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Abstract

We describe a new algorithmic framework for inference in probabilistic models,
and apply it to inference for latent Dirichlet allocation (LDA). Our framework
adopts the methodology of variational inference, but unlike existing variational
methods such as mean field and expectation propagation it is not restricted to
tractable classes of approximating distributions. Our approach can also be viewed
as a “population-based” sequential Monte Carlo (SMC) method, but unlike ex-
isting SMC methods there is no need to design the artificial sequence of dis-
tributions. Significantly, our framework offers a principled means to exchange
the variance of an importance sampling estimate for the bias incurred through
variational approximation. We conduct experiments on a difficult inference prob-
lem in population genetics, a problem that is related to inference for LDA. The
results of these experiments suggest that our method can offer improvements in
stability and accuracy over existing methods, and at a comparable cost.

1 Introduction

Over the past several decades, researchers in many different fields—statistics, economics, physics,
genetics and machine learning—have focused on coming up with more accurate and more efficient
approximate solutions to intractable probabilistic inference problems. To date, there are three
widely-explored approaches to approximate inference in probabilistic models: obtaining a Monte
Carlo estimate by simulating a Markov chain (MCMC); obtaining a Monte Carlo estimate by
drawing samples from a distribution other than the target then reweighting the samples to account
for any discrepancies (importance sampling); and variational inference, in which the original
integration problem is transformed into an optimization problem.

The variational approach in particular has attracted wide interest in the machine learning commu-
nity, and this interest has lead to a number of important innovations in approximate inference—
some of these more recent developments are described in the dissertations of Beal [3], Minka [22],
Ravikumar [27] and Wainwright [31]. The key idea behind variational inference is to come up
with a family of approximating distributions p(z;6) that have “nice” analytic properties, then to
optimize some criterion in order to find the distribution parameterized by 6 that most closely
matches the target posterior p(z). All variational inference algorithms, including belief propaga-
tion and its generalizations [32], expectation propagation [22] and mean field [19], can be derived
from a common objective, the Kullback-Leibler (K-L) divergence [9]. The major drawback of
variational methods is that the best approximating distribution may still impose an unrealistic or
questionable factorization, leading to excessively biased estimates (see Fig. 1, left-hand side).

In this paper, we describe a new variational method that does not have this limitation: it adopts the
methodology of variational inference without being restricted to tractable classes of approximate



distributions (see Fig. 1, right-hand side). The catch is that the variational objective (the K-L
divergence) is difficult to optimize because its gradient cannot be computed exactly. So to descend
along the surface of the variational objective, we propose to employ stochastic approximation [28]
with Monte Carlo estimates of the gradient, and update these estimates over time with sequential
Monte Carlo (SMC) [12]—hence, a stochastic approximation method for probabilistic inference.
Large gradient descent steps may quickly lead to a degenerate sample, so we introduce a mechanism
that safeguards the variance of the Monte Carlo estimate at each iteration (Sec. 3.5). This variance
safeguard mechanism does not make the standard effective sample size (ESS) approximation [14],
hence it is likely to more accurately monitor the variance of the sample.

Indirectly, the variance safeguard provides a way to obtain an
estimator that has low variance in exchange for (hopefully small)
bias. To our knowledge, our algorithm is the first general means

of achieving such a trade-off and, in so doing, it draws meaning- m==rT
ful connections between Monte Carlo and variational methods. __‘: -z I‘
The advantage of our stochastic approximation method with re- | Tractable P’°'“'“‘";F‘
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sumptions about their structure. However, whe advantage of our

approach compared to Monte Carlo methods such as annealed A=A

importance sampling (AIS) [24] is less obvious. One key ad- W, \‘

vantage is that there is no need to design the sequence of SMC ’ Sa=mTs
distributions as it is a direct product of the algorithm’s deriva- ,' "\
tion (Sec. 3). It is our conjecture that this automatic selection, 1 \
when combined with the variance safeguard, is more efficient “ ,'
than setting the sequence by hand, say, via tempered transitions ’
[12, 18, 24]. The population genetics experiments we conduct AN p(z) ,/’
in Sec. 4 provide some support for this claim. SSS <

We illustrate our approach on the problem of inferring pop-
ulation structure from a cohort of genotyped sequences using
the mixture model of Pritchard et al. [26]. We show in Sec. 4
that Markov chain Monte Carlo (MCMC) is prone to producing
very different answers in independent simulations, and that it
fails to adequately capture the uncertainty in its solutions. For
many population genetics applications, such as wildlife conser-
vation [8], it is crucial to accurately characterize the confidence
in a solution. Since variational methods employing mean field
approximations [4, 30] tend to be overconfident, they are poorly
suited for this problem. (This has generally not been an issue
for semantic text analysis [4, 15].) As we show, SMC with a
uniform sequence of tempered distributions fares little better than MCMC. The implementation of
our approach on the population structure model demonstrates improvements in both accuracy and
reliability over MCMC and SMC alternatives, and at a comparable computational cost.

Figure 1: The guiding princi-
ple behind standard variational
methods (zop) is to find the ap-
proximating density p(x;6) that
is closest to the distribution of
interest p(z), yet remains within
the defined set of tractable prob-
ability distributions. In our ap-
proach (bottom), the class of ap-
proximating densities always co-
incides with the target p(x).

The latent Dirichlet allocation (LDA) model [4] is very similar to the population structure model
of [26], under the assumption of fixed Dirichlet priors. Since LDA is already familiar to the
machine learning audience, it serves as a running example throughout our presentation.

1.1 Related work

The interface of optimization and simulation strategies for inference has been explored in a number
of papers, but none of the existing literature resembles the approach proposed in this paper. De
Freitas et al. [11] use a variational approximation to formulate a Metropolis-Hastings proposal. Re-
cent work on adaptive MCMC [1] combines ideas from both stochastic approximation and MCMC
to automatically learn better proposal distributions. Our work is also unrelated to the paper [20]
with a similar title, where stochastic approximation is applied to improving the Wang-Landau
algorithm. Younes [33] employs stochastic approximation to compute the maximum likelihood
estimate of an undirected graphical model. Also, the cross-entropy method [10] uses importance
sampling and optimization for inference, but exhibits no similarity to our work beyond that.



2 Latent Dirichlet allocation

Latent Dirichlet allocation (LDA) is a generative model of a collection of text documents, or corpus.
Its two key features are: the order of the words is unimportant, and each document is drawn from
a mixture of topics. Each document d = 1,...,D is expressed as a “bag” of words, and each
word wg; = j refers to a vocabulary item j € {1,...,W}. (Here we assume each document has
the same length N.) Also, each word has a latent topic indicator z4; € {1,..., K}. Observing
the jth vocabulary item in the kth topic occurs with probability 8;. The word proportions for
each topic are generated according to a Dirichlet distribution with fixed prior n. The latent topic
indicators are generated independently according to p(z4; =k | 74) = Tax, and 74 in turn follows a
Dirichlet with prior ». The generative process we just described defines a joint distribution over
the observed data w and unknowns x = {3, 7, z} given the hyperparameters {n, v}:

K D D N
plw,z|n,v) =[] pBsn) x [] p(ralv) < T] ] p(wai | zai, 8) p(zai | 7a), (D
k=1 d=1

d=11i=1
The directed graphical model is given in Fig. 2. :
Implementations of approximate inference in LDA include n ﬂ;& ke1.. K
MCMC [15, 26] and variational inference with a mean field N
approximation [4, 30]. The advantages of our inference ap- X
proach become clear when it is measured up against the ( )__>( —-O)—
variational mean field algorithm of [4]: first, we make no v T 2ai 22,
additional assumptions regarding the model’s factorization; i=1,...,N
second, the number of variational parameters is independent d—1...D

of the size of the corpus, so there is no need to resort to

coordinate-wise updates that are typically slow to converge. Figure 2: Directed graphical model
for LDA. Shaded nodes represent

.o . observations or fixed quantities.
3 Description of algorithm

The goal is to calculate the expectation of function ¢(x) with respect to target distribution p(z):
Ep)[p(X)] = [o(x) p(z) da. @)
In LDA, the target density p(x) is the posterior of x = {3, 7, z} given w derived via Bayes’ rule.

From the importance sampling identity [2], we can obtain an unbiased estimate of (2) by drawing
n samples from a proposal ¢(z) and evaluating importance weights w(x) = p(x)/q(z). (Usually
p(x) can only be evaluated up to a normalizing constant, in which case the asymptotically unbiased
normalized importance sampling estimator [2] is used instead.) The Monte Carlo estimator is

Ep(y[p(X)] = 5 i jw(@®) e(a). 3)

Unless great care is taken is in designing the proposal ¢(z), the Monte Carlo estimator will exhibit
astronomically high variance for all but the smallest problems.

Instead, we construct a Monte Carlo es- . —

timate (3) by replacing p(z) with an al- | ® Draw samples from initial density p(x;61).

ternate target p(x;0) that resembles it, so | ® for k = 2, 35.47 e )

that all importance weights are evaluated - Stochastic approximation step: take gradi-

with respect to this alternate target. (We ent descent step 0, = 01 — kg, where gi

elaborate on the exact form of p(z;6) in is a Monte Carlo estimate of the gradient of

Sec. 3.1.) This new estimator is biased, the K-L divergence, and «y is the variance-

but we minimize the bias by solving a vari- safeguarded step size. .

ational optimization problem. - SMC step: update samples and importance
weights to reflect new density p(z; 0y).

Our algorithm has a dual interpretation: it
can be interpreted as a stochastic approxi- Figure 3: Algorithm sketch.

mation algorithm for solving a variational

optimization problem, in which the iterates are the parameter vectors 6, and it can be equally
viewed as a sequential Monte Carlo (SMC) method [12], in which each distribution p(x; 6y ) in the



sequence is chosen dynamically based on samples from the previous iteration. The basic idea is
spelled out in Fig. 3. At each iteration, the algorithm selects a new target p(x; 6y) by optimizing
the variational objective. Next, the samples are revised in order to compute the stochastic gradient
gr+1 at the next iteration. Since SMC is effectively a framework for conducting importance sam-
pling over a sequence of distributions, we describe a “variance safeguard” mechanism (Sec. 3.5)
that directly regulates increases in variance at each step by preventing the iterates 65 from moving
too quickly. It is in this manner that we achieve a trade-off between bias and variance.

Since this is a stochastic approximation method, asymptotic convergence of 6, to a minimizer of
the objective is guaranteed under basic theory of stochastic approximation [29]. As we elaborate
below, this implies that p(x; 0)) will converge almost surely to the target distribution p(z) as k
approaches infinity. And asymptotic variance results from the SMC literature [12] tell us that the
Monte Carlo estimates will converge almost surely to the target expectation (2) so long as p(x; 6y)
approaches p(z). A crucial condition is that the stochastic estimates of the gradient be unbiased.
There is no way to guarantee unbiased estimates under a finite number of samples, so convergence
holds only as the number of iterations and number of samples both approach infinity.

To recap, the probabilistic inference recipe we propose has five main ingredients: one, a family
of approximating distributions that admits the target (Sec. 3.1); two, a variational optimization
problem framed using the K-L divergence measure (Sec. 3.2); three, a stochastic approximation
method for finding a solution to the variational optimization problem (Sec. 3.3); four, the imple-
mentation of a sequential Monte Carlo method for constructing stochastic estimates of the gradient
of the variational objective (Sec 3.4); and five, a way to safeguard the variance of the importance
weights at each iteration of the stochastic approximation algorithm (Sec. 3.5).

3.1 The family of approximating distributions

The first implementation step is the design of a family of approximating distributions p(x;6)
parameterized by vector €. In order to devise a useful variational inference procedure, the usual
strategy is to restrict the class of approximating distributions to those that factorize in an analytically
convenient fashion [4, 19] or, in the dual formulation, to introduce an approximate (but tractable)
decomposition of the entropy [32]. Here, we impose no such restrictions on tractability; refer
to Fig. 1. We allow any family of approximating distributions so long as it satisfies these three
conditions: 1.) there is at least one 6 = #; such that samples can be drawn from p(x; 6;); 2.) there
is a @ = 0* that recovers the target p(z;6*) = p(x), hence an unbiased estimate of (2); and 3.) the
densities are members of the exponential family [13] expressed in standard form

p(x; 0) = exp{{a(z),0) — c(0)}, 4)
in which (-, -) is an inner product, the vector-valued function a(x) is the statistic of z, and 6 is the
natural or canonical parameterization. The log-normalization factor ¢(0) = log [ exp(a(z), 8) dx
ensures that p(x;6) represents a proper probability. We further assume that the random vector
x can be partitioned into two sets A and B such that it is always possible to draw samples
from the conditionals p(z |zp;0) and p(xp | z4;60). Hidden Markov models, mixture models,
continuous-time Markov processes, and some Markov random fields are all models that satisfy
this condition. This extra condition could be removed without great difficulty, but doing so would
add several complications to the description of the algorithm. The restriction to the exponential
family is not a strong one as most conventionally-studied densities can be written in the form (4).

For LDA, we chose a family of approximating densities of the form
. D K K W
P(x;0) = exp { X5 ey (W + nar — 1) log T + Dy D5 (A — 1) 10g Bk

+ O3y Sy 108 Bry + VY key oy (¢ — mkg) log Bry — c(6) ), (5)
where my; = >, > . 0k(24i) 0j(wa;) counts the number of times the jth word is assigned to the
kth topic, ngr = ), 0x(z4;) counts the number of words assigned to the kth topic in the dth
document, and ¢; = Y, >, d;(wgq;) is is the number of times jth vocabulary item is observed.
The natural parameters are 0 = {7}, ¢, v}, with > 0. The target posterior p(z; 6*) x p(w,x |1, v)
is recovered by setting ¢ = 1, v = 0 and /) = . A sampling density with a tractable expression
for ¢(0) is recovered whenever we set ¢ equal to v. The graphical structure of LDA (Fig. 2) allows
us to draw samples from the conditionals p(3,7 | z;0) and p(z |3, 7;6). Loosely speaking, this
choice is meant to strike a balance between the mean field approximation [4] (with parameters
7Mk;) and the tempered distribution (with “local” temperature parameters ¢ and ).



3.2 The variational objective

The Kullback Leibler (K-L) divergence [9] asymmetrically measures the distance between the
target distribution p(z) = p(x;0*) and approximating distribution p(x;6),

F(0) = (Ep(..0)[a(X)],0 — 07) + c(67) — c(0), (6)
the optimal choice being # = 6*. This is our variational objective. The fact that we cannot compute
¢(0) poses no obstacle to optimizing the objective (6); through application of basic properties of
the exponential family, the gradient vector works out to be the matrix-vector product

VF(0) = Vary(.,g)[a(X)](0 — 67), 7
where Var[a(X)] is the covariance matrix of the statistic a(x). The real obstacle is the presence of
an integral in (7) that is most likely intractable. With a collection of samples x(*) with importance

weights w®), for s =1,...,n, that approximate p(x;6), we have the Monte Carlo estimate
VE() = S0, w (a(@) - a)(a(=)) —a)" (0 - 67), (8)

where @ = ) w(®)a(2(*)) denotes the Monte Carlo estimate of the mean statistic. Note that
these samples {x(s),w(s)} serve to estimate both the expectation (2) and the gradient (7). The
algorithm’s performance hinges on a good search direction, so it is worth our while to reduce the
variance of the gradient measurements when possible via Rao-Blackwellization [6]. Since we no
longer have an exact value for the gradient, we appeal to the theory of stochastic approximation.

3.3 Stochastic approximation

Instead of insisting on making progress toward a minimizer of f(6) at every iteration, as in
gradient descent, stochastic approximation only requires that progress be achieved on average.
The Robbins-Monro algorithm [28] iteratively adjusts the control variable 6 according to

Ok+1 = Ok — o gr, 9)
where gy, is a noisy observation of f(6y), and {ay} is a sequence of step sizes. Provided the
sequence of step sizes satisfies certain conditions, this algorithm is guaranteed to converge to the
solution f(6*) = 0; see [29]. In our case, f(0) = VF () = 0 is the first-order condition for an
unconstrained minimum. Due to poor conditioning, we advocate replacing the gradient descent
search direction Ay, = —gy in (9) by the quasi-Newton search direction A, = —B, ! gk, Where
By, is a damped quasi-Newton (BFGS) approximation of the Hessian [25]. To handle constraints
6 > 0 introduced in Sec. 3.1, we use the stochastic interior-point method of [5].

After having taken a step along A6y, the samples must be updated to reflect the new distribution
p(x;0k+1). To accomplish this feat, we use SMC [12] to sample from a sequence of distributions.

3.4 Sequential Monte Carlo

In the first step of SMC, samples x,(®) are drawn from a proposal density q;(z) = p(z;6;) so
that the initial importance weights are uniform. After k steps the proposal density is
Gr(T1:k) = Ki(r | 2)-1) - Ka(z2 | 21) P13 01), (10
where K (2’ | z) is the Markov kernel that extends the path at every iteration. The insight of [12] is
that if we choose the densities py(x1.;) wisely, we can update the importance weights Wy, (x1.5) =
Pr(z1.)/qr(x1.1) without having to look at the entire history. This special construction is
Pr(z1r) = La(zy |22) -+ - L1 (wk—1 | k) p(21; Ok), (11)
where we’ve introduced a series of artificial “backward” kernels Ly (x |z’). In this paper, the
sequence of distributions is determined by the iterates 6, so there remain two degrees of freedom:
the choice of forward kernel K (2’ | ), and the backward kernel L (x | ). From the assumptions
made in Sec. 3.1, a natural choice for the forward transition kernel is the two-stage Gibbs sampler,
Ky (2" | x) = p(aly | 253 O0k) (2 | 2.5 0), (12)
in which we first draw a sample of zp (in LDA, the variables 7 and () given x4 (the discrete
variables z), then update x4 conditioned on zp. A Rao-Blackwellized version of the sub-optimal
backward kernel [12] then leads to the following expression for updating the importance weights:
Wi (v1:1) = p(ra; 0k) /P(TA50K-1) X Wr—1(T1:6-1), (13)
where x4 is the component from time step k& — 1 restricted to the set A, and p(x 4;0y) is the
unnormalized version of the marginal p(x 4; 0y ). It also follows from earlier assumptions (Sec 3.1)
that it is always possible to compute p(x 4;8). Refer to [15] for the marginal of z for LDA.



3.5 Safeguarding the variance e Letn, 01, 0*, A, B, {a} be given.
A key component of the algorithm is a mecha- | ® Dra\y z(®) ~ 13(1’_;91)7 set w(s? = 1./71-
nism that enables the practitioner to regulate the | ® Set inverse Hessian H to the identity.
variance of the importance weights and, by exten- | © for £ =2,3,4,...
sion, the variance of the Monte Carlo estimate of L. .Compute gr = VFE _(ek—l)Q see ($)~
E[p(X)]. The trouble with taking a full step (9) 2. if k> 2, thep modify H following
is that the Gibbs kernel (12) may be unable to damped quaS}—Newton update.
effectively migrate the particles toward the new 3. Cpmpute v§r1aqce-safeguarded step
target, in which case the the importance weights size ay < dy, given Al = —Hgy.
will overcompensate for this failure, quickly lead- 4. Set O = Op—1 + arAby.
ing to a degenerate population. The remedy we 5. Update w'®) following (13).
propose is to find a step size oy, that satisfies 6. Run the two-stage Gibbs sampler:
BSk(0k) < Sk—1(0k—1), (14) - Draw o) ~ (- |25; 6).
for 8 € [0, 1], whereby a 3 near 1 leads to a strin- - Draw IE:) ~p(- |$g); ).
gent safeguard, and we’ve defined 7. Resample particles, if necessary.
Sk(0k) = X, (g (247) — L2 as) Figure 4: The proposed algorithm.

to be the sample variance (x n) for our choice of L(z | «'). Note that since our variance safeguard
scheme is myopic, the behaviour of the algorithm can be sensitive to the number of iterations.

The safeguarded step size is derived as follows. The goal is to find the largest step size oy
satisfying (14). Forming a Taylor-series expansion with second-order terms about the point o, = 0,
the safeguarded step size is the solution to

LAOTV2 S (0k—1) Abpad + ATV Sk (0—1) o, = 5281 (011), (16)

where A6y, is the search direction at iteration k. In our experience, the quadratic approximation to
the importance weights (13) was unstable as it occasionally recommended strange step sizes, but
a naive importance weight update without Rao-Blackwellization yielded a reliable bound on (14).
The derivatives of S (6x) work out to sample estimates of second and third moments that can be
computed in O(n) time. Since the importance weights initially have zero variance, no positive
step size will satisfy (14). We propose to also permit step sizes that do not drive the ESS below a
factor £ € (0, 1) from the optimal sample. Resampling will still be necessary over long sequences
to prevent the population from degenerating. The basic algorithm is summarized in Fig. 4.

.. ] ] population
4 Application to population genetics text corpus structure
Microsatellite genetic markers have been used to determine the dotc (;1 nilcesnts & m(g;f;als
genealogy of human populations, and to assess individuals’ an- lan lila os loci
cestry in inferring disease risks [16]. The problem is that all Vo cfbuﬁi ry alleles

these tasks require defining a priori population structure. The
Bayesian model of Pritchard et al. [26] offers a solution to this
conundrum by simultaneously identifying both patterns of pop-
ulation subdivision and the ancestry of individuals from highly
variable genetic markers. This model is the same as LDA assuming fixed Dirichlet priors and
a single genetic marker; see Fig. 5 for the connection between the two domains. This model,
however, can be frustrating to work with because independent MCMC simulations can produce
remarkably different answers for the same data, even simulations millions of samples long. Such
inference challenges have been observed in other mixture models [7]; MCMC can do a poor job
exploring the hypothesis space when there are several divergent hypotheses that explain the data.

Figure 5: Correspondence be-
tween LDA [4] and the popula-
tion structure [26] models.

Method. We used the software CoaSim [21] to simulate the evolution of genetic markers following
a coalescent process. The coalescent is a lineage of alleles in a sample traced backward in time to
their common ancestor allele, and the coalescent process is the stochastic process that generates
the genealogy [17]. We introduced divergence events at various coalescent times (see Fig. 6) so
that we ended up with 4 isolated populations. We simulated 10 microsatellite markers each with
a maximum of 30 alleles. We simulated the markers twice with scaled mutation rates of 2 and
%, and for each rate we simulated 60 samples from the coalescent process (15 diploid individuals
from each of the 4 populations). These samples are the words w in LDA. This may not seem like
a large data set, but it will be large enough to impose major challenges to approximate inference.
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Figure 7: Variance in estimates of the admixture distance and admixture level taken over 20 trials.

The goal is to obtain posterior estimates that re- 0 -

cover the correct population structure (Fig. 6)and | ~~~ """/ T TS r=2

exhibit high agreement in independent simula-

tions. Specifically, the goal is to recover the mo-

ments of two statistics: the admixture distance,a | ___ L T e

measure of two individuals’ dissimilarity in their

ancestry, and the admixture level where O means | __L__________ /o __ .o ____. T_1

an individual’s alleles all come from a single pop- ’

ulation, and 1 means its ancestry is shared equally T=0

among the K populations. The admixture dis- M N N Ny

tance between individuals d and d’ is Figure 6: The structured coalescent process

K with divergence events at coalescent times 1" =

(Ta;Tar) = 5 2y [Tak — Tarkl, a7 o, %,1,2. The width of the branches represents

and the admixture level of the dth individual is  effective population size, and the arrow points
backward in time. The present isolated popu-

— K K 1
P(ra) =1 - AK-T) Yet|Tak — %[ (8) lations are labeled left-to-right 1 through 4.

We compared our algorithm to MCMC as implemented in the software STRUCTURE [26], and to
another SMC algorithm, annealed importance sampling (AIS) [24], with a uniform tempering
schedule. One possible limitation of our study is that the choice of temperature scehdule can be
critical to the success of AIS, and we did not thoroughly investigate alternative schedules. Also,
note that our intent was not to present an exhaustive comparison of Monte Carlo methods, so we
did not compare to population MCMC [18], for example, which has advantages similar to AIS.

For the two data sets, and for each K from 2 to 6 (the most appropriate setting being K = 4), we
carried out 20 independent trials of the three methods. For fair comparison, we ran the methods
with the same number of sampling events: for MCMC, a Markov chain of length 50,000 and
burn-in of 10,000; for both SMC methods, 100 particles and 500 iterations. Additional settings
included an ESS threshold of 50, maximum step sizes ay = 1/(1 + k)%°, centering parameters
o, = 1/k%9 for the stochastic interior-point method, safeguards 3 = 0.95 and ¢ = 0.9, and a
quasi-Newton damping factor of 0.75. We set the initial iterate of stochastic approximation to
¢ =~ = fy; = nj. We used uniform Dirichlet priors 7 = v = 0.1 throughout.

Results. First let’s examine the variance in the answers. Fig. 7 shows the variance in the estimates
of the admixture level and admixture distance over the independent trials. To produce these plots,
at every K we took the individual d or pair (d,d’) that exhibited the most variance in the estimate
of E[¢(14,74)] and E[¢(r4)]. What we observe is that the stochastic approximation method
produced significantly more consistent estimates in almost all cases, whereas AIS offered little or
no improvement over MCMC. The next step is to examine the accuracy of these answers.

Fig. 8 shows estimates from MCMC and stochastic approximation selected trials under a mutation
rate of % and K = 4 (left-hand side), and under a mutation rate of 2 and K = 3 (right-hand side).
The trials were chosen to reflect the extent of variation in the answers. The mean and standard
deviation of the admixture distance statistic are drawn as matrices. The 60 rows and 60 columns in
each matrix correspond to individuals sorted by their true population label; the rows and columns
are ordered so that they correspond to the populations 1 through 4 in Fig. 6. In each “mean” matrix,
a light square means that two individuals share little ancestry in common, and a dark square means
that two individuals have similar ancestry. In each “std. dev.” matrix, the darker the square, the
higher the variance. In the first trial (zop-left), the MCMC algorithm mostly recovered the correct
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Figure 8: Estimated mean and standard deviation (“std. dev.”) of the admixture distance statistic for
two independent trials and at two different simulation settings. See the text for a full explanation.

population structure; i.e. it successfully assigned individuals to their coalescent populations based
on the sampled alleles w. As expected, the individuals from populations 3 and 4 were hardest
to distinguish, hence the high standard deviation in the bottom-right entries of the matrix. The
results of the second trial are less satisfying: MCMC failed to distinguish between individuals
from populations 3 and 4, and it decided rather arbitrarily to partition the samples originating from
population 2. In all these experiments, AIS exhibited behaviour that was very similar to MCMC.

Under the same conditions, our algorithm (bottom-left) failed to distinguish between the third and
fourth populations. The trials, however, are more consistent and do not mislead by placing high
confidence in these answers; observe the large number of dark squares in the bottom-right portion
of the “std. dev.” matrix. This evidence suggests that these trials are more representative of
the true posterior because the MCMC trials are inconsistent and occasionally spurious (trial #2).
This trend is repeated in the more challenging inference scenario with K = 3 and a mutation
rate of 2 (right-hand side). MCMC, as before, exhibited a great deal of variance in its estimates
of the admixture distance: the estimates from the first trial are very accurate, but the second
trial strangely failed to distinguish between populations 1 and 2, and did not correctly assign the
individuals in populations 3 and 4. What’s worse, MCMC placed disproportionate confidence in
these estimates. The stochastic approximation method also exhibited some variance under these
conditions, but importantly it did not place nearly so much confidence in its solutions; observe the
high standard deviation in the matrix entries corresponding to the individuals from population 3.

5 Conclusions and discussion

In this paper, we proposed a new approach to probabilistic inference grounded on variational,
Monte Carlo and stochastic approximation methodology. We demonstrated that our sophisticated
method pays off in terms of producing more consistent, reliable estimates for a real and challenging
inference problem in population genetics. Some of the components such as the variance safeguard
have not been independently validated, so we cannot fully attest to how critical they are, at least
beyond the motivation we already gave. More standard tricks, such as Rao-Blackwellization, were
explicitly included to demonstrate that well-known techniques from the Monte Carlo literature
apply without modification to our algorithm. We have argued for the generality of our inference
approach, but ultimately the success of our scheme hinges on a good choice of the variational
approximation. Thus, it remains to be seen how well our results extend to probabilistic graphical
models beyond LDA, and how much ingenuity will be required to achieve favourable outcomes.

Another critical issue, as we mentioned in Sec. 3.5, is the sensitivity of our method to the number
of iterations. This issue is related to the bias-variance trade-off, and in the future we would like to
explore more principled ways to formulate this trade-off, in the process reducing this sensitivity.
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