
Directed Regression

Yi-hao Kao
Stanford University
Stanford, CA 94305

yihaokao@stanford.edu

Benjamin Van Roy
Stanford University
Stanford, CA 94305

bvr@stanford.edu

Xiang Yan
Stanford University
Stanford, CA 94305

xyan@stanford.edu

Abstract

When used to guide decisions, linear regression analysis typically involves esti-
mation of regression coefficients via ordinary least squares and their subsequent
use to make decisions. When there are multiple response variables and features
do not perfectly capture their relationships, it is beneficial to account for the de-
cision objective when computing regression coefficients. Empirical optimization
does so but sacrifices performance when features are well-chosen or training data
are insufficient. We propose directed regression, an efficient algorithm that com-
bines merits of ordinary least squares and empirical optimization. We demonstrate
through a computational study that directed regression can generate significant
performance gains over either alternative. We also develop a theory that motivates
the algorithm.

1 Introduction

When used to guide decision-making, linear regression analysis typically treats estimation of re-
gression coefficients separately from their use to make decisions. In particular, estimation is carried
out via ordinary least squares (OLS) without consideration of the decision objective. The regression
coefficients are then used to optimize decisions.

When there are multiple response variables and features do not perfectly capture their relationships,
it is beneficial to account for the decision objective when computing regression coefficients. Im-
perfections in feature selection are common since it is difficult to identify the right features and the
number of features is typically restricted in order to avoid over-fitting.

Empirical optimization (EO) is an alternative to OLS which selects coefficients that minimize em-
pirical loss in the training data. Though it accounts for the decision objective when computing
regression coefficients, EO sacrifices performance when features are well-chosen or training data is
insufficient.

In this paper, we propose a new algorithm – directed regression (DR) – which is a hybrid between
OLS and EO. DR selects coefficients that are a convex combination of those that would be se-
lected by OLS and those by EO. The weights of OLS and EO coefficients are optimized via cross-
validation.

We study DR for the case of decision problems with quadratic objective functions. The algorithm
takes as input a training set of data pairs, each consisting of feature vectors and response variables,
together with a quadratic loss function that depends on decision variables and response variables.
Regression coefficients are computed for subsequent use in decision-making. Each future decision
depends on newly sampled feature vectors and is made prior to observing response variables with
the goal of minimizing expected loss.

We present computational results demonstrating that DR can substantially outperform both OLS and
EO. These results are for synthetic problems with regression models that include subsets of relevant

1



features. In some cases, OLS and EO deliver comparable performance while DR reduces expected
loss by about 20%. In none of the cases considered does either OLS or EO outperform DR.

We also develop a theory that motivates DR. This theory is based on a model in which selected
features do not perfectly capture relationships among response variables. We prove that, for this
model, the optimal vector of coefficients is a convex combination of those that would be generated
by OLS and EO.

2 Linear Regression for Decision-Making

Suppose we are given a set of training data pairs O = {(x(1), y(1)), · · · , (x(N), y(N))}. Each nth
data pair is comprised of feature vectors x

(n)
1 , . . . , x

(n)
K ∈ <M and a vector y(n) ∈ <M of response

variables. We would like to compute regression coefficients r ∈ <K so that given a data pair (x, y),
the linear combination

∑
k rkxk of feature vectors estimates the expectation of y conditioned on x.

We restrict attention to cases where M > 1, with special interest in problems where M is large,
because it is in such situations that DR offers the largest performance gains.

We consider a setting where the regression model is used to guide future decisions. In particular,
after computing regression coefficients, each time we observe feature vectors x1, . . . , xK we will
have to select a decision u ∈ <L before observing the response vector y. The choice incurs a loss

`(u, y) = u>G1u + u>G2y,

where the matrices G1 ∈ <L×L and G2 ∈ <L×M are known, and the former is positive definite and
symmetric. We aim to minimize expected loss, assuming that the conditional expectation of y given
x is

∑K
k=1 rkxk. As such, given x and r, we select a decision

ur(x) = argmin
u

`

(
u,

K∑

k=1

rkxk

)
= −1

2
G−1

1 G2

K∑

k=1

rkxk.

The question is how best to compute the regression coefficients r for this purpose.

To motivate the setting we have described, we offer a hypothetical application.

Example 1. Consider an Internet banner ad campaign that targets M classes of customers. An
average revenue of ym is received per customer of class m that the campaign reaches. This quantity
is random and influenced by K observable factors x1m, . . . , xKm. These factors may be correlated
across customers classes; for example, they could capture customer preferences as they relate to
ad content or how current economic conditions affect customers. For each mth class, the cost of
reaching the umth customer increases with um because ads are first targeted at customers that can
be reached at lower cost. This cost is quadratic, so that we pay γmu2

m to reach um customers, where
γm is a known constant.

The application we have described fits our general problem context. It is natural to predict the
response vector y using a linear combination

∑
k rkxk of factors with the regression coefficients

rk computed based on past observations O = {(x(1), y(1)), · · · , (x(N), y(N))}. The goal is to
maximize expected revenue less advertising costs. This gives rise to a loss function that is quadratic
in u and y:

`(u, y) =
M∑

m=1

(γmu2
m − umym).

One might ask why not construct M separate linear regression models, one for each response vari-
able, each with a separate set of K coefficients. The reason is that this gives rise to MK coefficients;
when M is large and data is limited, this could lead to over-fitting. Models of the sort we consider,
where regression coefficients are shared across multiple response variables, are sometimes referred
to as general linear models and have seen a wide range of applications [7, 8]. It is well-known
that the quality of results is highly sensitive to the choice of features, even more so than for models
involving a single response variable [7].

2



3 Algorithms

Ordinary least squares (OLS) is a conventional approach to computing regression coefficients. This
would produce a coefficient vector

rOLS = argmin
r∈<K

N∑
n=1

∥∥∥∥∥y(n) −
K∑

k=1

rkx
(n)
k

∥∥∥∥∥

2

. (1)

Note that OLS does not take the decision objective into account when computing regression coeffi-
cients. Empirical optimization (EO), as studied for example in [2, 6], offers an alternative that does
so. This approach minimizes empirical loss on the training data:

rEO = argmin
r∈<K

N∑
n=1

`(ur(x(n)), y(n)). (2)

Note that EO does not explicitly aim to estimate the conditional expectation of the response vector.
Instead it focusses on decision loss that would be incurred with the training data. Both rOLS and
rEO can be computed efficiently by minimizing convex quadratic functions.

As we will see in our computational and theoretical analyses, OLS and EO can be viewed as two
extremes, each offering room for improvement. In this paper, we propose an alternative algorithm
– directed regression (DR) – which produces a convex combination rDR = (1 − λ)rOLS + λrEO

of coefficients computed by OLS and EO. The term directed is chosen to indicate that DR is influ-
enced by the decision objective though, unlike EO, it does not simply minimize empirical loss. The
parameter λ ∈ [0, 1] is computed via cross-validation, with an objective of minimizing average loss
on validation data. Average loss is a convex quadratic function of λ, and therefore can be easily
minimized over λ ∈ [0, 1].

DR is designed to generate decisions that are more robust to imperfections in feature selection than
OLS. As such, DR addresses issues similar to those that have motivated work in data-driven robust
optimization, as surveyed in [3]. Our focus on making good decisions despite modeling inaccuracies
also complements recent work that studies how models deployed in practice can generate effective
decisions despite their failure to pass basic statistical tests [4].

4 Computational Results

In this section, we present results from applying OLS, EO, and DR to synthetic data. To generate a
data set, we first sample parameters of a generative model as follows:

1. Sample P matrices C1, . . . , CP ∈ <M×Q, with each entry from each matrix drawn inde-
pendently from N (0, 1).

2. Sample a vector r̃ ∈ <P from N (0, I).
3. Sample Ga ∈ <L×L and Gb ∈ <L×M , with each entry of each matrix drawn fromN (0, 1).

Let G1 = G>a Ga and G2 = G>a Gb.

Given generative model parameters C1, . . . , CP and r̃, we sample each training data pair (x(n), y(n))
as follows:

1. Sample a vector φ(n) ∈ <Q from N (0, I) and a vector w(n) ∈ <M from N (0, σ2
wI).

2. Let y(n) =
∑P

i=1 r̃iCiφ
(n) + w(n).

3. For each k = 1, 2, · · · ,K, let x
(n)
k = Ckφ(n).

The vector φ(n) can be viewed as a sample from an underlying information space. The matrices
C1, . . . , CP extract feature vectors from φ(n). Note that, though response variables depend on P
feature vectors, only K ≤ P are used in the regression model.

Given generative model parameters and a coefficient vector r ∈ <K , it is easy to evaluate the
expected loss `(r) = Ex,y[`(ur(x), y)]. It is also easy to evaluate the minimal expected loss `∗ =

3



10 20 30 40 50
0

2000

4000

6000

8000

10000

N

E
xc

es
s 

Lo
ss

 

 
OLS
EO
DR

(a)

45 50 55 60
0

1000

2000

3000

4000

5000

6000

K

E
xc

es
s 

Lo
ss

 

 
OLS
EO
DR

(b)

Figure 1: (a) Excess losses delivered by OLS, EO, and DR, for different numbers N of training
samples. (b) Excess losses delivered by OLS, EO, and DR, using different numbers K of the 60
features.

minr Ex,y[`(ur(x), y)]. We will assess each algorithm in terms of the excess loss `(r)−`∗ delivered
by the coefficient vector r that the algorithm computes. Excess loss is nonnegative, and this allows
us to make comparisons in percentage terms.

We carried out two sets of experiments to compare the performance of OLS, EO, and DR. In the
first set, we let M = 15, L = 15, P = 60, Q = 20, σw = 5, and K = 50. For each N ∈
{10, 15, 20, 30, 50}, we ran 100 trials, each with an independently sampled generative model and
training data set. In each trial, each algorithm computes a coefficient vector given the training data
and loss function. With DR, λ is selected via leave-one-out cross-validation when N ≤ 20, and via
5-fold cross-validation when N > 20. Figure 1(a) plots excess losses averaged over trials. Note that
the excess loss incurred by DR is never larger than that of OLS or EO. Further, when N = 20, the
excess loss of OLS and EO are both around 20% larger than that of DR. For small N , OLS is as
effective as DR, while, EO becomes as effective as DR as N grows large.

In the second set of experiments, we use the same parameter values as in the first set, except we fix
N = 20 and consider use of K ∈ {45, 50, 55, 58, 60} feature vectors. Again, we ran 100 trials for
each K, applying the three algorithms as in the first set of experiments. Figure 1(b) plots excess
losses averaged over trials. Note that when K = 55, DR delivers excess loss around 20% less than
EO and OLS. When K = P = 60, there are no missing features and OLS matches the performance
of DR.

Figure 2 plots the values of λ selected by cross-validation, each averaged over the 100 trials, as
a function of N and K. As the number of training samples N grows, so does λ, indicating that
DR is weighted more heavily toward EO. As the number of feature vectors K grows, λ diminishes,
indicating that DR is weighted more heavily toward OLS.

5 Theoretical Analysis

In this section, we formulate a generative model for the training data and future observations. For
this model, optimal coefficients are convex combinations of rOLS and rEO. As such, our model and
analysis motivate the use of DR.

5.1 Model

In this section, we describe a generative model that samples the training data set, as well as “missing
features,” and a representative future observation. We then formulate an optimization problem where
the objective is to minimize expected loss on the future observation conditioned on the training data
and missing features. It may seem strange to condition on missing features since in practice they are
unavailable when computing regression coefficients. However, we will later establish that optimal

4



10 20 30 40 50
0

0.2

0.4

0.6

0.8

N

λ

(a)

45 50 55 60
0

0.2

0.4

0.6

0.8

K

λ

(b)

Figure 2: (a) The average values of selected λ, for different numbers N of training samples. (b) The
average values of selected λ, using different numbers K of the 60 features.

coefficients are convex combinations of rOLS and rEO, each of which can be computed without
observing missing features. Since directed regression searches over these convex combinations, it
should approximate what would be generated by a hypothetical algorithm that observes missing
features.

We will assume that each feature, whether observed or missing, is a linear function of an “infor-
mation vector” drawn from <Q. Specifically, the N training data samples depend on information
vectors φ(1), . . . , φ(N) ∈ <Q. A linear function mapping an information vector to a feature vector
can be represented by a matrix in <M×Q, and to describe our generative model, it is useful to define
an inner product for such matrices. In particular, we define the inner product between matrices A
and B by

〈A,B〉 =
1
N

N∑
n=1

(Aφ(n))>(Bφ(n)).

Our generative model takes several parameters as input. First, there are the number of samples
N , the number of response variables M , and the number of feature vectors K. Second, a parameter
µQ specifies the expected dimension of the information vector. Finally, there are standard deviations
σr, σε, and σw, of observed feature coefficients, missing feature coefficients, and noise, respectively.
Given parameters N , M , K, µQ, σr, σε, and σw, the generative model produces data as follows:

1. Sample Q from the geometric distribution with mean µQ.

2. Sample φ(1), . . . , φ(N) ∈ <Q from N (0, IQ).

3. Sample C1, . . . , CK and D1, · · · , DJ ∈ <M×Q with each entry i.i.d. fromN (0, 1), where
K + J = MQ.

4. Apply the Gram-Schmidt algorithm with respect to the inner product defined
above to generate an orthonormal basis C̃1, . . . , C̃K , D̃1, . . . , D̃J from the sequence
C1, . . . , CK , D1, . . . , DJ .

5. Sample r∗ ∈ <K from N (0, σ2
rIK) and r⊥∗ ∈ <J from N (0, σ2

ε IJ).

6. For n = 1, · · · , N , sample w(n) ∈ <M from N (0, σ2
wIM ), and let

x(n) =
[
C1φ

(n) · · · CKφ(n)
]
, (3)

z(n) =
[
D̃1φ

(n) · · · D̃Jφ(n)
]
, (4)

y(n) =
K∑

k=1

r∗kx
(n)
k +

J∑

j=1

r⊥∗j z
(n)
j + w(n). (5)

5



7. Sample φ̃ uniformly from {φ(1), · · · , φ(N)} and w̃ ∈ <M from N (0, σ2
wIM ). Generate x̃,

z̃, and ỹ by the same functions in (3), (4), and (5).

The samples z(1), . . . , z(N), z̃ represent missing features. The Gram-Schmidt procedure ensures two
properties. First, since 〈Ck, D̃j〉 = 0, missing features are uncorrelated with observed features. If
this were not the case, observed features would provide information about missing features. Second,
since D̃1, . . . , D̃J are orthonormal, the distribution of missing features is invariant to rotations in the
J-dimensional subspace from which they are drawn. In other words, all directions in that space are
equally likely.

We define an augmented training set O = {(x(1), z(1), y(1)), · · · , (x(N), z(N), y(N))} and consider
selecting regression coefficients r̂ ∈ <K that solve

min
r∈<K

E[`(ur(x̃), ỹ)|O].

Note that the probability distribution here is implicitly defined by our generative model, and as such,
r̂ may depend on N , M , K , µQ, σr, σε, σw, and O.

5.2 Optimal Solutions

Our primary interest is in cases where prior knowledge about the coefficients r∗ is weak and does
not significantly influence r̂. As such, we will from here on restrict attention to the case where σr is
asymptotically large. Hence, r̂ will no longer depend on σr.

It is helpful to consider two special cases. One is where σε = 0 and the other is where σε is
asymptotically large. We will refer to r̂ in these extreme cases as r̂0 and r̂∞. The following theorem
establishes that these extremes are delivered by OLS and EO.

Theorem 1. For all N , M , K, µQ, σw, and O,

r̂0 = argmin
r∈<K

N∑
n=1

∥∥∥∥∥y(n) −
K∑

k=1

rkx
(n)
k

∥∥∥∥∥

2

and

r̂∞ = argmin
r∈<K

N∑
n=1

`(ur(x(n)), y(n)).

Note that σε represents the degree of bias in a regression model that assumes there are no missing
features. Hence, the above theorem indicates that OLS is optimal when there is no bias while EO
is optimal as the bias becomes asymptotically large. It is also worth noting that the coefficient
vectors r̂0 and r̂∞ can be computed without observing the missing features, though r̂ is defined by
an expectation that is conditioned on their realizations. Further, computation of r̂0 and r̂∞ does not
require knowledge of Q or σw.

Our next theorem establishes that the coefficient vector r̂ is always a convex combination of r̂0 and
r̂∞.

Theorem 2. For all N , M , K, µQ, σw, σε, and O,

r̂ = (1− λ)r̂0 + λr̂∞,

where λ = 1

1+
σ2

w
Nσ2

ε

.

Our two theorems together imply that, with an appropriately selected λ ∈ [0, 1], (1 − λ)rOLS +
λrEO = r̂. This suggests that directed regression, which optimizes λ via cross-validation to generate
a coefficient vector rDR = (1− λ)rOLS + λrEO, should approximate r̂ well without observing the
missing features or requiring knowledge of Q, σε, or σw.

6



5.3 Interpretation

To develop intuition for our results, we consider an idealized situation where the coefficients r∗ and
r⊥∗ are provided to us by an oracle. Then the optimal coefficient vector would be

rO = argmin
r∈<K

E[`(ur(x̃), ỹ)|O, r∗, r⊥∗].

It can be shown that rOLS is a biased estimator of rO, while rEO is an unbiased one. However,
the variance of rOLS is smaller than that of rEO. The optimal tradeoff is indeed captured by the
value of λ provided in Theorem 2. In particular, as the number of training samples N increases,
variance diminishes and λ approaches 1, placing increasing weight on EO. On the other hand, as
the number of observed features K increases, model bias decreases and λ approaches 0, placing
increasing weight on OLS. Our experimental results demonstrate that the value of λ selected by
cross-validation exhibits the same behavior.

6 Extensions

Though we only treated linear models and quadratic objective functions, our work suggests that
there can be significant gains in broader problem settings from a tighter coupling between machine
learning and decision-making. In particular, machine learning algorithms should factor decision
objectives into the learning process. It will be interesting to explore how to do this with other
classes of models and objectives.

One might argue that feature mis-specification is not a critical issue in light of effective methods
for subset selection. In particular, rather than selecting a few features and facing the consequences
of model bias, one might select an enormous set of features and apply a method like the lasso [10]
to identify a small subset. Our view is that even this enormous set will result in model biases that
might be ameliorated by generalizations of DR. There is also the concern that data requirements
grow with the size of the large feature set, albeit slowly. Understanding how to synthesize DR with
subset selection methods is an interesting direction for future research.

Another issue that should be explored is the effectiveness of cross-validation in optimizing λ. In
particular, it would be helpful to understand how the estimate relates to the ideal value of λ identified
by Theorem 2. More general work on the selection of convex combinations of models (e.g., [1, 5])
may lend insights to our setting.

Let us close by mentioning that the ideas behind DR ought to play a role in reinforcement learning
(RL) as presented in [9]. RL algorithms learn from experience to predict a sum of future rewards
as a function of a state, typically by fitting a linear combination of features of the state. This so-
called approximate value function is then used to guide sequential decision-making. The problem
we addressed in this paper can be viewed as a single-period version of RL, in the sense that each
decision incurs an immediate cost but bears no further consequences. It would be interesting to
extend our idea to the multi-period case.

Acknowledgments

We thank James Robins for helpful comments and suggestions. The first author is supported by a
Stanford Graduate Fellowship. This research was supported in part by the National Science Foun-
dation through grant CMMI-0653876.

Appendix

Proof of Theorem 1. For each n, let x(n) =
[

x
(n)
1 · · · x

(n)
K

]
, z(n) =

[
z
(n)
1 · · · z

(n)
J

]
.

Let X =
[

x(1)> · · · x(N)> ]>
, Z =

[
z(1)> · · · z(N)> ]>

, Y =[
y(1)> · · · y(N)> ]>

, r̄ = E[r∗|O], r̄⊥ = E[r⊥∗|O]. For any matrix V , let V † denote
(V >V )−1V >. Recall that 〈Ck, D̃j〉 = 0, ∀ k, j implies that each column of X is orthogonal to

7



each column of Z. Because r∗, r⊥∗, O are jointly Gaussian, as σr →∞, we have
[

r̄
r̄⊥

]
= argmin

(r,r⊥)

1
2σ2

w

N∑
n=1

∥∥∥∥∥∥
y(n) −

K∑

k=1

rkx
(n)
k −

J∑

j=1

r⊥j z
(n)
j

∥∥∥∥∥∥

2

+
1

2σ2
ε

J∑

j=1

r⊥2
j

= argmin
(r,r⊥)

∥∥∥∥
[

1
σw

Y
0

]
−

[ 1
σw

X 1
σw

Z

0 1
σε

IJ

] [
r

r⊥

]∥∥∥∥
2

=

[
(X>X)−1X>Y

(Z>Z + σ2
w

σ2
ε
I)−1Z>Y

]
.

Let a(n) = G
− 1

2
1 G2x

(n), b(n) = G
− 1

2
1 G2z

(n), A =
[

a(1)> · · · a(N)> ]>
, B =[

b(1)> · · · b(N)> ]>
. We have

r̂ = argmin
r

E[`(ur(x̃), ỹ)|O] = argmin
r

1
N

N∑
n=1

Eỹ[`(ur(x̃), ỹ)|x̃ = x(n), O]

= argmin
r

N∑
n=1

ur(x(n))>G1ur(x(n)) + ur(x(n))>G2 E[ỹ|x̃ = x(n), O]

= argmin
r

N∑
n=1

1
4
r>a(n)>a(n)r − 1

2
r>a(n)>(a(n)r̄ + b(n)r̄⊥)

= r̄ + A†Br̄⊥ = X†Y + A†B(Z>Z +
σ2

w

σ2
ε

I)−1Z>Y. (6)

Taking σε → 0 and σε →∞ yields

r̂0 = X†Y , (7)
r̂∞ = X†Y + A†BZ†Y . (8)

The first part of the theorem then follows because

r̂0 = X†Y = argmin
r

‖Y −Xr‖2 = argmin
r

N∑
n=1

∥∥∥∥∥y(n) −
K∑

k=1

rkx
(n)
k

∥∥∥∥∥

2

.

We now prove the second part. Note that

argmin
r

N∑
n=1

`(ur(x(n)), y(n)) = argmin
r

N∑
n=1

ur(x(n))>G1ur(x(n)) + ur(x(n))>G2y
(n)

= argmin
r

r>A>Ar − 2r>
N∑

n=1

h(n)>y(n) = (A>A)−1H>Y,

where h(n) = G>2 G−1
1 G2x

(n) and H =
[

h(1)> · · · h(N)> ]>
. Each kth column of H

hk =




G>2 G−1
1 G2Ckφ(1)

...
G>2 G−1

1 G2Ckφ(N)




is in span{col X, col Z} because G>2 G−1
1 G2Ck ∈ <M×Q = span{C1, · · · , CK , D̃1, · · · , D̃J}.

Since the residual Y ′ = Y − XX†Y − ZZ†Y upon projecting Y onto span {col X, col Z} is
orthogonal to the subspace, we have h>k Y ′ = 0,∀ k and hence H>Y ′ = 0. This implies H>Y =
H>XX†Y + H>ZZ†Y . Further, since a(n)>a(n) = h(n)>x(n), a(n)>b(n) = h(n)>z(n),∀n, we
have

r̂∞ = X†Y + A†BZ†Y = (A>A)−1
(
A>AX†Y + A>BZ†Y

)

= (A>A)−1
(
H>XX†Y + H>ZZ†Y

)
= (A>A)−1H>Y.

Proof of Theorem 2. Because 〈D̃i, D̃j〉 = 1{i = j}, we have Z>Z = NI . Plugging this into (6)
and comparing the resultant expression with (7) and (8) yield the desired result.

8



References

[1] J.-Y. Audibert. Aggregated estimators and empirical complexity for least square regression.
Annales de l’Institut Henri Poincare Probability and Statistics, 40(6):685–736, 2004.

[2] P. L. Bartlett and S. Mendelson. Empirical minimization. Probability Theory and Related
Fields, 135(3):311–334, 2006.

[3] D. Bertsimas and A. Thiele. Robust and data-driven optimization: Modern decision-making
under uncertainty. In Tutorials on Operations Research. INFORMS, 2006.

[4] O. Besbes, R. Philips, and A. Zeevi. Testing the validity of a demand model: An operations
perspective. 2007.

[5] F. Bunea, A. B. Tsybakov, and M. H. Wegkamp. Aggregation for Gaussian regression. The
Annals of Statistics, 35(4):1674–1697, 2007.

[6] D. Haussler. Decision theoretic generalizations of the PAC model for neural net and other
learning applications. Information and Computation, 100:78–150, 1992.

[7] K. Kim and N. Timm. Univariate and Multivariate General Linear Models: Theory and
Applications with SAS. Chapman & Hall/CRC, 2006.

[8] K. E. Muller and P. W. Stewart. Linear Model Theory: Univariate, Multivariate, and Mixed
Models. Wiley, 2006.

[9] R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction. MIT Press, Cam-
bridge, MA, 1998.

[10] R. Tibshirani. Regression shrinkage and selection via the lasso. Journal of Royal Statistical
Society, 1996.

9


