Which graphical models are difficult to learn?
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Abstract

We consider the problem of learning the structure of Isinglel® (pairwise bi-
nary Markov random fields) from i.i.d. samples. While sevenathods have
been proposed to accomplish this task, their relative siant limitations remain
somewhat obscure. By analyzing a number of concrete exampke show that
low-complexity algorithms systematically fail when the Mav random field de-
velops long-range correlations. More precisely, this pime@non appears to be
related to the Ising model phase transition (although isda# coincide with it).

1 Introduction and main results

Given a graphG = (V = [p], E), and a positive parametér> 0 theferromagnetic Ising model on
G is the pairwise Markov random field
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over binary variableg = (z1,x2,...,z,). Apart from being one of the most studied models in

statistical mechanics, the Ising model is a prototypicairetted graphical model, with applications
in computer vision, clustering and spatial statistics.olbwious generalization to edge-dependent
parameterd,;, (i,j) € E is of interest as well, and will be introduced in Section 2.2(Let us
stress that we follow the statistical mechanics convergfaralling (1) an Ising model for any graph
G.)

In this paper we study the following structural learning tgemn: Givenn i.i.d. samplesz(!),
2., 2™ with distribution 1 ¢( - ), reconstruct the grapldz. For the sake of simplicity, we
assume that the parameteis known, and tha€s has no double edges (it is a ‘simple’ graph).

The graph learning problem is solvable with unbounded sarogiplexity, and computational re-
sources [1]. The question we address is: for which classgsaphs and values of the parameités
the problem solvable under appropriate complexity comgB@ More precisely, given an algorithm
Alg, a graphG, a valued of the model parameter, and a smalt> 0, the sample complexity is
defined as

nag(G, 0) = inf {n EN: Prgo{Algla®,....2™) =G} >1— 5} , )

wherelP,, ¢ ¢ denotes probability with respect toi.i.d. samples with distributiomg ¢. Further,
we let xaig (G, 8) denote the number of operations of the algoritAtg, when run omai (G, 6)
samples.

!For the algorithms analyzed in this paper, the behaviergfandyai, does not change significantly if we
require only ‘approximate’ reconstruction (e.g. in graph distance).



The general problem is therefore to characterize the fonstiag (G, §) and xag(G,0), in par-
ticular for an optimal choice of the algorithm. General bosionna (G, 0) have been given in
[2, 3], under the assumption of unbounded computationaluregs. A general charactrization of
how well low complexity algorithms can perform is therefdaeking. Although we cannot prove
such a general characterization, in this paper we estimatendyaig for a number of graph mod-
els, as a function of, and unveil a fascinating universal pattewhen the model (1) develops long
range correlations, low-complexity algorithms fallnder the Ising model, the variablés; };cv
become strongly correlated férlarge. For a large class of graphs with degree boundefi lihis
phenomenon corresponds to a phase transition beyond siita ealue ofd uniformly bounded in
p, with typically ..;; < const./A. In the examples discussed below, the failure of low-comriple
algorithms appears to be related to this phase transitito(agh it does not coincide with it).

1.1 Atoy example: the thresholding algorithm
In order to illustrate the interplay between graph strugtisample complexity and interaction

strength, it is instructive to consider a warmup example. The thréshg algorithm reconstructs
G by thresholding the empirical correlations
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THRESHOLDING samples(z(©}, thresholdr )

1. Compute the empirical correlatiof€’;; } ; j)ev xv:
2: Foreachi,j) eV xV

3: It C;; > 7, set(i, ) € E;

We will denote this algorithm by hr(7). Notice that its complexity is dominated by the computation
of the empirical correlations, i.&thr () = O(p*n). The sample complexityry,(-) can be bounded
for specific classes of graphs as follows (the proofs ar@sifarward and omitted from this paper).
Theorem 1.1. If G has maximum degreA > 1 and if § < atanh(1/(2A)) then there exists
7 = 7(0) such that
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Further, the choice-(8) = (tanh 6 + (1/2A))/2 achieves this bound.

Theorem 1.2. There exists a numerical constafit such that the following is true. A > 3 and
¢ > K/A, there are graphs of bounded degréesuch that for anyr, nyu. () = oo, i.e. the
thresholding algorithm always fails with high probability

NThr(r) (G7 9) <

These results confirm the idea that the failure of low-coxiptealgorithms is related to long-range
correlations in the underlying graphical model. If the drépis a tree, then correlations between far
apart variables;, z; decay exponentially with the distance between verticgsThe same happens
on bounded-degree graphdif< const./A. However, forf > const./A, there exists families of
bounded degree graphs with long-range correlations.

1.2 More sophisticated algorithms

In this section we characterizgs (G, ) andna (G, 0) for more advanced algorithms. We again
obtain very distinct behaviors of these algorithms depapdin long range correlations. Due to
space limitations, we focus on two type of algorithms and/ anitline the proof of our most chal-
lenging result, namely Theorem 1.6.

In the following we denote bi the neighborhood of a nodes G (i ¢ 9i), and assume the degree
to be bounded{di| < A.

1.2.1 Local Independence Test

A recurring approach to structural learning consists if@sipg the conditional independence struc-
ture encoded by the graph [1, 4, 5, 6].



Let us consider, to be definite, the approach of [4], spexmiit to the model (1). Fix a vertex,
whose neighborhood we want to reconstruct, and consideotmditional distribution of.. given its
neighbors: 1 ¢(z,|zg,). Any change ofr;, i € Or, produces a change in this distribution which
is bounded away frorf. Let U be a candidate neighborhood, and asstime dr. Then changing
the value ofr;, j € U will produce a noticeable change in the marginalof even if we condition
on the remaining values iti and in anyWW, |IW| < A. On the other hand, i ¢ 9r, then itis
possible to findV (with [IW| < A) and a nodeé € U such that, changing its value after fixing all
other values i/ U W will produce no noticeable change in the conditional maabifJust choose

1 € U\dr andW = 9r\U). This procedure allows us to distinguish subset&ofrom other sets
of vertices, thus motivating the following algorithm.

LocAL INDEPENDENCETEST( samples[z(D}, thresholdge, ) )

1: Selectanode € V;

2. Set as its neighborhood the largest candidate neiglitudr
size at most\ for which the score function &REU) > €/2;

3: Repeat forall nodese V;

The score function SoRE( - ) depends ori{z(“}, A, v) and is defined as follows,

min - max  |Ppae{Xi = 2| Xy = 2y, Xp = 2} —
W,j Ti Ty Ty, Tj ’

Pn,G,Q{Xi = x| Xy = gWaXU\j = QU\jan = 37]}| . (5)
In the minimum,|[W| < A andj € U. In the maximum, the values must be such that

~

PreolXw = 2w, Xy =2y} >7/2,  Prce{Xw = QWng\j = lU\jan =z} > /2
@mg?g is the empirical distribution calculated from the sampﬂeé@}. We denote this algorithm

by Ind(¢,v). The search over candidate neighbbrsthe search for minima and maxima in the
computation of the 8oRE(U) and the computation d,, ¢ ¢ all contribute foryng(G, 6).

Both theorems that follow are consequences of the analf/§i3.o

Theorem 1.3. Let G be a graph of bounded degre® > 1. For everyd there existge, ), and a

numerical constani, such that
100A,  2p
€24 8 5

More specifically, one can take= 1 sinh(2), y = e =449 2724,

nlnd(e,'y)(Ga 9) S Xlnd(ey,y) (Ga 9) S K (2p)2A+1 logp .

This first result implies in particular th&¥ can be reconstructed with polynomial complexity for
any bounded\. However, the degree of such polynomial is pretty high andmaiform in A. This
makes the above approach impractical.

A way out was proposed in [4]. The idea is to identify a set @itgmtial neighbors’ of vertex via
thresholding:

B(ry={ieV :Cy > r/2}, (6)
For each node € V, we evaluate SOREU) by restricting the minimum in Eq. (5) ové&V C B(r),
and search only ovady C B(r). We call this algorithmindD(e, v, ). The basic intuition here is
that C,.; decreases rapidly with the graph distance between vertie@sli. As mentioned above,
this is true at smal.

Theorem 1.4. Let G be a graph of bounded degre®e > 1. Assume tha < K/A for some small
enough constank’. Then there exists v, x such that

log(4/r)

4
nlndD(e,'y,n)(G7 9) < 8(/’62 + SA) log ?p s XIndD (¢ ~ ) (G, 9) < K/pAA o + K'Ap2 logp.

More specifically, we can take= tanh 6, e = 1 sinh(260) andy = e~*49 2724,

2If ¢ is a vector andR is a set of indices then we denote &y the vector formed by the componentscof
with index inR.



1.2.2 Regularized Pseudo-Likelihoods

A different approach to the learning problem consists inim&ing an appropriate empirical likeli-
hood function [7, 8, 9, 10, 13]. To control the fluctuationssed by the limited number of samples,
and select sparse graphs a regularization term is ofterdddds, 9, 10, 11, 12, 13].

As a specific low complexity implementation of this idea, vemsider the/;-regularized pseudo-
likelihood method of [7]. For each node the following likelihood function is considered

1 n
LAY = = S logPrga(ailal?) o
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wherez,, =z, = {z; : i € V' \ r}is the vector of all variables except andP,, ¢ ¢ is defined
from the following extension of (1),

Geo\x) = 5— eliiTiT; g
peo(z) 7 H ©
i,jEV

whered = {0;;}: jev is a vector of real parameters. Model (1) corresponds;te= 0, V(i,j) ¢ E
andé;; =0, V(i,j) € E.

The functionL(9; {=(“}) depends only ol = {f,;, j € Or} and is used to estimate the neigh-
borhood of each node by the following algorithRiy()\),

REGULARIZED LoGISTIC REGRESSION samples(z(© }, regularization(\))
1: Selectanode € V;

2: Calculate), =arg m]iRn (L, : {9} + A6, |1 };
: 0, err-1 : :

3: If 6, > 0, set(r, j) € E;

Our first result shows th&lr()\) indeed reconstructs if 6 is sufficiently small.

Theorem 1.5. There exists numerical constamty, K5, K3, such that the following is true. Lét
be a graph with degree bounded By> 3. If § < K; /A, then there exisk such that

—2 8p2
nRir(x) (G, 0) < K267 A llog 5 9)

Further, the above holds with = K56 A~1/2,

This theorem is proved by noting that < K /A correlations decay exponentially, which makes
all conditions in Theorem 1 of [7] (denoted there by Al and AB)d, and then computing the
probability of success as a function:ofwhile strenghtening the error bounds of [7].

In order to prove a converse to the above result, we need te s@ke assumptions on Given

6 > 0, we say that\ is ‘reasonable for that value &fif the following conditions old:(i) Rlr())

is successful with probability larger thdf2 on any star graph (a graph composed by a vertex
connected ta\ neighbors, plus isolated vertice$)j) A < é(n) for some sequencgn) | 0.

Theorem 1.6. There exists a numerical constait such that the following happens. & > 3,
6 > K/A, then there exists graph§ of degree bounded hgx such that for all reasonable,
nrir(n) (G) = 00, i.€. regularized logistic regression fails with high pediility.

The graphs for which regularized logistic regression faitsnot contrived examples. Indeed we will
prove that the claim in the last theorem holds with high pbilitg when G is a uniformly random
graph of regular degreA.

The proof Theorem 1.6 is based on showing that an appropniedderence conditiois necessary
for RIr to successfully reconstruét. The analogous result was proven in [14] for model selection
using the Lasso. In this paper we show that such a conditials@snecessary when the underlying
model is an Ising model. Notice that, given the graphchecking the incoherence condition is
NP-hard for general (non-ferromagnetic) Ising model, aguires significant computational effort
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Figure 1: Learning random subgraphs of & 7 (p = 49) two-dimensional grid fromn = 4500
Ising models samples, using regularized logistic regoasdieft: success probability as a function
of the model parametet and of the regularization parametgg (darker corresponds to highest
probability). Right: the same data plotted for several casiof A\ versusd. The vertical line
corresponds to the model critical temperature. The thivk is an envelope of the curves obtained
for different\, and should correspond to optimal regularization.

even in the ferromagnetic case. Hence the incoherencet@mndoes not provide, by itself, a clear
picture of which graph structure are difficult to learn. Wdlwistead show how to evaluate it on
specific graph families.

Under the restrictiolh — 0 the solutions given bRRIr converge t@* with n [7]. Thus, for large
n we can expand. aroundd* to second order ifd — 8*). When we add the regularization term
to L we obtain a quadratic model analogous the Lasso plus the e due to the quadratic
approximation. It is thus not surprising that, when- 0 the incoherence condition introduced for
the Lasso in [14] is also relevant for the Ising model.

2 Numerical experiments

In order to explore the practical relevance of the aboveltgswe carried out extensive numerical
simulations using the regularized logistic regressiomtlgm Rir(A). Among other learning algo-
rithms,RIr(\) strikes a good balance of complexity and performance. Sgstipdm the Ising model

(1) where generated using Gibbs sampling (a.k.a. Glaubrardics). Mixing time can be very large
for 6 > 0.4, and was estimated using the time required for the overadl tn change sign (this is a
quite conservative estimate at low temperature). Gemgy#itie sample$z(“)} was indeed the bulk

of our computational effort and took abdift days CPU time on Pentium Dual Core processors (we
show here only part of these data). Notice tRat\) had been tested in [7] only on tree grajphs

or in the weakly coupled regime< 6.,;;. In these cases sampling from the Ising model is easy, but
structural learning is also intrinsically easier.

Figure reports the success probability Rif(\) when applied to random subgraphs off & 7
two-dimensional grid. Each such graphs was obtained by vemgeach edge independently with
probability p = 0.3. Success probability was estimated by applyRig(\) to each vertex o8
graphs (thus averaging ov&92 runs ofRIr())), usingn = 4500 samples. We scaled the regular-
ization parameter as = 26 (logp/n)'/? (this choice is motivated by the algorithm analysis and
is empirically the most satisfactory), and searched oyer

The data clearly illustrate the phenomenon discussed. i@e#e large number of samples
n > logp, when# crosses a threshold, the algorithm starts performing paoespective of).
Intriguingly, this threshold is not far from the critical jpd of the Ising model on a randomly diluted
grid 0.5t (p = 0.3) ~ 0.7 [15, 16].
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Figure 2: Learning uniformly random graphs of degree 4 freing models samples, usiigr.
Left: success probability as a function of the number of daswp for several values of. Right:
the same data plotted for several choices wersusd as in Fig. 1, right panel.

Figure 2 presents similar data whéhis a uniformly random graph of degre¥e = 4, overp = 50
vertices. The evolution of the success probability witlclearly shows a dichotomy. Whehis
below a threshold, a small number of samples is sufficienetomstructz with high probability.
Above the threshold even = 10* samples are to few. In this case we can predict the threshold
analytically, cf. Lemma 3.3 below, and g&t,, (A = 4) ~ 0.4203, which compares favorably with
the data.

3 Proofs

In order to prove Theorem 1.6, we need a few auxiliary resliits convenient to introduce some
notations. IfM is a matrix andR, P are index sets thedr p denotes the submatrix with row
indices inR and column indices i®. As above, we let be the vertex whose neighborhood we are
trying to reconstruct and defing = 9r, S¢ = V' \ dr Ur. Since the cost functiof(9; {2(“}) +
All€]|1 only depend or through its components. . = {6..;}, we will hereafter neglect all the other
parameters and writéas a shorthand df, ..

Let 2* be a subgradient df¢||, evaluated at the true parameters valééss= {6, : 6;; = 0, Vj ¢
or,0.; =0, Yj € or}. Let 6" be the parameter estimate returnedRiy(\) when the number
of samples ig:. Note that, since we assum@tl > 0, 25 = 1. DefineQ™(,;{z"}) to be the
Hessian ofL(6; {z(“}) andQ(8) = lim,, .o, Q™(8,; {z(¥'}). By the law of large numberg(4) is
the Hessian ofg g log Pg ¢ (X, | X\, ) whereE¢ 4 is the expectation with respect to (8) akdis a
random variable distributed according to (8). We will denibite maximum and minimum eigenvalue
of a symmetric matrix\ by o,.x (M) ando i (M) respectively.

We will omit arguments whenever clear from the context. Amamgity evaluated at the true pa-
rameter values will be represented with,se.g. @* = Q(6*). Quantities under a depend om.
Throughout this sectio& is a graph of maximum degrek.

3.1 Proof of Theorem 1.6

Our first auxiliary results establishes thathifs small, therj|Q%. s Q% s~ ' 25| > 1is a sufficient
condition for the failure oRIr(\).

Lemma 3.1. ASSUMEQ%. s Q%™ 25]; > 1+ ¢ for somee > 0 and some row € V, oin (Q%5) >
Cmin > 0,andX < 1/C3. €/29A%. Then the success probability Rf-()) is upper bounded as
Puuce < 4A2e7 % 4 2A 7N 05 (10)

whered, = (C2.,/100A%)e anddp = (Cuin /84 )e.

min



The next Lemma implies that, for to be ‘reasonable’ (in the sense introduced in Section }.2.2
nAZ must be unbounded.

Lemma 3.2. There existM = M (K, §) > 0 for # > 0 such that the following is true: If7 is the
graph with only one edge between nodemd: andn\? < K, then

Psucc < e—]LI(K,Q)p + e—n(l—tanh 9)2/32 . (11)

Finally, our key result shows that the conditii®%.sQ%s ' 25|/c < 1 is violated with high
probability for large random graphs. The proof of this résealies on a local weak convergence
result for ferromagnetic Ising models on random graphseutam [17].

Lemma 3.3. LetG be a uniformly random regular graph of degrée> 3, ande > 0 be sufficiently
small. Then, there existy,, (A, €) such that, fo > 0., (A, €), || Qb sQs ™ 25| loo > 1+ € with
probability converging td asp — co.

Furthermore, for largeA, 6, (A,0+) = § A=Y(1 + o(1)). The constant is given byt =
tanh 2)/h and h is the unique positive solution éftanh 7 = (1 — tanh? h)2. Finally, there exist
Chin > 0 dependent only otk and @ such thaio i, (Q%g) > Cmin With probability converging to
1 asp — oo.

The proofs of Lemmas 3.1 and 3.3 are sketched in the nextstitrseLemma 3.2 is more straight-
forward and we omit its proof for space reasons.

Proof. (Theorem 1.6) FixA > 3,0 > K/A (whereK is a large enough constant independent of
A), ande, Cpin > 0 and both small enough. By Lemma 3.3, for ankarge enough we can choose
aA-regular graptG,, = (V = [p], E,) and a vertex € V such thatQ%.sQ%g ' Ls|i > 1+ € for
some; € V \ r.

By Theorem 1 in [4] we can assume, without loss of generality K’Alog p for some small
constantk’. Further by Lemma 3.3\% > F(p) for someF(p) T oc asp — oo and the condition
of Lemma 3.1 on\ is satisfied since by the "reasonable” assumption> 0 with n. Using these
results in Eqg. (10) of Lemma 3.1 we get the following upperrmban the success probability
Pouce(Gp) < AA2p~0aK'A 4 oA =nF @) (12)
In particularPgyc.(Gp) — 0 asp — oc. O

3.2 Proofs of auxiliary lemmas

Proof. (Lemma 3.1) We will show that under the assumptions of thererand ifd = (6, 0¢c) =
(64, 0) then the probability that thecomponent of any subgradientbfd; {2 })+||¢]|, vanishes
for any@s > 0 (component wise) is upper bounded as in Eq. (10). To simptitation we will omit
{z®} in all the expression derived froi.

Let  be a subgradient df¢|| atd and assum& L(§) + Az = 0. An application of the mean value
theorem yields

VZL(0")[0 — "] = W" — A2+ R", (13)
whereW" = —VL(6*) and[R"]; = [V2L(8") — V2L(6")]7 (6 — 6%) with 8 a pointin the line
from @ to 0*. Notice that by definitiorV2L(0*) = Q™* = Q™(8"). To simplify notation we will
omit thex in all Q™*. All Q™ in this proof are thus evaluated it.

Breaking this expression into it and.S¢ components and sin@%c = f5c = 0 we can eliminate
8¢ — 8% from the two expressions obtained and write

[Wse — Rée] = Qe s(Qs) ™' W§ — R5] + AQ5e5(Q5s) ™ 2s = Azse . (14)
Now notice thatQ?c o (Q%g) ™! = T + 1> + T3 + Ty where
T = Q505((Q5s) ™ — (Q5s) 7', Ty = [Qics — QseslQbs
T3 = [Qcs — Qsesl(Q5s) ™ — (Q5s) '], Ty = Q5esQ5s -



We will assume that the samplés(“)} are such that the following event holds
€ ={llQss = Qsslloc < &4, [|Qscs — Qseslloe <Ea, [[W5 /Moo <&cts (15)

whereés = C2; ¢/(16A), £ = Crine/(8VA) andéc = Chine/(8A). SinceEq 4(Q") = Q*
andEq ¢(W"™) = 0 and noticing that botlp™ andW™ are sums of bounded i.i.d. random variables,
a simple application of Azuma-Hoeffding inequality uppeuhds the probability of as in (10).

From & it follows that omin (Q%g) > omin(Q%s) — Cmin/2 > Cmin/2. We can therefore lower
bound the absolute value of thi& component of ¢ by
WS
oo (I 1)

[Q5csQ5s ™ Lsli oo = [Tl oo = T3, oo — TZ

where the subscriptdenotes thé-th row of a matrix.

The proof is completed by showing that the ev&rand the assumptions of the theorem imply that
each of last terms in this expression is smaller thaf8. Since|[Q5c Q%5 “NT2% > 1+ eby
assumption, this implieg;| > 1 + ¢/8 > 1 which cannot be since any subgradlent of theorm
has components of magnitude at mbst

Iy

A

RS
+H7

The last condition o€ immediately bounds all terms involvingy’” by ¢/8. Some straightforward
manipulations imply (See Lemma 7 from [7])

. VA o .
IT1illoe < 02 1Q%s — Qsslloc 1T2illo = 7—lQ@5es — Qseslillo
IT5.6 IIst Qsslloll[@scs = Qsoslillos s
and thus all will be bounded by/8 when& holds. The upper bound d?” follows along similar
lines via an mean value theorem, and is deferred to a longsioveof this paper. O

Proof. (Lemma 3.3.) Let us state explicitly the local weak convamgeresult mentioned in Sec. 3.1.
Fort € IN, let T(¢t) = (V4, ET) be the regular rooted tree bfienerations and define the associated

Ising measure as
1 . .

pio@) =—— T[] ™ [ ¢ (16)
(i,j)EET i€OT(t)
Here 0T (¢) is the set of leaves of (¢) and h* is the unique positive solution of = (A —
1) atanh {tanh @ tanh h}. It can be proved using [17] and uniform continuity with respto the
‘external field’ that non-trivial local expectations withapect tq:¢ ¢ (x) converge to local expecta-
tions with respect taf ,(x), asp — oc.

More precisely, leB,.(¢) denote a ball of radiusaround node € G (the node whose neighborhood
we are trying to reconstruct). For any fixedthe probability thaB,.(¢) is not isomorphic tor (¢)
goes ta) asp — oo. Letg(zg, (;)) be any function of the variables B,.(¢) such thaly(zg ;) =
9(—zg, (1)) Then almost surely over graph sequenGgsf uniformly random regular graphs with
p hodes (expectations here are taken with respect to the nesg4d) and (16))

Jim B o{9(Xe, )} = Er 0.+ {9(Xr()}- 17

The proof consists in considerings.sQ%s ™ ' 25): for t = dist(r,4) finite. We then write
Qs = Efan(X,, )} and(Qses)u = ]E{gtl(XB )} for some functiong..(X, ) and
apply the weak convergence result (17) to these expecsatMte thus reduced the calculation of
[Q%.sQ%s ™ '25]: to the calculation of expectations with respect to the treasuare (16). The latter
can be |mplemented explicitly through a recursive procedwith simplifications arising thanks to
the tree symmetry and by takirigs> 1. The actual calculations consist in a (very) long exeraise i
calculus and we omit them from this outline.

The lower bound om,i, (Q% ) is proved by a similar calculation. O
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