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Abstract

Finding maximally sparse representations from overcomplete feature dictionaries
frequently involves minimizing a cost function composed of a likelihood (or data
fit) term and a prior (or penalty function) that favors sparsity. While typically the
prior is factorial, here we examine non-factorial alternatives that have a number of
desirable properties relevant to sparse estimation and are easily implemented using
an efficient and globally-convergent, reweighted `1-norm minimization procedure.
The first method under consideration arises from the sparse Bayesian learning
(SBL) framework. Although based on a highly non-convex underlying cost func-
tion, in the context of canonical sparse estimation problems, we prove uniform
superiority of this method over the Lasso in that, (i) it can never do worse, and (ii)
for any dictionary and sparsity profile, there will always exist cases where it does
better. These results challenge the prevailing reliance on strictly convex penalty
functions for finding sparse solutions. We then derive a new non-factorial variant
with similar properties that exhibits further performance improvements in some
empirical tests. For both of these methods, as well as traditional factorial analogs,
we demonstrate the effectiveness of reweighted `1-norm algorithms in handling
more general sparse estimation problems involving classification, group feature
selection, and non-negativity constraints. As a byproduct of this development, a
rigorous reformulation of sparse Bayesian classification (e.g., the relevance vector
machine) is derived that, unlike the original, involves no approximation steps and
descends a well-defined objective function.

1 Introduction

With the advent of compressive sensing and other related applications, there has been growing inter-
est in finding sparse signal representations from redundant dictionaries [3, 5]. The canonical form
of this problem is given by,

min
x

‖x‖0, s.t. y = Φx, (1)

where Φ ∈ R
n×m is a matrix whose columns φi represent an overcomplete or redundant basis (i.e.,

rank(Φ) = n and m > n), x ∈ R
m is a vector of unknown coefficients to be learned, and y is the

signal vector. The cost function being minimized represents the `0 norm of x (i.e., a count of the
number of nonzero elements in x). If measurement noise or modeling errors are present, we instead
solve the alternative problem

min
x

‖y − Φx‖2
2 + λ‖x‖0, λ > 0, (2)

noting that in the limit as λ → 0, the two problems are equivalent (the limit must be taken outside
of the minimization). From a Bayesian perspective, optimization of either problem can be viewed,
after a exp[−(·)] transformation, as a challenging MAP estimation task with a quadratic likelihood
function and a prior that is both improper and discontinuous. Unfortunately, an exhaustive search
for the optimal representation requires the solution of up to

(
m
n

)
linear systems of size n × n, a
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prohibitively expensive procedure for even modest values of m and n. Consequently, in practical
situations there is a need for approximate methods that efficiently solve (1) or (2) with high prob-
ability. Moreover, we would ideally like these methods to generalize to other likelihood functions
and priors for applications such as non-negative sparse coding, classification, and group variable
selection.
One common strategy is to replace ‖x‖0 with a more manageable penalty function g(x) (or prior)
that still favors sparsity. Typically this replacement is a concave, non-decreasing function of
|x| , [|x1|, . . . , |xm|]T . It is also generally assumed to be factorial, meaning g(x) =

∑
i g(xi).

Given this selection, a recent, very successful optimization technique involves iterative reweighted
`1 minimization, a process that produces more focal estimates with each passing iteration [3, 19].
To implement this procedure, at the (k + 1)-th iteration we compute

x(k+1) → arg min
x

‖y − Φx‖2
2 + λ

∑

i

w
(k)
i |xi|, (3)

where w
(k)
i , ∂g(x

(k)
i )/∂|x

(k)
i |. As discussed in [6], these updates are guaranteed to converge to

a local minimum of the underlying cost function by satisfying the conditions of the Global Con-
vergence Theorem (see for example [24]). Moreover, empirical evidence from [3] suggests that
generally only a few iterations, which can be readily computed using standard convex programming
packages, are required. Note that a single iteration with unit weights is equivalent to the traditional
Lasso estimator [14]. However, given an appropriate selection for g(·), e.g., g(xi) = log(|xi| + α)
with α > 0, subsequent iterations have been shown to exhibit substantial improvements over the
Lasso in approximating the solution of (1) or (2) [3].
While certainly successful in practice, there remain fundamental limitations as to what can be
achieved using factorial penalties to approximate ‖x‖0. Perhaps counterintuitively, it has been
shown in [19] that by considering the wider class of non-factorial penalties, more effective sur-
rogates for ‖x‖0 can be obtained, potentially leading to better approximate solutions of either
(1) or (2). In this paper we consider two non-factorial methods that rely on the same basic itera-
tive reweighted `1 minimization procedure outlined above. In Section 2, we briefly introduce the
non-factorial penalty function first proposed in [19] (based on a dual-form interpretation of sparse
Bayesian learning) and then derive a new iterative reweighted `1 implementation that builds upon
these ideas. We then demonstrate that this algorithm satisfies two desirable properties pertaining to
problem (1): (i) each iteration can only improve the sparsity and, (ii) for any Φ and sparsity profile,
there will always exist cases where performance improves over standard `1 minimization, which
represents the best convex approximation to (1). Together, these results imply that this reweighting
scheme can never do worse than Lasso (assuming w

(0)
i = 1,∀i), and that there will always be cases

where improvement over Lasso is achieved. To a large extent, this removes much of the stigma com-
monly associated with using non-convex sparsity penalties. Later in Section 3, we derive a second
promising non-factorial variant by starting with a plausible `1 reweighting scheme and then working
backwards to determine the form and properties of the underlying penalty function.
In general, iterative reweighted `1 procedures of any kind are attractive for our purposes because
they can easily be augmented to handle other likelihoods and priors, provided convexity of the
update (3) is preserved (of course the overall cost function being minimized will be non-convex).
For example, to address the extensions mentioned above, in Section 4 we explore adding constraints
such as xi ≥ 0, replacing |xi| with a norm on groups of variables, and using a logistic instead of
quadratic likelihood term for classification. The latter extension leads to a rigorous reformulation
of sparse Bayesian classification (e.g., the relevance vector machine [15]) that, unlike the original,
involves no approximation steps and descends a well-defined objective function. Finally, Section 5
contains empirical comparisons while Section 6 provides brief concluding remarks.

2 Non-Factorial Methods Based on Sparse Bayesian Learning

A particularly useful non-factorial penalty emerges from a dual-space view [19] of sparse Bayesian
learning (SBL) [15], which is based on the notion of automatic relevance determination (ARD)
[10]. SBL assumes a Gaussian likelihood function p(y|x) = N (y; Φx, λI), consistent with the
data fit term from (2). The basic ARD prior incorporated by SBL is p(x;γ) = N (x; 0, diag[γ]),
where γ ∈ R

m
+ is a vector of m non-negative hyperparameters governing the prior variance of each



unknown coefficient. These hyperparameters are estimated from the data by first marginalizing over
the coefficients x and then performing what is commonly referred to as evidence maximization or
type-II maximum likelihood [10, 15]. Mathematically, this is equivalent to minimizing

L(γ) , − log

∫
p(y|x)p(x;γ)dx = − log p(y;γ) ≡ log |Σy| + yT Σ−1

y y, (4)

where Σy , λI + ΦΓΦT and Γ , diag[γ]. Once some γ∗ = arg minγ L(γ) is computed, an
estimate of the unknown coefficients can be obtained by setting xSBL to the posterior mean computed
using γ∗:

xSBL = E[x|y;γ∗] = Γ∗Φ
T Σ−1

y∗ y. (5)
Note that if any γ∗,i = 0, as often occurs during the learning process, then xSBL,i = 0 and the
corresponding feature is effectively pruned from the model. The resulting coefficient vector xSBL is
therefore sparse, with nonzero elements corresponding with the ‘relevant’ features.
It is not immediately apparent how the SBL procedure, which requires optimizing a cost function in
γ-space and is based on a factorial prior p(x;γ), relates to solving/approximating (1) and/or (2) via
a non-factorial penalty in x-space. However, it has been shown in [19] that xSBL satisfies

xSBL = arg min
x

‖y − Φx‖2
2 + λgSBL(x), (6)

where
gSBL(x) , min

γ≥0
xT Γ−1x + log |αI + ΦΓΦT |, (7)

assuming α = λ and |x| , [|x1|, . . . , |xm|]T . While not discussed in [19], gSBL(x) is a general
penalty function that only need have α = λ to obtain equivalence with SBL; other selections may
lead to better performance (more on this in Section 4 below).
The analysis in [19] reveals that replacing ‖x‖0 with gSBL(x) and α → 0 leaves the globally mini-
mizing solution to (1) unchanged but drastically reduces the number of local minima (more so than
any possible factorial penalty function). While space precludes the details here, these ideas can be
extended significantly to form conditions, which again are only satisfiable by a non-factorial penalty,
whereby all local minima are smoothed away [21]. Note that while basic `1-norm minimization also
has no local minima, the global minimum need not always correspond with the global solution to
(1), unlike when using gSBL(x).
It can also be shown that gSBL(x) is a non-decreasing, concave function of |x| (see Appendix),
a desirable property of sparsity-promoting penalties. Importantly, as a direct consequence of this
concavity, (6) can be optimized using a reweighted `1 algorithm (in an analogous fashion to the
factorial case) using

w
(k+1)
i =

∂gSBL(x)

∂|xi|

∣∣∣∣
x=x(k+1)

. (8)

Although this quantity is not available in closed form (except for the special case where α → 0),
it can be estimated by executing: Step I - Initialize by setting w(k+1) → w(k), the k-th vector of
weights, Step II - Repeat until convergence

w
(k+1)
i →

[
φT

i

(
αI + ΦW̃ (k+1)X̃(k+1)ΦT

)−1

φi

] 1
2

, (9)

where W̃ (k+1) , diag[w(k+1)]−1 and X̃(k+1) , diag[|x(k+1)|]. The derivation is shown in the
Appendix, while further details and analyses are deferred to [20]. Note that cost function descent
is guaranteed with only a single iteration, so we need not execute (9) until convergence. In fact, it
can be shown that a more rudimentary form of reweighted `1 applied to this model in [19] amounts
to performing exactly one such iteration. However, repeated execution of (9) is cheap computation-
ally since it scales as O

(
nm‖x(k+1)‖0

)
, where typically ‖x(k+1)‖0 ≤ n, and is substantially less

intensive than the subsequent `1 step given by (3).
From a theoretical standpoint, `1 reweighting applied to gSBL(x) is guaranteed to aid performance
in the sense described by the following two results, which apply in the case where λ → 0, α → 0.
Before proceeding, we define spark(Φ) as the smallest number of linearly dependent columns in Φ
[5]. It follows then that 2 ≤ spark(Φ) ≤ n + 1.



Theorem 1. When applying iterative reweighted `1 using (9) and w
(1)
i 6= 0,∀i, the solution sparsity

satisfies ‖x(k+1)‖0 ≤ ‖x(k)‖0 (i.e., continued iteration can never do worse).

Theorem 2. Assume that spark(Φ) = n+1 and consider any instance where standard `1 minimiza-
tion fails to find some x∗ drawn from support set S with cardinality |S| < (n+1)

2 . Then there exists
a set of signals y (with non-zero measure) generated from S such that non-factorial reweighted `1,
with W̃ (k+1) updated using (9), always succeeds but standard `1 always fails.

Note that Theorem 2 does not in any way indicate what is the best non-factorial reweighting scheme
in practice (for example, in our limited experience with empirical simulations, the selection α → 0
is not necessarily always optimal). However, it does suggest that reweighting with non-convex, non-
factorial penalties is potentially very effective, motivating other selections as discussed next. Taken
together, Theorems 1 and 2 challenge the prevailing reliance on strictly convex cost functions, since
they ensure that we can never do worse than the Lasso (which uses the tightest convex approximation
to the `0 norm), and that there will always be cases where improvement over the Lasso is obtained.

3 Bottom-Up Construction of Non-Factorial Penalty

In the previous section, we described what amounts to a top-down formulation of a non-factorial
penalty function that emerges from a particular hierarchical Bayesian model. Based on the insights
gleaned from this procedure (and its distinction from factorial penalties), it is possible to stipulate
alternative penalty functions from the bottom up by creating plausible, non-factorial reweighting
schemes. The following is one such possibility.
Assume for simplicity that λ → 0. The Achilles heel of standard, factorial penalties is that if we
want to retain a global minimum similar to that of (1), we require a highly concave penalty on each
xi [21]. However, this implies that almost all basic feasible solutions (BFS) to y = Φx, defined as
a solution with ‖x‖0 ≤ n, will form local minima of the penalty function constrained to the feasible
region. This is a very undesirable property since there are on the order of

(
m
n

)
BFS with ‖x‖0 = n,

which is equal to the signal dimension and not very sparse. We would really like to find degenerate
BFS, where ‖x‖0 is strictly less than n. Such solutions are exceedingly rare and difficult to find.
Consequently we would like to utilize a non-factorial, yet highly concave penalty that explicitly
favors degenerate BFS. We can accomplish this by constructing a reweighting scheme designed to
avoid non-degenerate BFS whenever possible.

Now consider the covariance-like quantity αI + Φ(X̃(k+1))2ΦT , where α may be small, and then
construct weights using the projection of each basis vector φi as defined via

w
(k+1)
i → φT

i

(
αI + Φ(X̃(k+1))2ΦT

)−1

φi. (10)

Ideally, if at iteration k + 1 we are at a bad or non-degenerate BFS, we do not want the newly
computed w

(k+1)
i to favor the present position at the next iteration of (3) by assigning overly large

weights to the zero-valued xi. In such a situation, the factor Φ(X̃(k+1))2ΦT in (10) will be full
rank and so all weights will be relatively modest sized. In contrast, if a rare, degenerate BFS is
found, then Φ(X̃(k+1))2ΦT will no longer be full rank, and the weights associated with zero-valued
coefficients will be set to large values, meaning this solution will be favored in the next iteration.
In some sense, the distinction between (10) and its factorial counterparts, such as the method of
Candès et al. [3] which uses w

(k+1)
i → 1/(|x

(k+1)
i |+α), can be summarized as follows: the factorial

methods assign the largest weight whenever the associated coefficient goes to zero; with (10) the
largest weight is only assigned when the associated coefficient goes to zero and ‖x(k+1)‖0 < n.
The reweighting option (10), which bears some resemblance to (9), also has some very desirable
properties beyond the intuitive justification given above. First, since we are utilizing (10) in the
context of reweighted `1 minimization, it would productive to know what cost function, if any, we
are minimizing when we compute each iteration. Using the fundamental theorem of calculus for line
integrals (or the gradient theorem), it follows that the bottom-up (BU) penalty function associated



with (10) is
gBU(x) ,

∫ 1

0

trace
[
X̃ΦT

(
αI + Φ(νX̃)2ΦT

)−1

Φ

]
dν. (11)

Moreover, because each weight wi is a non-increasing function of each xj ,∀j, from Kachurovskii’s
theorem [12] it directly follows that (11) is concave and non-decreasing in |x|, and thus naturally
promotes sparsity. Additionally, for α sufficiently small, it can be shown that the global minimum
of (11) on the constraint y = Φx must occur at a degenerate BFS (Theorem 1 from above also holds
when using (10); Theorem 2 may as well, although we have not formally shown this). And finally,
regarding implementational issues and interpretability, (10) avoids any recursive weight assignments
or inner-loop optimization as when using (9).

4 Extensions

One of the motivating factors for using iterative reweighted `1 optimization is that it is very easy to
incorporate alternative likelihoods and priors. This section addresses three such examples.
Non-Negative Sparse Coding: Numerous applications require sparse solutions where all coefficients
xi are constrained to be non-negative [2]. By adding the contraint x ≥ 0 to (3) at each iteration, we
can easily compute such solutions using gSBL(x), gBU(x), or any other appropriate penalty function.
Note that in the original SBL formulation, this is not a possibility since the integrals required to
compute the associated cost function or update rules no longer have closed-form expressions.
Group Feature Selection: Another common generalization is to seek sparsity at the level of groups
of features, e.g., the group Lasso [23]. The simultaneous sparse approximation problem [17] is a par-
ticularly useful adaptation of this idea relevant to compressive sensing [18], manifold learning [13],
and neuroimaging [22]. In this situation, we are presented with r signals Y , [y·1,y·2, . . . ,y·r]

that were produced by coefficient vectors X , [x·1,x·2, . . . ,x·r] characterized by the same spar-
sity profile or support, meaning that the coefficient matrix X is row sparse. Here we adopt the
notation that x·j represents the j-th column of X while xi· represents the i-th row of X . The sparse
recovery problems (1) and (2) then become

min
X

d(X), s.t. Y = ΦX, and min
X

‖Y − ΦX‖2
F + λd(X), λ > 0, (12)

where d(X) ,
∑m

i=1 I [‖xi·‖ > 0] and I[·] is an indicator function. d(X) favors row sparsity and
is a natural extension of the `0 norm to the simultaneous approximation problem.
As before, the combinatorial nature of each optimization problem renders them intractable and so
approximate procedures are required. All of the algorithms discussed herein can naturally be ex-
panded to this domain essentially by substituting the scalar coefficient magnitudes from a given
iteration |x

(k)
i | with some row-vector penalty, such as a norm. If we utilize ‖xi·‖2, then the co-

efficient matrix update analogous to (3) requires the solution of the more complicated weighted
second-order cone (SOC) program

X(k+1) → arg min
X

‖Y − ΦX‖2
F + λ

∑

i

w
(k)
i ‖xi·‖2. (13)

Other selections such as the `∞ norm are possible as well, providing added generality.
Sparse Classifier Design: At a high level, sparse classifiers can be trained by simply substituting
a (preferrably) convex likelihood function for the quadratic term in (2). For example, to perform
sparse logistic regression we would solve

min
x

∑

j

[
yj log(φT

j·x) + (1 − yj) log(1 − φT
j·x)

]
+ λg(x), (14)

where now yj ∈ {0, 1} and g(x) is an arbitrary, concave-in-|x| penalty. This can be implemented
by iteratively solving an `1-norm penalized logistic regression problem, which can be efficiently ac-
complished using a simple majorization-maximization approach [7]. Note that cost function descent
does not require that we compute the full reweighted `1 solution; the iterations from [7] naturally
lend themselves to an efficient partial (or greedy) update before recomputing the weights.
It is very insightful to compare this methodology with the original SBL (or relevance vector ma-
chine) classifier derived in [15]. When the Gaussian likelihood p(y|x) is replaced with a Bernoulli



distribution (which leads to the logistic data fit term above), it is no longer possible to compute
the marginalization (4) or the posterior distribution p(x|y;γ), which is used both for optimization
purposes and to make predictive statements about test data. Consequently, a heuristic Laplace ap-
proximation is adopted, which requires a second-order Newton inner-loop to fit a Gaussian about
the mode of p(x|y;γ). This Gaussian is then used to transform the classification problem into a
standard regression one with data-dependent (herteroscedastic) noise, and then whatever approach
is used to minimize (4), either the MacKay update rules [15] or a greedy constructive method [16],
can be used in the outer-loop. When (if) a fixed point γ∗ is reached, the corresponding classifier
coefficients are chosen as the mode of p(x|y;γ∗).
While demonstrably effective in a wide variety of empirical classification tests, the problem with
this formulation of SBL is threefold. First, there are no convergence guarantees of any kind, regard-
less of which method is used for the outer-loop. Secondly, it is completely unclear what, if any, cost
function is being descended (even approximately) to obtain the classifier coefficients, making it dif-
ficult to explore the model for enhancements or analytical purposes. Thirdly, in certain applications
it has been observed that SBL achieves extreme sparsity at the expense of classification accuracy
[4, 11]. There is currently no flexibility in the model to remedy this problem.
These issues are directly addressed by dispensing with the Bayesian hierarchical derivation of SBL
altogether and considering classification in light of (14). Both the MacKay and greedy SBL updates
are equivalent to minimizing (14) with g(x) = gSBL(x), and assuming α = λ = 1, using coordinate
descent over a set of auxiliary functions (details provided in a forthcoming paper). Unfortunately
however, because these auxiliary functions are based in part on a second-order Laplace approxima-
tion, they do not form a strict upper bound and so provable convergence (or even descent) is not
possible. Of course we can always substitute the reweighted `1 scheme discussed above to avoid
this issue, since the underlying cost function in x-space is the same. Perhaps more importantly, to
properly regulate sparsity, when we deviate from the original Bayesian inspiration for this model,
we are free to adjust α and/or λ. For example, with α small, the penalty gSBL(x) is more highly
concave favoring sparsity, while in the limit at α becomes large, it acts like a standard `1 norm, still
favoring sparsity but not exceedingly so (the same phenomena occurs when using the penalty (11)).
Likewise, λ is as a natural trade-off parameter balancing the contribution from the two terms in (6)
or (14). Both α and λ can be tuned via cross-validation if desired.
There is one additional concern regarding SBL that involves marginal likelihood (sometimes called
evidence) calculations. In the standard regression case where marginalization was possible, the op-
timized quantity − log p(y;γ) represents an approximation to − log p(y) that can be used, among
other things, for model comparison. This notion is completely lost when we move to the classifi-
cation case under consideration. While space precludes the details, if we are willing to substitute
a probit likelihood function for the logistic, it is possible to revert (14) back to the original hierar-
chical, γ-dependent Bayesian model and obtain a rigorous upper bound on − log p(y;γ). Finally,
detailed empirical simulations with both logistic- and probit-based classifiers is an area of future
research; preliminary results are promising.

5 Empirical Comparisons

To further examine the algorithms discussed herein, we performed simulations similar to those in [3].
In the first experiment, each trial consisted of generating a 100×256 dictionary Φ with iid Gaussian
entries and a sparse vector x∗ with 60 nonzero, non-negative (truncated Gaussian) coefficients.
A signal is then computed using y = Φx∗. We then attempted to recover x∗ by applying non-
negative `1 reweighting strategies with four different penalty functions: (i) gSBL(x) implemented
using a single iteration of (9), referred to as SBL-I (equivalent to the method from [19]); (ii) gSBL(x)
implemented using multiple iterations of (9) as discussed in Section 2, referred to as SBL-II; (iii)
gBU(x); and finally (iv) g(x) =

∑
i log(|xi| + α), the factorial method of Candès et al., which

represents the current state-of-the-art in reweighted `1 algorithms. In all cases α was chosen via
coarse cross-validation. Additionally, since we are working with a noise-free signal, we assume
λ → 0 and so the requisite coefficient update (3) with xi ≥ 0 reduces to a standard linear program.

Given w
(0)
i = 1,∀i for each algorithm, the first iteration amounts to the non-negative minimum

`1-norm solution (i.e., the Lasso). Average results from 1000 random trials are displayed in Figure
1 (left), which plots the empirical probability of success in recovering x∗ versus the iteration num-
ber. We observe that standard non-negative `1 never succeeds (see first iteration results); however,



with only a few reweighted iterations drastic improvement is possible, especially for the bottom-up
approach. By 10 iterations, the non-factorial variants have all exceeded the method of Candès et al.
(There was no appreciable improvement by any method after 10 iterations.) This shows both the
efficacy of non-factorial reweighting and the ability to handle constraints on x.
For the second experiment, we used a randomly generated 50 × 100 dictionary for each trial with
iid Gaussian entries as above, and created 5 coefficient vectors X∗ = [x∗

·1, ...,x
∗
·5] with matching

sparsity profile and iid Gaussian nonzero coefficients. We then generate the signal matrix Y = ΦX∗

and attempt to learn X∗ using various group-level reweighting schemes. In this experiment we var-
ied the row sparsity of X∗ from d(X∗) = 30 to d(X∗) = 40; in general, the more nonzero rows,
the harder the recovery problem becomes. A total of five algorithms modified to the simultaneous
sparse approximation problem were tested using an `2-norm penalty on each coefficient row: the
four methods from above (executed for 5 iterations each) plus the standard group Lasso (equiva-
lent to a single iteration of any of the other algorithms). Results are presented in Figure 1 (right),
where the performance gap between the factorial and non-factorial approaches is very significant.
Additionally, we have successfully applied this methodology to large neuroimaging data sets [22],
obtaining significant improvements over existing convex approaches such as the group Lasso, con-
sistent with the results in Figure 1. Other related simulation results are contained in [20].
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Figure 1: Left: Probability of success recovering sparse non-negative coefficients as a function of
reweighted `1 iterations. Right: Iterative reweighted results using 5 simultaneous signal vectors.
Probability of success recovering sparse coefficients for different row sparsity values, i.e., d(X∗).

6 Conclusion

In this paper we have examined concave, non-factorial priors (which previously have received little
attention) for the purpose of estimating sparse coefficients. When coupled with general likelihood
models and minimized using efficient iterative reweighted `1 methods, these priors offer a powerful
alternative to existing state-of-the-art sparse estimation techniques. We have also shown (for the first
time) exactly what the underlying cost function associated with the SBL classifier is and provided a
more principled algorithm for minimizing it.

Appendix

Concavity of gSBL(x) and derivation of weight updates (9): Because log |αI + ΦΓΦT | is concave
and non-decreasing with respect to γ ≥ 0, we can express it as

log |αI + ΦΓΦT | = min
z≥0

zT γ − h∗(z), (15)

where h∗(z) is defined as the concave conjugate of h(γ) , log |αI + ΦΓΦT | [1]. We can then
express gSBL(x) via

gSBL(x) = min
γ≥0

xT Γ−1x + log |αI + ΦΓΦT | = min
γ,z≥0

∑

i

(
x2

i

γi
+ ziγi

)
− h∗(z). (16)

Minimizing over γ for fixed x and z, we get
γi = z

−1/2
i |xi|,∀i. (17)



Substituting this expression into (16) gives the representation

gSBL(x) = min
z≥0

∑

i

(
x2

i

z
−1/2
i |xi|

+ ziz
−1/2
i |xi|

)
− h∗(z) = min

z≥0

∑

i

2z
1/2
i |xi| − h∗(z), (18)

which implies that gSBL(x) can be represented as a minimum of upper-bounding hyperplanes with
respect to |x|, and thus must be concave and non-decreasing since z ≥ 0 [1]. We also observe that
for fixed z, solving (6) is a weighted `1 minimization problem.
To derive the weight update (9), we only need the optimal value of each zi, which from basic convex
analysis will satisfy

z
1/2
i =

∂gSBL(x)

2∂|xi|
. (19)

Since this quantity is not available in closed form, we can instead iteratively minimize (16) over
γ and z. We start by initializing z

1/2
i → w

(k)
i ,∀i and then minimize over γ using (17). We then

compute the optimal z for fixed γ, which can be done analytically using

z = Oγ log
∣∣αI + ΦΓΦT

∣∣ = diag
[
ΦT
(
αI + ΦΓΦT

)−1
Φ
]
. (20)

By substituting (17) into (20) and defining w
(k+1)
i , z

1/2
i , we obtain the weight update (9). This

procedure is guaranteed to converge to a solution satisfying (19) [20] although, as mentioned
previously, only one iteration is actually required for the overall algorithm. �

Proof of Theorem 1: Before we begin, we should point out that for α → 0, the weight update
(9) is still well-specified regardless of the value of the diagonal matrix W̃ (k+1)X̃(k+1). If φi is
not in the span of ΦW̃ (k+1)X̃(k+1)ΦT , then w

(k+1)
i → ∞ and the corresponding coefficient xi

can be set to zero for all future iterations. Otherwise w
(k+1)
i can be computed efficiently using the

Moore-Penrose pseudoinverse and will be strictly nonzero.
For simplicity we will now assume that spark(Φ) = n + 1, which is equivalent to requiring that
each subset of n columns of Φ forms a basis in R

n. The extension to the more general case is
discussed in [20]. From basic linear programming [8], at any iteration the coefficients will satisfy
‖x(k)‖0 ≤ n for arbitrary weights W̃ (k−1). Given our simplifying assumptions, there exists only
two possibilities. If ‖x(k)‖0 = n, then we will automatically satisfy ‖x(k+1)‖0 ≤ ‖x(k)‖0 at the
next iteration regardless of W̃ (k). In contrast, if ‖x(k)‖0 < n, then rank

[
W̃ (k)

]
≤ ‖x(k)‖0 for all

evaluations of (9) with α → 0, enforcing ‖x(k+1)‖0 ≤ ‖x(k)‖0. �

Proof of Theorem 2: For a fixed dictionary Φ and coefficient vector x∗, we are assuming that
‖x∗‖0 < (n+1)

2 . Now consider a second coefficient vector x′ with support and sign pattern equal to
x∗ and define x′

(i) as the i-th largest coefficient magnitude of x′. Then there exists a set of ‖x∗‖0−1

scaling constants νi ∈ (0, 1] (i.e., strictly greater than zero) such that, for any signal y generated via
y = Φx′ and x′

(i+1) ≤ νix
′
(i), i = 1, . . . , ‖x∗‖0 − 1, the minimization problem

x̂ , arg min
x

gSBL(x), s.t. Φx′ = Φx, α → 0, (21)

is unimodal and has a unique minimizing stationary point which satisfies x̂ = x′. This result
follows from [21] and the dual-space characterization of the penalty gSBL(x) from [19]. Note that
(21) is equivalent to (6) with λ → 0, so the reweighted non-factorial update (9) can be applied.
Furthermore, based on the global convergence of these updates discussed above, the sequence of
estimates are guaranteed to satisfy x(k) → x̂ = x′. So we will necessarily learn the generative x′.

Let x`1 , arg minx ‖x‖1, subject to Φx∗ = Φx. By assumption we know that x`1 6= x∗.
Moreover, we can conclude using [9, Theorem 6] that if x`1 fails for some x∗, it will fail for any
other x with matching support and sign pattern; it will therefore fail for any x′ as defined above.
Finally, by construction, the set of feasible x′ will have nonzero measure over the support S since
each νi is strictly nonzero. Note also that this result can likely be extended to the case where
spark(Φ) < n + 1 and to any x∗ that satisfies ‖x∗‖0 < spark(Φ) − 1. The more specific case
addressed above was only assumed to allow direct application of [9, Theorem 6]. �



References

[1] S. Boyd and L. Vandenberghe, Convex Optimization, Cambridge University Press, 2004.
[2] A. Bruckstein, M. Elad, and M. Zibulevsky, “A non-negative and sparse enough solution of an

underdetermined linear system of equations is unique,” IEEE Trans. Information Theory, vol.
54, no. 11, pp. 4813–4820, Nov. 2008.

[3] E. Candès, M. Wakin, and S. Boyd, “Enhancing sparsity by reweighted `1 minimization,” J.
Fourier Anal. Appl., vol. 14, no. 5, pp. 877–905, 2008.

[4] G. Cawley and N. Talbot, “Gene selection in cancer classification using sparse logistic regres-
sion with Bayesian regularization,” Bioinformatics, vol. 22, no. 19, pp. 2348–2355, 2006.

[5] D. Donoho and M. Elad, “Optimally sparse representation in general (nonorthogonal) dictio-
naries via `1 minimization,” Proc. Nat. Acad. Sci., vol. 100, no. 5, pp. 2197–2202, 2003.

[6] M. Fazel, H. Hindi, and S. Boyd, “Log-Det heuristic for matrix rank minimization with appli-
cations to hankel and Euclidean distance matrices,” Proc. American Control Conf., vol. 3, pp.
2156–2162, June 2003.

[7] B. Krishnapuram, L. Carin, M. Figueiredo, and A. Hartemink, “Sparse multinomial logistic
regression: Fast algorithms and generalization bounds,” IEEE Trans. Pattn Anal. Mach. Intell.,
vol. 27, pp. 957–968, 2005.

[8] D. Luenberger, Linear and Nonlinear Programming, Addison–Wesley, Reading, Massachusetts,
second edition, 1984.
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