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Abstract

Dynamic Bayesian networks have been applied widely to reicoct the structure
of regulatory processes from time series data. The starafgtbach is based on
the assumption of a homogeneous Markov chain, which is ot wamany real-
world scenarios. Recent research efforts addressing tioikcoming have con-
sidered undirected graphs, directed graphs for discitiiaa, or over-flexible
models that lack any information sharing among time serégggnents. In the
present article, we propose a non-stationary dynamic Bayesetwork for con-
tinuous data, in which parameters are allowed to vary ameggnents, and in
which a common network structure provides essential infdiom sharing across
segments. Our model is based on a Bayesian multiple chamigeppocess, where
the number and location of the change-points is sampled fiherposterior distri-
bution.

1 Introduction

There has recently been considerable interest in struttaraing of Bayesian networks. Exam-
ples from the topical field of systems biology are the recmmsion of transcriptional regulatory
networks from gene expression data [1], the inference afaditransduction pathways from pro-
tein concentrations [2], and the identification of neurdimation flow operating in the brains of
songbirds [3]. In particular, dynamic Bayesian network83) have been applied, as they allow
feedback loops and recurrent regulatory structures to bdetterd while avoiding the ambiguity
about edge directions common to static Bayesian networs.sTandard assumption underpinning
DBNs is that of stationarity: time-series data are assurodwve been generated from a homoge-
neous Markov process. However, regulatory interactiordsagnal transduction processes in the
cell are usually adaptive and change in response to extstinalli. Likewise, neural information
flow slowly adapts via Hebbian learning to make the proceggssinsensory information more ef-
ficient. The assumption of stationarity is therefore todrieve in many circumstances, and can
potentially lead to erroneous conclusions.

In the recent past, various research efforts have addréisiseidsue and proposed models that relax
the stationarity assumption. Talih and Hengartner [4] pemal a time-varying Gaussian graphical
model (GGM), in which the time-varying variance structuféhe data was inferred with reversible

jump (RJ) Markov chain Monte Carlo (MCMC). A limitation ofithapproach is that changes of the
network structure between different segments are resttiti changing at most a single edge, and
the total number of segments is assumed known a priori. Xadrivurphy [5] developed a related

non-stationary GGM based on a product partition model. Ththod allows for separate structures



Proposed Robinson & ébre Grzegorcyk Ko et al.
here Hartemink (2009) (2008) et al. (2008) (2007)
Score Marginal Marginal Marginal Marginal BIC
Likelihood Likelihood Likelihood Likelihood
Change- node whole node whole node
points specific network specific network specific
Structure Yes No No Yes Yes
constant
Data format| Continuous Discrete Continuous Continuous  Continuous
Latent Change-point Change-point Change-point Free Free
variables process process process allocation allocation

Table 1: Overview of how our model compares with variousteslarecently published models.

in different segments, where the number of structures isrial from the data. The inference
algorithm iterates between a convex optimization for dateing the graph structure and a dynamic
programming algorithm for calculating the segmentatiohe Tatter aspect imposes restrictions on
the graph structure (decomposability), though. Moredbveth the models of [4] and [5] are based
on undirected graphs, whereas most processes in systefogypitike neural information flow,
signal transduction and transcriptional regulation, atdrisically of a directed nature. To address
this shortcoming, Robinson and Hartemink [6] angbke [7] proposed a non-stationary dynamic
Bayesian network. Both methods allow for different netwsitkictures in different segments of the
time series, where the location of the change-points andotiaé number of segments are inferred
from the data with RIMCMC. The essential difference betwibertwo methods is that the model
proposed in [6] is a non-stationary version of the BDe sc@ie hich requires the data to be
discretized. The method proposed in [7] is based on the Baydigear regression model of [9],
which avoids the need for data discretization.

Allowing the network structure to change between segmesidd to a highly flexible model. How-
ever, this approach faces a conceptual and a practicalgarobl'hepractical problem is potential
model over-flexibility. Owing to the high costs of postgenomic high-throughpuegixpents, time
series in systems biology are typically rather short. Mtdglshort time series segments with sep-
arate network structures will almost inevitably lead toatdld inference uncertainty, which calls
for some information sharing between the segments. cbmeeptuabroblem is related to the very
premise of a flexible network structure. This assumptioe&sonable for some scenarios, like mor-
phogenesis, where the different segments are e.g. asbeiith the embryonic, larval, pupal, and
adult stages of fruit fly (as discussed in [6]). However, faratncellular processes on a shorter time
scale, it is questionable whether it is the structure rathan just the strength of the regulatory in-
teractions that changes with time. To use the analogy ofr#igctflow network invoked in [6]: it

is not the road system (the network structure) that changeegden off-peak and rush hours, but the
intensity of the traffic flow (the strength of the interact®nin the same vein, it is not the ability of
a transcription factor to potentially bind to the promotéagene and thereby initiate transcription
(the interaction structure), but the extent to which thipfens (the interaction strength).

The objective of the present work is to propose and assess-atationary continuous-valued DBN
that introduces information sharing among different tiragess segments via a constrained structure.
Our model is non-stationary with respect to the parametdgnge the network structure is kept fixed
among segments. Our model complements the one proposelliintjo other aspects: the score
is a non-stationary generalization of the BGe [10] rathantthe BDe score, thus avoiding the need
for data discretization, and the patterns of non-statibnare node-specific, thereby providing extra
model flexibility. Our work is based on [11], [12], and [13]ike [11], our model is effectively a
mixture of BGe models. We replace the free allocation mod¢ld] by a change-point process
to incorporate our prior notion that adjacent time pointaitime series are likely to be governed
by similar distributions. We borrow from [12] the conceptrafde-specific change-points to enable
greater model flexibility. However, as opposed to [12], wendbapproximate the scoring function
by BIC [14], but compute the proper marginal likelihood. Tdtgective of inference is to infer the

!Note that as opposed to [7], [6] partially addresses this issue via a pgswibdtion that discourages
changes in the network structure.



location and the node-specific number of change-points frenposterior distribution. An overview
of how our method is related to various recently publishdateel models is provided in Table 1.

2 Methodology

2.1 Thedynamic BGe network

DBNs are flexible models for representing probabilisti@ti@inships between interacting variables
(nodes)X, ..., Xy via a directed grapl§. An edge pointing fromX; to X; indicates that the
realization ofX; at time pointt, symbolically: X;(¢), is conditionally dependent on the realization
of X; attime pointt— 1, symbolically: X;(¢—1). The parent node set of nodg, in G, m,, = m,,(G),

is the set of all nodes from which an edge points to n&gein G. Given a data seb, whereD,, ,
andD,, . are thetth realizationsX, (¢) and,(t) of X,, andr,, respectively, and < ¢t < m
represents time, DBNs are based on the following homogenklaukov chain expansion:

P(D|G, 6) H HP(X = Dyt — 1) = D(ﬂmt_l),0n> @)

n=1t=2

where @ is the total parameter vector, composed of node-specifieestibrsd,,, which specify
the local conditional distributions in the factorizatioRrom Eq. (1) and under the assumption of
parameter independencg(0|G) = [],, P(6,|G), the marginal likelihood is given by

P(Ig) = [ P(DIG.O)PBIG) Hw’w )
v(Dp,G) = /HP(X”(t):D,,,,t\ﬁn(t_n Dis, 11,0, ) P(6,10)0,  (3)
t=2

whereDl» = {(Dn,Dx,—1) : 2 < t < m} is the subset of data pertaining to nodeg,
and parent set,,. We choose a linear Gaussian distribution for the local @@mydhl distribution

P(X, |7, 0,) in Eq.(1). Under fairly weak regularlty conditions disceadsn [10] (parameter mod-
ularity and conjugacy of the pridy, the integral in Eq. (3) has a closed form solution, given by
Eqg. (24) in [10]. The resulting expression is called the BCare.

2.2 Thenon-stationary dynamic change-point BGe modd (cpBGe)

To obtain a non-stationary DBN, we generalize Eq. (1) witloderspecific mixture model:

N m K,

P(DIG,V,K,8) = H H H P(Xn<t) = Dplmp(t—1) = D(ﬂn,tﬂ),eﬁ)&/’z(t)’k 4)

n=1t=2 k=1

wheredy, 1)« is the Kronecker deltay is a matrix of latent variable¥;, (¢), V,,(t) = k indicates
that the realization of nod&,, at time¢, X,,(t), has been generated by théh component of a
mixture with KC,, components, an& = (K4,...,X,). Note that the matriXy divides the data
into several disjoined subsets, each of which can be redasipertaining to a separate BGe model
with parameter@,’,j. The vectorsV,, are node-specific, i.e. different nodes can have differezals
points. The probability model defined in Eq.(4) is effectjve mixture model with local probability
distributionsP(X,,|7,,, %) and it can hence, under a free allocation of the latent viesalapprox-
imate any probability distribution arbitrarily closelyn the present work, we change the assignment
of data points to mixture components from a free allocatma thange-point process. This effec-
tively reduces the complexity of the latent variable spawiacorporates our prior belief that, in a

The conjugate prior is a normal-Wishart distribution. For the presenystuelchose the hyperparameters
of this distribution maximally uninformative subject to the regularity conditidissussed in [10].

3The score equivalence aspect of the BGe model is not requiredBbdisDbecause edge reversals are not
permissible. However, formulating our method in terms of the BGe scadvantageous when adapting the
proposed framework to non-linear static Bayesian networks along tredir{é2].



time series, adjacent time points are likely to be assigad¢de same component. From Eq. (4), the
marginal likelihood conditional on the latent variabMds given by
N Kn

P(D|Q,V,K):/ (DG, V,K,0)P =[] I @5k, V2], 6) (5)
n=1k=1
W(DT [k, V] / HP = Dyslma(t— 1) = Dir, 1), 05) " P65 G)d6% (6)

Eq. (6) is similar to Eq. (3), except that it is restricted toetsubsetDr"[k,V,] :=
{(Dnt,Dr,1—1) : Vu(t) = k,2 < t < m}. Hence when the regularity conditions defined in
[10] are satisfied, then the expression in Eq.(6) has a clfimed solution: it is given by Eq. (24) in
[10] restricted to the subset of the data that has been assigrthekth mixture component (akth
segment). The joint probability distribution of the propdcpBGe model is given by:

P(G.V.K,D) = P(D|G,V.K)-P(G) P(VIK)-P(K)
N Kn

= P(g)- H {{P(ancn) - P(Ky) - H v(Dyr [k,Vn],g)} (1)
n=1 k=1

In the absence of genuine prior knowledge about the regylatetwork structure, we assume for
P(G) a uniform distribution on graphs, subject to a fan-in resion of |r,,| < 3. As prior prob-
ability distributions on the node-specific numbers of migtaomponent«’,,, P(K,,), we take iid
truncated Poisson distributions with shape paramater 1, restricted tol < K, < Kpax
(we setKyprax = 10 in our simulations). The prior distribution on the latentriable vectors,
P(VIK) = Hﬁlvzl{P(VnUCn), is implicitly defined via the change-point process as fatio We
identify IC,, with /C,, — 1 change-pointby,, = {b, 1, ..., b, k, —1} ONn the continuous intervét, m].
For notational convenience we introduce the pseudo changﬂsb o0 = 2andb, g, = m. For
nodeX,, the observation at time pointis assigned to thkth component, symbohcally’n( ) =k,

if brk—1 <t < by, . Following [15] we assume that the change-points are Oisied as the even-
numbered order statistics @f := 2(K,, — 1) + 1 pointsuy, . .., u,s uniformly and independently
distributed on the interval2, m|. The motivation for this prior, instead of taking,, uniformly
distributed points, is to encouragepriori an equal spacing between the change-points, i.e. to
discourage mixture components (i.e. segments) that cootay a few observations. The even-
numbered order statistics prior on the change-point looath,, induces a prior distribution on the
node-specific allocation vectohs,,. Deriving a closed-form expression is involved. Howevke t
MCMC scheme we discuss in the next section does not saWpldirectly, but is based on local
modifications ofV,, based on birth, death and reallocation moves. All that isiired for the ac-
ceptance probabilities of these moves B(&/,,|/C,,) ratios, which are straightforward to compute.

2.3 MCMC inference

We now describe an MCMC algorithm to obtain a samf@é, Vi, K*},_; ; from the posterior
distribution P(G, V,K|D) « P(G,V,K, D) of Eq. (7). We combine the structure MCMC algo-
rithm? [17, 18] with the change-point model used in [15], and dravitenfact that conditional on
the allocation vectord/, the model parameters can be integrated out to obtain thgimaatike-
lihood terms¥ (D [k, V,,],G) in closed form, as shown in the previous section. Note that th
approach is equivalent to the idea underlying the allocagempler proposed in [13]. The resulting
algorithm is effectively an RIMCMC scheme [15] in the diserspace of network structures and
latent allocation vectors, where the Jacobian in the aeoeptcriterion is always 1 and can be omit-
ted. With probabilityp; = 0.5 we perform a structure MCMC move on the current grgprand
leave the latent variable matrix and the numbers of mixtem@monents unchanged, symbolically:
Vitl = Vi andK*! = K'. A new candidate grapgi** is randomly drawn out of the set of
graphs\V/(G?) that can be reached from the current grgjptiy deletion or addition of a single edge.
The proposed grapfii ™ is accepted with probability:
1+1 7 7 H—l

P(DIG", VI, K) P( D) |N<gl+1>|

4An MCMC algorithm based on Eq.(10) in [16] is computationally less effidiean when applied to static

Bayesian networks or stationary DBNs, since the local scores woulg teabe re-computed every time the
positions of the change-points change.

(8)
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Figure 1: Networks from which synthetic data were generated. Panels (a-c) show elementary
network motifs [20]. Panel (d) shows a protein signal tramsin network studied in [2], with an
added feedback loop on the root node.

where|.| is the cardinality, and the marginal likelihood terms haeem specified in Eq. (5). The
graph is left unchanged, symbolicallj+! := G, if the move is not accepted.

With the complementary probability — pc we leave the grapf’ unchanged and perform a move
on (Vi K'), whereV? is the latent variable vector of,, in V¢, andK! = (K¢,...,K%). We
randomly select a nod&,, and change its current number of componegjsvia a change-point
birth or death move, or its latent variable vecldf, by a change-point re-allocation move. The
change-point birth (death) move increases (decredSesy 1 and may also have an effect ¥,.
The change-point reallocation move leavés unchanged and may have an effectVéfy. Under
fairly mild regularity conditions (ergodicity), the MCMGaspling scheme converges to the desired
posterior distribution if the acceptance probabilitiestfre three change-point movés: Vi) —
(K1, Vitl) are chosen of the formin(1, R), see [15], with
Kt T i+1

R = k}ll \P(Dn [k7V7L ]ag) x Ax B (9)

k1 Y(Dr [k, V3], 9)

whereA = P(ViFLKCHL) P(KEFL) /P(VE|KE) P(KL) s the prior probability ratio, ands is the
inverse proposal probability ratio. The exact form of thésetors depends on the move type and
is provided in the supplementary material. We note that thyglémentation of the dynamic pro-
gramming scheme proposed in [19] has the prospect to imghaveonvergence and mixing of the
Markov chain, which we will investigate in our future work.

3 Resultson synthetic data

To assess the performance of the proposed model, we applied set of synthetic data generated
from different networks, as shown in Figure 1. The struciuire Figure panels la-c constitute
elementary network motifs, as studied e.g. in [20]. The woetwn Figure 1d was extracted from
the systems biology literature [2] and represents a walllisd protein signal transduction pathway.
We added an extra feedback loop on the root node to allow therggon of a Markov chain with
non-zero autocorrelation; note that this modification isliologically implausible [21].

We generated data with a mixture of piece-wise linear peegsind sinusoidal transfer functions.
The advantage of the first approach is the exact knowledgeeofrtie process change-points; the
second approach is more realistic (smooth function) wittrenger mismatch between model and
data-generation mechanism. For example, the network iar€ijc was modelled as

X(t+1) = 6x(r YE+1) = oyt WE+1) = W+ + e ow(?)
Z(t+1) = cx X(t) + ey Y(t) + -sin(Wt) +cz - ¢zt +1) (10)

where theg (.) are iid standard Normally distributed. We employed différealuescx = ¢y €
{0.25,0.5} andcz, e € {0.25,0.5,1} to vary the signal-to-noise ratio and the amount of au-
tocorrelation inW¥. For each parameter configuration, 25 time series with 4% fimints where
independently generated. For the other networks, data gemerated in a similar way. Owing
to space restrictions, the complete model specificatione t@abe relegated to the supplementary
material.
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Figure 2:Comparison of AUC scoreson the synthetic data. The panels (a-d) correspond to those
of Figure 1. The horizontal axis in each panel representptbposed cpBGe model. The vertical
axis represents the following competing models: BR¢g,(BGe (), the method of Ko et al. [12]
(0), and the method of Grzegorczyk et al. [11],(adapted as described in the text. Different sym-
bols of the same shape correspond to different signal-teematios (SNR) and autocorrelation times
(ACT). Each symbol shows a comparison of two average AUCes;@veraged over 25 (panels a-
c) or 5 (panel d) time series independently generated fov@ngBNR/ACT setting. The diagonal
line indicates equal performance; symbols below this lindgcate that the proposed cpBGe model
outperforms the competing model. The table in the bottormvsten overview of the corresponding
p-values obtained from a two-sided paired t-test with Boof@ correction. For all but three cases
the cpBGe model outperforms the competing model at the atdié significance level.

To each data set, we applied the proposed cpBGe model aghdekicr Section 2. We compared its
performance with four alternative schemes. We chose tlssicial stationary DBNs based on BDe
[8] and BGe [10]. Note that for these models the parametardedntegrated out analytically, and
only the network structure has to be learned. The latter wagpted from the posterior distribution
with structure MCMC [17, 18]. Note that the BDe model reqsidiscretized data, which we ef-
fected with the information bottleneck algorithm [22]. Guamparative evaluation also included two
non-linear/non-stationary models with a clearly definetivoek structure (for the sake of compara-
bility with our approach). We chose the method of Ko et al.] fb2 its flexibility and comparative
ease of implementation. The inference scheme is based @pgeation of the EM algorithm [23]
to a node-specific mixture model subject to a BIC penalty fddh We implemented this algorithm
according to the authors’ specification in MATLAB, using the software package NETLAB [24].
We also compared our model with the approach proposed bygGrezyk et al. [11]. We applied the
software available from the authors’ website. We replabedauthors’ free allocation model by the
change-point process used for our model. This was motidaete fact that for a fair comparison,
the same prior knowledge about the data structure (timeseshould be used. In all other aspects
we applied the method as described in [11]. All MCMC simula$ were divided into a burn-in and
a sampling phase, where the length of the burn-in phase ves&ntsuch that standard convergence
criteria based on potential scale reduction factors [25feweet. The software implementations of
all methods used in our study are available upon requestlaEkrof space, further details have to
be relegated to the supplementary material.

To assess the network reconstruction accuracy, varioterierihave been proposed in the litera-
ture. In the present study, we chose receiver-operataactexistic (ROC) curves computed from
the marginal posterior probabilities of the edges (and #mking thereby induced). Owing to the
large number of simulations — for each network and paransetiting the simulations were repeated
on 25 (Figures 2a-c) or 5 (Figures 2d) independently geedritne series — we summarized the
performance by the area under the curve (AUC), ranging betve5 (expected random predictor)
to 1.0 (perfect predictor). The results are shown in Figuen@ suggest that the proposed cpBGe
model tends to significantly outperform the competing msdé{ more detailed analysis with an
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Figure 3:Results on the Arabidopsis gene expression time series. Top panels:Average posterior
probability of a change-point (vertical axis) at a specifimsition time plotted against the transition
time (horizontal axis) for two selected circadian geneft:(leHY, centre: TOC1) and averaged over
all 9 genes (right). The vertical dotted lines indicate tloiidaries of the time series segments,
which are related to different entrainment conditions amgktintervals .Bottom left and centre pan-
els: Co-allocation matrices for the two selected genes LHY an€TIOThe axes represent time.
The grey shading indicates the posterior probability of timee points being assigned to the same
mixture component, ranging from 0 (black) to 1 (whit&ottom right panel:Predicted regulatory
network of nine circadian genes iArabidopsis thaliana Empty circles represent morning genes.
Shaded circles represent evening genes. Edges indicatieteinteractions with a marginal pos-
terior probability greater than 0.5.

investigation of how the signal-to-noise ratio and the aatmelation parameters effect the relative
performance of the methods has to be relegated to the supptary material for lack of space.

4 Resultson Arabidopsis gene expression time series

We have applied our method to microarray gene expressiom simies related to the study of cir-
cadian regulation in plantérabidopsis thalianaeedlings, grown under artificially controll&d-
hour-light/I'.-hour-dark cycles, were transferred to constant light aandésted at 13 time points in
7-hour intervals. From these seedlings, RNA was extractedassayed on Affymetrix GeneChip
oligonucleotide arrays. The data were background-caeteahd normalized according to standard
procedurey using the GeneSpri@ software (Agilent Technologies). We combined four time se-
ries, which differed with respect to the pre-experiment&niment condition and the time intervals:
T. € {10h,12h,14h}, andT € {2h,4h}. The data, with detailed information about the experi-
mental protocols, can be obtained from [27], [11], and [28§ focused our analysis on 9 circadian
genet (i.e. genes involved in circadian regulation). We combiattdour time series into a single
set. The objective was to test whether the proposed cpBGelmaalild detect the different experi-
mental phases. Since the gene expression values at thenfegtoint of a time series segment have
no relation with the expression values at the last time poirthe preceding segment, the corre-
sponding boundary time points were appropriately removeah the data This ensures that for all
pairs of consecutive time points a proper conditional depece relation determined by the nature
of the regulatory cellular processes is given. The top pahElgure 3 shows the marginal posterior

SWe used RMA rather than GCRMA for reasons discussed in [26].
5These 9 circadian genes are LHY, TOC1, CCA1, ELF4, ELF3, GIl, ZFRRS5, and PRRS3.
A proper mathematical treatment is given in Section 3 of the supplememizbsrial.



probability of a change-point for two selected genes (LHY a@C1), and averaged over all genes.
Itis seen that the three concatenation points are clearfctisl. There is a slight difference between
the heights of the posterior probability peaks for LHY andd This behaviour is also captured by
the co-allocation matrices in the bottom row of Figure 3.sTthéviation indicates that the two genes
are effected by the changing experimental conditions &mirent, time interval) in different ways
and thus provides a useful tool for further exploratory gsigl. The bottom right panel of Figure 3
shows the gene interaction network that is predicted whepikg all edges with marginal posterior
probability above 0.5. There are two groups of genes. Emipties in the figure represent morning
genes (i.e. genes whose expression peaks in the morniragledltircles represent evening genes
(i.e. genes whose expression peaks in the evening). Themeweral directed edges pointing from
the group of morning genes to the evening genes, mostlynaiigig from gene CCA1. This result
is consistent with the findings in [29], where the morning gewere found to activate the evening
genes, with CCA1 being a central regulator. Our reconstdinetwork also contains edges pointing
into the opposite direction, from the evening genes backéanorning genes. This finding is also
consistent with [29], where the evening genes were founalibit the morning genes via a negative
feedback loop. In the reconstructed network, the connigctivithin the group of evening genes is
sparser than within the group of morning genes. This findingpihsistent with the fact that follow-
ing the light-dark cycle entrainment, the experiments wangied out in constant-light condition,
resulting in a higher activity of the morning genes oversliithin the group of evening genes, the
reconstructed network contains an edge between Gl and TOi@i4 interaction has been confirmed
in [30]. Hence while a proper evaluation of the reconstattaccuracy is currently unfeasible —
like [6] and many related studies, we lack a gold-standarshgwo the unknown nature of the true
interaction network — our study suggests that the essdatifilires of the reconstructed network are
biologically plausible and consistent with the literature

5 Discussion

We have proposed a continuous-valued non-stationary digridayesian network, which constitutes
a non-stationary generalization of the BGe model. This dempnts the work of [6], where a
non-stationary BDe model was proposed. We have argued tfiakible networkstructurecan
lead to practical and conceptual problems, and we therafohg allow the parametersto vary
with time. We have presented a comparative evaluation ofh#tesork reconstruction accuracy
on synthetic data. Note that such a study is missing frormtaedated studies on this topic, like [6]
and [7], presumably because their overall network strectsimot properly defined. Our findings
suggest that the proposed non-stationary BGe model acheewdear performance improvement
over the classical stationary models BDe and BGe as well as ttwe non-linear/non-stationary
models of [12] and [11]. The application of our model to gergression time series from circadian
clock-regulated genes iArabidopsis thalianahas led to a plausible data segmentation, and the
reconstructed network shows features that are consistiémtive biological literature.

The proposed model is based on a multiple change-point gsoc€his scheme provides the ap-
proximation of a non-linear regulation process by a pieseWinear process under the assumption
that the temporal processes are sufficiently smooth. Agdttiirward modification would be the
replacement of the change-point process by the allocatmatetrof [13] and [11]. This modification
would result in a fully-flexible mixture model, which is pegfible if the smoothness assumption for
the temporal processes is violated. It would also provideralmear Bayesian network for static
rather than time series data. While the algorithmic impletaigon is straightforward, the increased
complexity of the latent variable configuration space wdatdoduce additional challenges for the
mixing and convergence properties of the MCMC sampler. Twelbpment of more effective pro-
posal moves, as well as a comparison with alternative nweal Bayesian network models, like
[31], is a promising subject for future research.
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