to the same HOG
template as suggested in Sect. 2.3.

While our model is capable of handling correctly truncations, truncated bounding boxes provide a
poor estimate of the pose of the object pose which prevents using such objects for training. While we
could simply avoid training with truncated boxes (or generate artificially truncated examples whose
pose would be known), we prefer exploiting all the available training data. To do this, we manually
augment all truncated PASCAL VOC annotations with an additional “physical” bounding box. The
purpose is to provide a better initial guess for the object pose, which is then refined by optimizing
over the latent variables.

Training and testing speed. Performing inference with the model requires evaluating (w, ¥(x, p))
for all possible poses p. This means matching a HOG template O(W HT A) times, where W x
H is the dimension of the image in cells, T the number of perturbations (Sect. 2.1), and A the
number of aspects (Sect. 2.3).! For a given scale and aspect, matching the template for all locations
reduces to convolution. Moreover, by breaking the template into blocks (Fig. 2) and pre-computing
the convolution with each of those, we can quickly compute perturbations of the template. All in
all, detection requires roughly 30 seconds per image with the full model and four aspects. The
cutting plane algorithm used to minimize (12) requires at each iteration solving problems similar
to inference. This can be easily parallelized, greatly improving training speed. To detect additional
objects at test time we run inference multiple times, but excluding all detections that overlap by
more than 20% with any previously detected object.

"Note that we do not multiply by the number S of scales as at each successive scale W and H are reduced
geometrically.



Figure 3: Top row. Examples of detected bicycles. The dashed boxes are bicycles that were detected
with or without truncation support, while the solid ones were detectable only when truncations were
considered explicitly. Bottom row. Some cases of correct detections despite extreme truncation for
the horse class.

Benefit of various model components. Fig. 2 shows how the model improves by the successive
introduction of the various features of the model. The example is carried on the VOC left-right
facing bicycle, but similar effects were observed for other categories. The baseline model uses
only the HOG template without bias, truncations, nor pose refinement (Sect. 2.1). The two most
significant improvements are (a) the ability of detecting truncated instances (+22% AP, Fig. 3) and
(b) the addition of the bias (+11% AP). Training with the truncated instances, adding the number
of occluded HOG cells as a feature component, and adding jitters beyond translation and scaling all
yield an improvement of about +2-3% AP.

Full model. The model was trained to detect the class bicycle in the PASCAL VOC 2007 data, using
five templates, initialized from the PASCAL labeling left, right, front/rear, other. Initially, the pose
refinimenent h is null and the alternation optimization algorithm is iterated five times to estimate
the model w and refinement h. The detector is then tested on all the test data, enabling multiple
detections per image, and computing average-precision as specified by [3]. The AP score was 47%.
By comparison, the state of the art for this category [8] achieves 56%. The experiment was repeated
for the class horse, obtaining a score of 40%. By comparison, the state of the art on this category,
our MKL sliding window classifier [10], achieves 51%. Note that the proposed method uses only
HOG, while the others use a combination of at least two features. However [4], using only HOG but
a flexible part model, also achieves superior results. Further experiments are needed to evaluate the
combined benefits of truncation/occlusion handling (proposed here), with multiple features [10] and
flexible parts [4].

Conclusions

We have shown how structured output regression with latent variables provides an integrated and ef-
fective solution to many problems in object detection: truncations, pose variability, multiple objects,
and multiple aspects can all be dealt in a consistent framework.

While we have shown that truncated examples can be used for training, we had to manually extend
the PASCAL VOC annotations for these cases to include rough “physical” bounding boxes (as a hint
for the initial pose parameters). We plan to further extend the approach to infer pose for truncated
examples in a fully automatic fashion (weak supervision).

Acknowledgments. We are grateful for discussions with Matthew Blaschko. Funding was provided
by the EU under ERC grant VisRec no. 228180; the RAEng, Microsoft, and ONR MURI N00014-
07-1-0182.



References

[1] M. B. Blaschko and C. H. Lampert. Learning to localize objects with structured output regres-
sion. In Proc. ECCV, 2008.

[2] N. Dalal and B. Triggs. Histograms of oriented gradients for human detection. In Proc. CVPR,
2005.

[3] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman. The
PASCAL Visual Object Classes Challenge 2008 (VOC2008) Results. http://www.

pascal-network.org/challenges/VOC/voc2008/workshop/index.html,
2008.

[4] P. F. Felzenszwalb, R. B. Grishick, D. McAllister, and D. Ramanan. Object detection with
discriminatively trained part based models. PAMI, 2009.

[5] R. Fergus, P. Perona, and A. Zisserman. Object class recognition by unsupervised scale-
invariant learning. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, volume 2, pages 264-271, June 2003.

[6] K. Hotta. Robust face detection under partial occlusion. In Proceedings of the IEEE Interna-
tional Conference on Image Processing, 2004.

[7]1 Y. Y. Lin, T. L. Liu, and C. S. Fuh. Fast object detection with occlusions. In Proceedings of
the European Conference on Computer Vision, pages 402-413. Springer-Verlag, May 2004.

[8] P. Schnitzspan, M. Fritz, S. Roth, and B. Schiele. Discriminative structure learning of hierar-
chical representations for object detection. In Proc. CVPR, 2009.

[9] L Tsochantaridis, T. Hofmann, T. Joachims, and Y. Altun. Support vector machine learning for
interdependent and structured output spaces. In Proc. ICML, 2004.

[10] A. Vedaldi, V. Gulshan, M. Varma, and A. Zisserman. Multiple kernels for object detection.
In Proc. ICCV, 2009.

[11] O. Williams, A. Blake, and R. Cipolla. The variational ising classifier (VIC) algorithm for
coherently contaminated data. In Proc. NIPS, 2005.

[12] J. Winn and J. Shotton. The Layout Consistent Random Field for Recognizing and Segmenting
Partially Occluded Objects. In Proc. CVPR, 2006.

[13] C.-N.J. Yu and T. Joachims. Learning structural SVMs with latent variables. In Proc. ICML,
2009.



