
Non-stationary continuous dynamic
Bayesian networks

Marco Grzegorczyk
Department of Statistics, TU Dortmund University, 44221 Dortmund, Germany

grzegorczyk@statistik.tu-dortmund.de

Dirk Husmeier
Biomathematics & Statistics Scotland (BioSS)

JCMB, The King’s Buildings, Edinburgh EH93JZ, United Kingdom
dirk@bioss.ac.uk

Abstract

Dynamic Bayesian networks have been applied widely to reconstruct the structure
of regulatory processes from time series data. The standardapproach is based on
the assumption of a homogeneous Markov chain, which is not valid in many real-
world scenarios. Recent research efforts addressing this shortcoming have con-
sidered undirected graphs, directed graphs for discretized data, or over-flexible
models that lack any information sharing among time series segments. In the
present article, we propose a non-stationary dynamic Bayesian network for con-
tinuous data, in which parameters are allowed to vary among segments, and in
which a common network structure provides essential information sharing across
segments. Our model is based on a Bayesian multiple change-point process, where
the number and location of the change-points is sampled fromthe posterior distri-
bution.

1 Introduction

There has recently been considerable interest in structurelearning of Bayesian networks. Exam-
ples from the topical field of systems biology are the reconstruction of transcriptional regulatory
networks from gene expression data [1], the inference of signal transduction pathways from pro-
tein concentrations [2], and the identification of neural information flow operating in the brains of
songbirds [3]. In particular, dynamic Bayesian networks (DBNs) have been applied, as they allow
feedback loops and recurrent regulatory structures to be modelled while avoiding the ambiguity
about edge directions common to static Bayesian networks. The standard assumption underpinning
DBNs is that of stationarity: time-series data are assumed to have been generated from a homoge-
neous Markov process. However, regulatory interactions and signal transduction processes in the
cell are usually adaptive and change in response to externalstimuli. Likewise, neural information
flow slowly adapts via Hebbian learning to make the processing of sensory information more ef-
ficient. The assumption of stationarity is therefore too restrictive in many circumstances, and can
potentially lead to erroneous conclusions.

In the recent past, various research efforts have addressedthis issue and proposed models that relax
the stationarity assumption. Talih and Hengartner [4] proposed a time-varying Gaussian graphical
model (GGM), in which the time-varying variance structure of the data was inferred with reversible
jump (RJ) Markov chain Monte Carlo (MCMC). A limitation of this approach is that changes of the
network structure between different segments are restricted to changing at most a single edge, and
the total number of segments is assumed known a priori. Xuan and Murphy [5] developed a related
non-stationary GGM based on a product partition model. The method allows for separate structures
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Proposed Robinson & L̀ebre Grzegorcyk Ko et al.
here Hartemink (2009) (2008) et al. (2008) (2007)

Score Marginal Marginal Marginal Marginal BIC
Likelihood Likelihood Likelihood Likelihood

Change- node whole node whole node
points specific network specific network specific
Structure Yes No No Yes Yes
constant
Data format Continuous Discrete Continuous Continuous Continuous
Latent Change-point Change-point Change-point Free Free
variables process process process allocation allocation

Table 1: Overview of how our model compares with various related, recently published models.

in different segments, where the number of structures is inferred from the data. The inference
algorithm iterates between a convex optimization for determining the graph structure and a dynamic
programming algorithm for calculating the segmentation. The latter aspect imposes restrictions on
the graph structure (decomposability), though. Moreover,both the models of [4] and [5] are based
on undirected graphs, whereas most processes in systems biology, like neural information flow,
signal transduction and transcriptional regulation, are intrinsically of a directed nature. To address
this shortcoming, Robinson and Hartemink [6] and Lébre [7] proposed a non-stationary dynamic
Bayesian network. Both methods allow for different networkstructures in different segments of the
time series, where the location of the change-points and thetotal number of segments are inferred
from the data with RJMCMC. The essential difference betweenthe two methods is that the model
proposed in [6] is a non-stationary version of the BDe score [8], which requires the data to be
discretized. The method proposed in [7] is based on the Bayesian linear regression model of [9],
which avoids the need for data discretization.

Allowing the network structure to change between segments leads to a highly flexible model. How-
ever, this approach faces a conceptual and a practical problem. Thepractical problem is potential
model over-flexibility1. Owing to the high costs of postgenomic high-throughput experiments, time
series in systems biology are typically rather short. Modelling short time series segments with sep-
arate network structures will almost inevitably lead to inflated inference uncertainty, which calls
for some information sharing between the segments. Theconceptualproblem is related to the very
premise of a flexible network structure. This assumption is reasonable for some scenarios, like mor-
phogenesis, where the different segments are e.g. associated with the embryonic, larval, pupal, and
adult stages of fruit fly (as discussed in [6]). However, for most cellular processes on a shorter time
scale, it is questionable whether it is the structure ratherthan just the strength of the regulatory in-
teractions that changes with time. To use the analogy of the traffic flow network invoked in [6]: it
is not the road system (the network structure) that changes between off-peak and rush hours, but the
intensity of the traffic flow (the strength of the interactions). In the same vein, it is not the ability of
a transcription factor to potentially bind to the promoter of a gene and thereby initiate transcription
(the interaction structure), but the extent to which this happens (the interaction strength).

The objective of the present work is to propose and assess a non-stationary continuous-valued DBN
that introduces information sharing among different time series segments via a constrained structure.
Our model is non-stationary with respect to the parameters,while the network structure is kept fixed
among segments. Our model complements the one proposed in [6] in two other aspects: the score
is a non-stationary generalization of the BGe [10] rather than the BDe score, thus avoiding the need
for data discretization, and the patterns of non-stationarity are node-specific, thereby providing extra
model flexibility. Our work is based on [11], [12], and [13]. Like [11], our model is effectively a
mixture of BGe models. We replace the free allocation model of [11] by a change-point process
to incorporate our prior notion that adjacent time points ina time series are likely to be governed
by similar distributions. We borrow from [12] the concept ofnode-specific change-points to enable
greater model flexibility. However, as opposed to [12], we donot approximate the scoring function
by BIC [14], but compute the proper marginal likelihood. Theobjective of inference is to infer the

1Note that as opposed to [7], [6] partially addresses this issue via a prior distribution that discourages
changes in the network structure.
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location and the node-specific number of change-points fromthe posterior distribution. An overview
of how our method is related to various recently published related models is provided in Table 1.

2 Methodology

2.1 The dynamic BGe network

DBNs are flexible models for representing probabilistic relationships between interacting variables
(nodes)X1, . . . ,XN via a directed graphG. An edge pointing fromXi to Xj indicates that the
realization ofXj at time pointt, symbolically:Xj(t), is conditionally dependent on the realization
of Xi at time pointt−1, symbolically:Xi(t−1). The parent node set of nodeXn in G, πn = πn(G),
is the set of all nodes from which an edge points to nodeXn in G. Given a data setD, whereDn,t

andD(πn,t) are thetth realizationsXn(t) andπn(t) of Xn andπn, respectively, and1 ≤ t ≤ m
represents time, DBNs are based on the following homogeneous Markov chain expansion:

P (D|G,θ) =
N
∏

n=1

m
∏

t=2

P
(

Xn(t) = Dn,t|πn(t − 1) = D(πn,t−1),θn

)

(1)

whereθ is the total parameter vector, composed of node-specific subvectorsθn, which specify
the local conditional distributions in the factorization.From Eq. (1) and under the assumption of
parameter independence,P (θ|G) =

∏

n P (θn|G), the marginal likelihood is given by

P (D|G) =

∫

P (D|G,θ)P (θ|G)dθ =

N
∏

n=1

Ψ(Dπn

n ,G) (2)

Ψ(Dπn

n ,G) =

∫ m
∏

t=2

P
(

Xn(t) = Dn,t|πn(t − 1) = D(πn,t−1),θn

)

P (θn|G)dθn (3)

whereDπn
n := {(Dn,t,Dπn,t−1) : 2 ≤ t ≤ m} is the subset of data pertaining to nodeXn

and parent setπn. We choose a linear Gaussian distribution for the local conditional distribution
P (Xn|πn,θn) in Eq.(1). Under fairly weak regularity conditions discussed in [10] (parameter mod-
ularity and conjugacy of the prior2), the integral in Eq. (3) has a closed form solution, given by
Eq. (24) in [10]. The resulting expression is called the BGe score3.

2.2 The non-stationary dynamic change-point BGe model (cpBGe)

To obtain a non-stationary DBN, we generalize Eq. (1) with a node-specific mixture model:

P (D|G,V,K,θ) =

N
∏

n=1

m
∏

t=2

Kn
∏

k=1

P
(

Xn(t) = Dn,t|πn(t − 1) = D(πn,t−1),θ
k
n

)δVn(t),k

(4)

whereδVn(t),k is the Kronecker delta,V is a matrix of latent variablesVn(t), Vn(t) = k indicates
that the realization of nodeXn at time t, Xn(t), has been generated by thekth component of a
mixture withKn components, andK = (K1, . . . ,Kn). Note that the matrixV divides the data
into several disjoined subsets, each of which can be regarded as pertaining to a separate BGe model
with parametersθk

n. The vectorsVn are node-specific, i.e. different nodes can have different break-
points. The probability model defined in Eq.(4) is effectively a mixture model with local probability
distributionsP (Xn|πn,θk

n) and it can hence, under a free allocation of the latent variables, approx-
imate any probability distribution arbitrarily closely. In the present work, we change the assignment
of data points to mixture components from a free allocation to a change-point process. This effec-
tively reduces the complexity of the latent variable space and incorporates our prior belief that, in a

2The conjugate prior is a normal-Wishart distribution. For the present study, we chose the hyperparameters
of this distribution maximally uninformative subject to the regularity conditionsdiscussed in [10].

3The score equivalence aspect of the BGe model is not required for DBNs, because edge reversals are not
permissible. However, formulating our method in terms of the BGe score isadvantageous when adapting the
proposed framework to non-linear static Bayesian networks along the lines of [12].
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time series, adjacent time points are likely to be assigned to the same component. From Eq. (4), the
marginal likelihood conditional on the latent variablesV is given by

P (D|G,V,K)=

∫

P (D|G,V,K,θ)P (θ)dθ =
N
∏

n=1

Kn
∏

k=1

Ψ(Dπn

n [k,Vn],G) (5)

Ψ(Dπn

n [k,Vn],G)=

∫ m
∏

t=2

P
(

Xn(t) = Dn,t|πn(t − 1) = D(πn,t−1),θ
k
n

)δVn(t),k

P (θk
n|G)dθ

k
n (6)

Eq. (6) is similar to Eq. (3), except that it is restricted to the subsetDπn
n [k,Vn] :=

{(Dn,t,Dπn,t−1) : Vn(t) = k, 2 ≤ t ≤ m}. Hence when the regularity conditions defined in
[10] are satisfied, then the expression in Eq.(6) has a closed-form solution: it is given by Eq. (24) in
[10] restricted to the subset of the data that has been assigned to thekth mixture component (orkth
segment). The joint probability distribution of the proposed cpBGe model is given by:

P (G,V,K,D) = P (D|G,V,K) · P (G) · P (V|K) · P (K)

= P (G) ·
N
∏

n=1

{

{P (Vn|Kn) · P (Kn) ·
Kn
∏

k=1

Ψ(Dπn

n [k,Vn],G)

}

(7)

In the absence of genuine prior knowledge about the regulatory network structure, we assume for
P (G) a uniform distribution on graphs, subject to a fan-in restriction of |πn| ≤ 3. As prior prob-
ability distributions on the node-specific numbers of mixture componentsKn, P (Kn), we take iid
truncated Poisson distributions with shape parameterλ = 1, restricted to1 ≤ Kn ≤ KMAX

(we setKMAX = 10 in our simulations). The prior distribution on the latent variable vectors,
P (V|K) =

∏N
n=1{P (Vn|Kn), is implicitly defined via the change-point process as follows. We

identifyKn with Kn−1 change-pointsbn = {bn,1, . . . , bn,Kn−1} on the continuous interval[2,m].
For notational convenience we introduce the pseudo change-pointsbn,0 = 2 andbn,Kn

= m. For
nodeXn the observation at time pointt is assigned to thekth component, symbolicallyVn(t) = k,
if bn,k−1 ≤ t < bn,k. Following [15] we assume that the change-points are distributed as the even-
numbered order statistics ofL := 2(Kn − 1) + 1 pointsu1, . . . , uL uniformly and independently
distributed on the interval[2,m]. The motivation for this prior, instead of takingKn uniformly
distributed points, is to encouragea priori an equal spacing between the change-points, i.e. to
discourage mixture components (i.e. segments) that contain only a few observations. The even-
numbered order statistics prior on the change-point locationsbn induces a prior distribution on the
node-specific allocation vectorsVn. Deriving a closed-form expression is involved. However, the
MCMC scheme we discuss in the next section does not sampleVn directly, but is based on local
modifications ofVn based on birth, death and reallocation moves. All that is required for the ac-
ceptance probabilities of these moves areP (Vn|Kn) ratios, which are straightforward to compute.

2.3 MCMC inference

We now describe an MCMC algorithm to obtain a sample{Gi,Vi,Ki}i=1,...,I from the posterior
distributionP (G,V,K|D) ∝ P (G,V,K,D) of Eq. (7). We combine the structure MCMC algo-
rithm4 [17, 18] with the change-point model used in [15], and draw onthe fact that conditional on
the allocation vectorsV, the model parameters can be integrated out to obtain the marginal like-
lihood termsΨ(Dπn

n [k,Vn],G) in closed form, as shown in the previous section. Note that this
approach is equivalent to the idea underlying the allocation sampler proposed in [13]. The resulting
algorithm is effectively an RJMCMC scheme [15] in the discrete space of network structures and
latent allocation vectors, where the Jacobian in the acceptance criterion is always 1 and can be omit-
ted. With probabilitypG = 0.5 we perform a structure MCMC move on the current graphGi and
leave the latent variable matrix and the numbers of mixture components unchanged, symbolically:
V

i+1 = V
i andK

i+1 = K
i. A new candidate graphGi+1 is randomly drawn out of the set of

graphsN (Gi) that can be reached from the current graphGi by deletion or addition of a single edge.
The proposed graphGi+1 is accepted with probability:

A(Gi+1|Gi) = min

{

1,
P (D|Gi+1,Vi,Ki)

P (D|Gi,Vi,Ki)

P (Gi+1)

P (Gi)

|N (Gi)|

|N (Gi+1)|

}

(8)

4An MCMC algorithm based on Eq.(10) in [16] is computationally less efficient than when applied to static
Bayesian networks or stationary DBNs, since the local scores would have to be re-computed every time the
positions of the change-points change.
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Figure 1: Networks from which synthetic data were generated. Panels (a-c) show elementary
network motifs [20]. Panel (d) shows a protein signal transduction network studied in [2], with an
added feedback loop on the root node.

where|.| is the cardinality, and the marginal likelihood terms have been specified in Eq. (5). The
graph is left unchanged, symbolicallyGi+1 := Gi, if the move is not accepted.

With the complementary probability1 − pG we leave the graphGi unchanged and perform a move
on (Vi,Ki), whereV

i
n is the latent variable vector ofXn in V

i, andK
i = (Ki

1, . . . ,K
i
N ). We

randomly select a nodeXn and change its current number of componentsKi
n via a change-point

birth or death move, or its latent variable vectorV
i
n by a change-point re-allocation move. The

change-point birth (death) move increases (decreases)Ki
n by 1 and may also have an effect onV

i
n.

The change-point reallocation move leavesKi
n unchanged and may have an effect onV

i
n. Under

fairly mild regularity conditions (ergodicity), the MCMC sampling scheme converges to the desired
posterior distribution if the acceptance probabilities for the three change-point moves(Ki

n,Vi
n) →

(Ki+1
n ,Vi+1

n ) are chosen of the formmin(1, R), see [15], with

R =

∏K
i+1
n

k=1 Ψ(Dπn
n [k,Vi+1

n ],G)
∏Ki

n

k=1 Ψ(Dπn
n [k,Vi

n],G)
× A × B (9)

whereA = P (Vi+1
n |Ki+1

n )P (Ki+1
n )/P (Vi

n|K
i
n)P (Ki

n) is the prior probability ratio, andB is the
inverse proposal probability ratio. The exact form of thesefactors depends on the move type and
is provided in the supplementary material. We note that the implementation of the dynamic pro-
gramming scheme proposed in [19] has the prospect to improvethe convergence and mixing of the
Markov chain, which we will investigate in our future work.

3 Results on synthetic data

To assess the performance of the proposed model, we applied it to a set of synthetic data generated
from different networks, as shown in Figure 1. The structures in Figure panels 1a-c constitute
elementary network motifs, as studied e.g. in [20]. The network in Figure 1d was extracted from
the systems biology literature [2] and represents a well-studied protein signal transduction pathway.
We added an extra feedback loop on the root node to allow the generation of a Markov chain with
non-zero autocorrelation; note that this modification is not biologically implausible [21].

We generated data with a mixture of piece-wise linear processes and sinusoidal transfer functions.
The advantage of the first approach is the exact knowledge of the true process change-points; the
second approach is more realistic (smooth function) with a stronger mismatch between model and
data-generation mechanism. For example, the network in Figure 1c was modelled as

X(t + 1) = φX(t); Y (t + 1) = φY (t); W (t + 1) = W (t) +
2π

m
+ cW · φW (t)

Z(t + 1) = cX · X(t) + cY · Y (t) + ·sin(W (t)) + cZ · φZ(t + 1) (10)

where theφ.(.) are iid standard Normally distributed. We employed different valuescX = cY ∈
{0.25, 0.5} and cZ , cW ∈ {0.25, 0.5, 1} to vary the signal-to-noise ratio and the amount of au-
tocorrelation inW . For each parameter configuration, 25 time series with 41 time points where
independently generated. For the other networks, data weregenerated in a similar way. Owing
to space restrictions, the complete model specifications have to be relegated to the supplementary
material.
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cpBGe vs. . . . (a) (b) (c) (d)
. . . vs. Grz. et al. 0.753 <0.0001 <0.0001 0.013
. . . vs. Ko et al. <0.0001 0.074 <0.0001 0.002
. . . vs. BGe <0.0001 <0.0001 <0.0001 0.060
. . . vs. BDe <0.0001 <0.0001 <0.0001 <0.0001

Figure 2:Comparison of AUC scores on the synthetic data. The panels (a-d) correspond to those
of Figure 1. The horizontal axis in each panel represents theproposed cpBGe model. The vertical
axis represents the following competing models: BDe (△), BGe (⊔), the method of Ko et al. [12]
(©), and the method of Grzegorczyk et al. [11] (⋆), adapted as described in the text. Different sym-
bols of the same shape correspond to different signal-to-noise ratios (SNR) and autocorrelation times
(ACT). Each symbol shows a comparison of two average AUC scores, averaged over 25 (panels a-
c) or 5 (panel d) time series independently generated for a given SNR/ACT setting. The diagonal
line indicates equal performance; symbols below this linesindicate that the proposed cpBGe model
outperforms the competing model. The table in the bottom shows an overview of the corresponding
p-values obtained from a two-sided paired t-test with Bonferroni correction. For all but three cases
the cpBGe model outperforms the competing model at the standard5% significance level.

To each data set, we applied the proposed cpBGe model as described in Section 2. We compared its
performance with four alternative schemes. We chose the classical stationary DBNs based on BDe
[8] and BGe [10]. Note that for these models the parameters can be integrated out analytically, and
only the network structure has to be learned. The latter was sampled from the posterior distribution
with structure MCMC [17, 18]. Note that the BDe model requires discretized data, which we ef-
fected with the information bottleneck algorithm [22]. Ourcomparative evaluation also included two
non-linear/non-stationary models with a clearly defined network structure (for the sake of compara-
bility with our approach). We chose the method of Ko et al. [12] for its flexibility and comparative
ease of implementation. The inference scheme is based on theapplication of the EM algorithm [23]
to a node-specific mixture model subject to a BIC penalty term[14]. We implemented this algorithm
according to the authors’ specification in MATLABc©, using the software package NETLAB [24].
We also compared our model with the approach proposed by Grzegorczyk et al. [11]. We applied the
software available from the authors’ website. We replaced the authors’ free allocation model by the
change-point process used for our model. This was motivatedby the fact that for a fair comparison,
the same prior knowledge about the data structure (time series) should be used. In all other aspects
we applied the method as described in [11]. All MCMC simulations were divided into a burn-in and
a sampling phase, where the length of the burn-in phase was chosen such that standard convergence
criteria based on potential scale reduction factors [25] were met. The software implementations of
all methods used in our study are available upon request. Forlack of space, further details have to
be relegated to the supplementary material.

To assess the network reconstruction accuracy, various criteria have been proposed in the litera-
ture. In the present study, we chose receiver-operator-characteristic (ROC) curves computed from
the marginal posterior probabilities of the edges (and the ranking thereby induced). Owing to the
large number of simulations – for each network and parametersetting the simulations were repeated
on 25 (Figures 2a-c) or 5 (Figures 2d) independently generated time series – we summarized the
performance by the area under the curve (AUC), ranging between 0.5 (expected random predictor)
to 1.0 (perfect predictor). The results are shown in Figure 2and suggest that the proposed cpBGe
model tends to significantly outperform the competing models. A more detailed analysis with an
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Figure 3:Results on the Arabidopsis gene expression time series. Top panels:Average posterior
probability of a change-point (vertical axis) at a specific transition time plotted against the transition
time (horizontal axis) for two selected circadian genes (left: LHY, centre: TOC1) and averaged over
all 9 genes (right). The vertical dotted lines indicate the boundaries of the time series segments,
which are related to different entrainment conditions and time intervals.Bottom left and centre pan-
els: Co-allocation matrices for the two selected genes LHY and TOC1. The axes represent time.
The grey shading indicates the posterior probability of twotime points being assigned to the same
mixture component, ranging from 0 (black) to 1 (white).Bottom right panel:Predicted regulatory
network of nine circadian genes inArabidopsis thaliana. Empty circles represent morning genes.
Shaded circles represent evening genes. Edges indicate predicted interactions with a marginal pos-
terior probability greater than 0.5.

investigation of how the signal-to-noise ratio and the autocorrelation parameters effect the relative
performance of the methods has to be relegated to the supplementary material for lack of space.

4 Results on Arabidopsis gene expression time series

We have applied our method to microarray gene expression time series related to the study of cir-
cadian regulation in plants.Arabidopsis thalianaseedlings, grown under artificially controlledTe-
hour-light/Te-hour-dark cycles, were transferred to constant light and harvested at 13 time points in
τ -hour intervals. From these seedlings, RNA was extracted and assayed on Affymetrix GeneChip
oligonucleotide arrays. The data were background-corrected and normalized according to standard
procedures5, using the GeneSpringc© software (Agilent Technologies). We combined four time se-
ries, which differed with respect to the pre-experiment entrainment condition and the time intervals:
Te ∈ {10h, 12h, 14h}, andτ ∈ {2h, 4h}. The data, with detailed information about the experi-
mental protocols, can be obtained from [27], [11], and [28].We focused our analysis on 9 circadian
genes6 (i.e. genes involved in circadian regulation). We combinedall four time series into a single
set. The objective was to test whether the proposed cpBGe model would detect the different experi-
mental phases. Since the gene expression values at the first time point of a time series segment have
no relation with the expression values at the last time pointof the preceding segment, the corre-
sponding boundary time points were appropriately removed from the data7. This ensures that for all
pairs of consecutive time points a proper conditional dependence relation determined by the nature
of the regulatory cellular processes is given. The top panelof Figure 3 shows the marginal posterior

5We used RMA rather than GCRMA for reasons discussed in [26].
6These 9 circadian genes are LHY, TOC1, CCA1, ELF4, ELF3, GI, PRR9, PRR5, and PRR3.
7A proper mathematical treatment is given in Section 3 of the supplementarymaterial.
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probability of a change-point for two selected genes (LHY and TOC1), and averaged over all genes.
It is seen that the three concatenation points are clearly detected. There is a slight difference between
the heights of the posterior probability peaks for LHY and TOC1. This behaviour is also captured by
the co-allocation matrices in the bottom row of Figure 3. This deviation indicates that the two genes
are effected by the changing experimental conditions (entrainment, time interval) in different ways
and thus provides a useful tool for further exploratory analysis. The bottom right panel of Figure 3
shows the gene interaction network that is predicted when keeping all edges with marginal posterior
probability above 0.5. There are two groups of genes. Empty circles in the figure represent morning
genes (i.e. genes whose expression peaks in the morning), shaded circles represent evening genes
(i.e. genes whose expression peaks in the evening). There are several directed edges pointing from
the group of morning genes to the evening genes, mostly originating from gene CCA1. This result
is consistent with the findings in [29], where the morning genes were found to activate the evening
genes, with CCA1 being a central regulator. Our reconstructed network also contains edges pointing
into the opposite direction, from the evening genes back to the morning genes. This finding is also
consistent with [29], where the evening genes were found to inhibit the morning genes via a negative
feedback loop. In the reconstructed network, the connectivity within the group of evening genes is
sparser than within the group of morning genes. This finding is consistent with the fact that follow-
ing the light-dark cycle entrainment, the experiments werecarried out in constant-light condition,
resulting in a higher activity of the morning genes overall.Within the group of evening genes, the
reconstructed network contains an edge between GI and TOC1.This interaction has been confirmed
in [30]. Hence while a proper evaluation of the reconstruction accuracy is currently unfeasible –
like [6] and many related studies, we lack a gold-standard owing to the unknown nature of the true
interaction network – our study suggests that the essentialfeatures of the reconstructed network are
biologically plausible and consistent with the literature.

5 Discussion

We have proposed a continuous-valued non-stationary dynamic Bayesian network, which constitutes
a non-stationary generalization of the BGe model. This complements the work of [6], where a
non-stationary BDe model was proposed. We have argued that aflexible networkstructurecan
lead to practical and conceptual problems, and we thereforeonly allow theparametersto vary
with time. We have presented a comparative evaluation of thenetwork reconstruction accuracy
on synthetic data. Note that such a study is missing from recent related studies on this topic, like [6]
and [7], presumably because their overall network structure is not properly defined. Our findings
suggest that the proposed non-stationary BGe model achieves a clear performance improvement
over the classical stationary models BDe and BGe as well as over the non-linear/non-stationary
models of [12] and [11]. The application of our model to gene expression time series from circadian
clock-regulated genes inArabidopsis thalianahas led to a plausible data segmentation, and the
reconstructed network shows features that are consistent with the biological literature.

The proposed model is based on a multiple change-point process. This scheme provides the ap-
proximation of a non-linear regulation process by a piecewise linear process under the assumption
that the temporal processes are sufficiently smooth. A straightforward modification would be the
replacement of the change-point process by the allocation model of [13] and [11]. This modification
would result in a fully-flexible mixture model, which is preferable if the smoothness assumption for
the temporal processes is violated. It would also provide a non-linear Bayesian network for static
rather than time series data. While the algorithmic implementation is straightforward, the increased
complexity of the latent variable configuration space wouldintroduce additional challenges for the
mixing and convergence properties of the MCMC sampler. The development of more effective pro-
posal moves, as well as a comparison with alternative non-linear Bayesian network models, like
[31], is a promising subject for future research.
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