Scalable Algorithms for String Kernels with Inexact
Matching

Pavel P. Kuksa, Pai-Hsi Huang, Vladimir Pavlovic
Department of Computer Science,
Rutgers University, Piscataway, NJ 08854
{pkuksa, paihuang, vladimir}@cs .rutgers.edu

Abstract

We present a new family of linear time algorithms for string comparison with
mismatches under the string kernels framework. Based on sufficient statistics, our
algorithms improve theoretical complexity bounds of existing approaches while
scaling well in sequence alphabet size, the number of allowed mismatches and
the size of the dataset. In particular, on large alphabets and under loose mis-
match constraints our algorithms are several orders of magnitude faster than the
existing algorithms for string comparison under the mismatch similarity measure.
We evaluate our algorithms on synthetic data and real applications in music genre
classification, protein remote homology detection and protein fold prediction. The
scalability of the algorithms allows us to consider complex sequence transforma-
tions, modeled using longer string features and larger numbers of mismatches,
leading to a state-of-the-art performance with significantly reduced running times.

1 Introduction

Analysis of large scale sequential data has become an important task in machine learning and data
mining, inspired by applications such as biological sequence analysis, text and audio mining. Clas-
sification of string data, sequences of discrete symbols, has attracted particular interest and has led to
a number of new algorithms [1, 2, 3, 4]. They exhibit state-of-the-art performance on tasks such as
protein superfamily and fold prediction, music genre classification and document topic elucidation.

Classification of data in sequential domains is made challenging by the variability in the sequence
lengths, potential existence of important features on multiple scales, as well as the size of the al-
phabets and datasets. Typical alphabet sizes can vary widely, ranging in size from 4 nucleotides
in DNA sequences, up to thousands of words from a language lexicon for text documents. Strings
within the same class, such as the proteins in one fold or documents about politics, can exhibit wide
variability in the primary sequence content. Moreover, important datasets continue to increase in
size, easily reaching millions of sequences. As a consequence, the resulting algorithms need the
ability to efficiently handle large alphabets and datasets as well as establish measures of similarity
under complex sequence transformations in order to accurately classify the data.

A number of state-of-the-art approaches to scoring similarity between pairs of sequences in a
database rely on fixed, spectral representations of sequential data and the notion of mismatch ker-
nels, c.f. [2, 3]. In that framework an induced representation of a sequence is typically that of
the spectra (counts) of all short substrings (k-mers) contained within a sequence. The similarity
score is established by allowing transformations of the original k-mers based on different models of
deletions, insertions and mutations. However, computing those representations efficiently for large
alphabet sizes and “loose” similarity models can be computationally challenging. For instance,
the complexity of an efficient trie-based computation [3, 5] of the mismatch kernel between two
strings X and Y strongly depends on the alphabet size and the number of mismatches allowed as

O(k™T1|S|™(]X| + |Y])) for k-mers (contiguous substring of length k) with up to m mismatches
and the alphabet size |%|. This limits the applicability of such algorithms to simpler transformation
models (shorter k& and) and smaller alphabets, reducing their practical utility on complex real data.
As an alternative, more complex transformation models such as [2] lead to state-of-the-art predictive
performance at the expense of increased computational effort.

In this work we propose novel algorithms for modeling sequences under complex transformations
(such as multiple insertions, deletions, mutations) that exhibit state-of-the-art performance on a
variety of distinct classification tasks. In particular, we present new algorithms for inexact (e.g.
with mismatches) string comparison that improve currently known time bounds for such tasks and
show orders-of-magnitude running time improvements. The algorithms rely on an efficient implicit
computation of mismatch neighborhoods and k-mer statistic on sets of sequences. This leads to
a mismatch kernel algorithm with complexity O(c m (|X| + |Y])), where ¢, is independent of
the alphabet 3. The algorithm can be easily generalized to other families of string kernels, such as
the spectrum and gapped kernels [6], as well as to semi-supervised settings such as the neighbor-
hood kernel of [7]. We demonstrate the benefits of our algorithms on many challenging classifica-
tion problems, such as detecting homology (evolutionary similarity) of remotely related proteins,
recognizing protein fold, and performing classification of music samples. The algorithms display
state-of-the-art classification performance and run substantially faster than existing methods. Low
computational complexity of our algorithms opens the possibility of analyzing very large datasets
under both fully-supervised and semi-supervised setting with modest computational resources.

2 Related Work

Over the past decade, various methods were proposed to solve the string classification problem,
including generative, such as HMMs, or discriminative approaches. Among the discriminative ap-
proaches, in many sequence analysis tasks, kernel-based [8] machine learning methods provide most
accurate results [2, 3, 4, 6].

Sequence matching is frequently based on common co-occurrence of exact sub-patterns (k-mers,
features), as in spectrum kernels [9] or substring kernels [10]. Inexact comparison in this framework
is typically achieved using different families of mismatch [3] or profile [2] kernels. Both spectrum-k
and mismatch(k,m) kernel directly extract string features based on the observed sequence, X. On
the other hand, the profile kernel, proposed by Kuang et al. in [2], builds a profile [11] Px and
uses a similar |Y|¥-dimensional representation, derived from Py . Constructing the profile for each
sequence may not be practical in some application domains, since the size of the profile is dependent
on the size of the alphabet set. While for bio-sequences |3| = 4 or 20, for music or text classification
|| can potentially be very large, on the order of tens of thousands of symbols. In this case, a very
simple semi-supervised learning method, the sequence neighborhood kernel, can be employed [7]
as an alternative to lone k-mers with many mismatches.

The most efficient available trie-based algorithms [3, 5] for mismatch kernels have a strong depen-
dency on the size of alphabet set and the number of allowed mismatches, both of which need to be
restricted in practice to control the complexity of the algorithm. Under the trie-based framework, the
list of k-mers extracted from given strings is traversed in a depth-first search with branches corre-
sponding to all possible 0 € 3. Each leaf node at depth k corresponds to a particular k-mer feature
(either exact or inexact instance of the observed exact string features) and contains a list of matching
features from each string. The kernel matrix is updated at leaf nodes with corresponding counts.
The complexity of the trie-based algorithm for mismatch kernel computation for two strings X and
Y is O(k™H3|™(]X| + |Y])) [3]. The algorithm complexity depends on the size of ¥ since dur-
ing a trie traversal, possible substitutions are drawn from 3 explicitly; consequently, to control the
complexity of the algorithm we need to restrict the number of allowed mismatches (m), as well as
the alphabet size (|X). Such limitations hinder wide application of the powerful computational tool,
as in biological sequence analysis, mutation, insertions and deletions frequently co-occur, hence
establishing the need to relax the parameter m; on the other hand, restricting the size of the alpha-
bet sets strongly limits applications of the mismatch model. While other efficient string algorithms
exist, such as [6, 12] and the suffix-tree based algorithms in [10], they do not readily extend to the
mismatch framework. In this study, we aim to extend the works presented in [6, 10] and close the
existing gap in theoretical complexity between the mismatch and other fast string kernels.

3 Combinatorial Algorithm

In this section we will develop our first improved algorithm for kernel computations with mis-
matches, which serves as a starting point for our main algorithm in Section 4.

3.1 Spectrum and Mismatch Kernels Definition

Given a sequence X with symbols from alphabet 3 the spectrum-k kernel [9] and the mismatch(k,m)
kernel [3] induce the following |3|*-dimensional representation for the sequence:

(X)) = (mem) : ()
yEDK

aceX

where I, (ov,y) = 1if @ € Ny (), and N ., (7y) is the mutational neighborhood, the set of all
k-mers that differ from v by at most m mismatches. Note that, by definition, for spectrum kernels,
m = 0.

The mismatch kernel is then defined as
K(X,Y|k,m) =Y em(X)em([Y),)
yeSk

where ¢, (7| X) = Zaex Im (7, @) is the number of times a contiguous substring of length & (k-mer)
~ occurs in X with no more than m mismatches.

3.2 Intersection-based Algorithm

Our first algorithm presents a novel way of performing local inexact string matching with the fol-
lowing key properties:

a. parameter independent: the complexity is independent of |3| and mismatch parameter m
b. in-place: only uses min(2m, k) + 1 extra space for an auxiliary look-up table

c. linear complexity: in k, the length of the substring (as opposed to exponential k™)

To develop our first algorithm, we first write the mismatch kernel (Equation 2) in an equivalent form:

ng—k+1mny—k+1

Z Z Z Inb(aaxiz:im-ﬁ—k—l)lm(a)yiy:iy-‘rk—l) (3)

iz=1 i,=1 aexk

K(X,Y|k,m)

ng—k+1ny—k+1

= Z Z [(N (@i, +8—1,m) NN (Yiyi,41—1, M) “4)
inm1 iy=1

ny—k+1mny—k+1

= Z Z T(Ziyipth—15Yiy:iy+h—1) (5)

o=1 iy=1

where Z(a, b) is the number of induced (neighboring) k-mers common between a, b (i.e. Z(a,b) is
the size of intersection of mismatch neighborhoods of a and b). The key observation here is that if we
can compute 7 (a, b) efficiently then the kernel evaluation problem reduces to performing pairwise
comparison based on all pairs of observed k-mers, a and b, in the two sequences. The complexity
for such procedure is O(c|X||Y|) where ¢ is the cost for evaluating Z(a, b) for any given k-mers a
and b. In fact, for fixed k, m and ¥, such quantity depends only on the Hamming distance d(a, b)
(i.e. the number of mismatches) and can be evaluated in advance, as we will show in Section 3.3. As
a result, the intersection values can be looked up in a table in constant time during matching. Note
the summation now shows no explicit dependency on |X| and m. In summary, given two strings X
and Y, the algorithm (Algorithm 1) compares pairs of observed k-mers from X and Y and computes
the mismatch kernel according to Equation 5.

Algorithm 1. (Hamming-Mismatch) Mismatch algorithm based on Hamming distance

Input: strings X, Y, | X| = ny,|Y| = n,, parameters k, m, lookup table Z for intersection sizes
Evaluate kernel using Equation 5:

o—k+1 ny—k+1
K(X,Y [kym) = S0 S T @i, 015 Uiy iy 1) [k m)
where Z(d) is the intersection size for distance d

Output: Mismatch kernel value K (X, Y|k, m)

The overall complexity of the algorithm is O(knzn,) since the Hamming distances between all
k-mer pairs observed in X and Y need to be known. In the following section, we discuss how to
efficiently compute the size of the intersection.

3.3 Intersection Size: Closed Form Solution

The number of neighboring k-mers shared by two observed k-mers a and b can be directly com-
puted, in a closed-form, from the Hamming distance d(a, b) for fixed k and m, requiring no explicit
traversal of the k-mer space as in the case of trie-based computations. We first consider the case
a = b (ie. d(a,b) = 0). The intersection size corresponds to the size of the (k,m)-mismatch
neighborhood, i.e. Z(a,b) = [Nim| = Sy (¥)(|Z] - 1)%. For higher values of Hamming dis-
tance d, the key observation is that for fixed ¥, k, and m, given any distance d(a,b) = d, I(a,b) is
also a constant, regardless of the mismatch positions. As a result, intersection values can always be
pre-computed once, stored and looked up when necessary. To illustrate this, we show two examples
form=1,2:

|Nk,ml, d(a,b) =0

Tlab |Nm|, d(a,b) = 0 Tab) 1+ k(S = 1)+ (k= D(IZ] - 1)2,d(a,b) = 1
(me1)= 12|, d(a,b) = 1 ()= 142k =1)(Z] = 1) + (|%] = 1)2,d(a,b) = 2
2,d(a,b) =2 6(|%] —1),d(a,b) =3

(;)7d(avb) =4

In general, the intersection size can be found in a weighted form Y~ w;(|X] — 1)* and can be pre-
computed in constant time.

4 Mismatch Algorithm based on Sufficient Statistics

In this section, we further develop ideas from the previous section and present an improved mismatch
algorithm that does not require pairwise comparison of the k-mers between two strings and dependes
linearly on sequence length. The crucial observation is that in Equation 5, Z(a,b) is non-zero
only when d(a,b) < 2m. As a result, the kernel computed in Equation 5 is incremented only by
min(2m, k) + 1 distinct values, corresponding to min(2m, k) + 1 possible intersection sizes. We
then can re-write the equation in the following form:

ng—k+1ny—k+1 min(2m,k)
KX, YIm k)= > Y I(@iethtYipieh-1) =y, ML, (6)
o=l diy=1 i=0

where Z; is the size of the intersection of k-mer mutational neighborhood for Hamming distance
i, and M;, the number of observed k-mer pairs in X and Y having Hamming distance ¢. The
problem of computing the kernel has been further reduced to a single summation. We have shown
in Section 3.3 that given any i, we can compute Z; in advance. The crucial task now becomes
computing the sufficient statistics M; efficiently. In the following, we will show how to compute the
mismatch statistics {M; } in O(cg, m (ng + ny)) time, where ¢y, is a constant that does nor depend
on the alphabet size. We formulate the task of inferring matching statistics { M, } as the following
auxiliary counting problem:

Mismatch Statistic Counting: Given a set of n k-mers from two strings X and Y,
for each Hamming distance ¢ = 0, 1, ..., min(2m, k), output the number of k-mer
pairs (a,b),a € X,b € Y with d(a,b) = i.

In this problem it is not necessary to know the distance between each pair of k-mers; one only
needs to know the number of pairs (M;) at each distance :. We show next that the above problem
of computing matching statistics can be solved in linear time (in the number n of k-mers) using
multiple rounds of counting sort as a sub-algorithm.

We first consider the problem of computing number of k-mers at distance 0, i.e. the number of
exact matches. In this case, we can apply counting sort to order all k-mers lexicographically and
find the number of exact matches by scanning the sorted list. The counting then requires linear
O(kn) time. Efficient direct computation of M; for any ¢ > 0 is difficult (requires quadratic time);
we take another approach and first compute inexact cumulative mismatch statistics, C; = M; +

Z;;E (’f:j) M, that overcount the number of k-mer pairs at a given distance 4, as follows. Consider
two k-mers a and b. Pick i positions and remove from the k-mers the symbols at the corresponding
positions to obtain (k—i)-mers o’ and b'. The key observation is that d(a’,b’) = 0 = d(a,b) < i.
As a result, given n k-mers, we can compute the cumulative mismatch statistics C; in linear time
using (’f) rounds of counting sort on (k — ¢)-mers. The exact mismatch statistics M; can then be

obtained from C; by subtracting the exact counts to compensate for overcounting as follows:
i—1 .
k—
M, = G- (, ?)M]«, i =0,...,min(min(2m, k), k — 1) 7
; i—J
7=0

The last mismatch statistic M}, can be computed by subtracting the preceding statistics My, ... My_;
from the total number of possible matches:

k—1

My =T=Y M, where T =(n,—k+1)(n,—k+1). (8)

j=0
Our algorithm for mismatch kernel computations based on sufficient statistics is summarized in
Algorithm 2. The overall complexity of the algorithm is O(ncg,,,) with the constant ¢y, =
728(27"’@ (%) (k — 1), independent of the size of the alphabet set, and (}) is the number of rounds
of counting sort for evaluating the cumulative mismatch statistics Cj.

Algorithm 2. (Mismatch-SS) Mismatch kernel algorithm based on Sufficient Statistics

Input: strings X,Y, | X| = ng, |Y| = n,, parameters k, m, pre-computed intersection values Z
1. Compute min(2m, k) cumulative matching statistics, C;, using counting sort

2. Compute exact matching statistics, M;, using Equation 7

3. Evaluate kernel using Equation 6: K (X,Y|m, k) = Z?’:’S@m’k) M;T;

Output: Mismatch kernel value K (X, Y|k, m)

S Extensions
Our algorithmic approach can also be applied to a variety of existing string kernels, leading to very
efficient and simple algorithms that could benefit many applications.

Spectrum Kernels. The spectrum kernel [9] in our notation is the first sufficient statistic My, i.e.
K(X,Y|k) = My, which can be computed in k rounds of counting sort (i.e. in O(kn) time).

Gapped Kernels. The gapped kernels [6] measure similarity between strings X and Y based on the
co-occurrence of gapped instances g, |g| = k + m > k of k-long substrings:

KXYlko=Y (X 10:9)(X Ih9). ©

yELE g€X,|g|l=k+m g€Y,|g|l=k+m

where I(y,g) = 1 when + is a subsequence of g. Similar to the algorithmic approach for extracting
cumulative mismatch statistics in Algorithm-2, to compute the gapped(g,k) kernel, we perform a
single round of counting sort over k-mers contained in the g-mers. This gives a very simple and
efficient O(({) kn) time algorithm for gapped kernel computations.

Wildcard kernels. The wildcard(k,m) kernel [6] in our notation is the sum of the cumulative
statistics K(X,Y|k,m) = >.7" C;, i.e. can be computed in y_." (f) rounds of counting sort,

giving a simple and efficient O(>_" (f) (k — i)n) algorithm.

Spatial kernels. The spatial(k,t,d) kernel [13] can be computed by sorting kt-mers iteratively for
every arrangement of ¢ k-mers spatially constrained by distance d.

Neighborhood Kernels. The sequence neighborhood kernels [7] proved to be a powerful tool in
many sequence analysis tasks. The method uses the unlabeled data to form a set of neighbors for
train/test sequences and measure similarity of two sequences X and Y using their neighborhoods:

KX Y)= > > Ky (10)

zEN(X)yeN(Y)

where N (X) is the sequence neighborhood that contains neighboring sequences from the unlabeled
data set, including X itself. Note the kernel value, if computed directly using Equation 10, will incur
quadratic complexity in the size of the neighborhoods. Similar to the single string case, using our
algorithmic approach, to compute the neighborhood kernel (over the string sets), we can jointly sort
the observed k-mers in N(X) and N (Y") and apply the desired kernel evaluation method (spectrum,
mismatch, or gapped). Under this setting, the neighborhood kernel can be evaluated in time /inear to
the neighborhood size. This leads to very efficient algorithms for computing sequence neighborhood
kernels even for very large datasets, as we will show in the experimental section.

6 Evaluation

We study the performance of our algorithms, both in running time and predictive accuracy, on syn-
thetic data and standard benchmark datasets for protein sequence analysis and music genre classi-
fication. The reduced running time requirements of our algorithms open the possibility to consider
“looser” mismatch measures with larger k£ and m. The results presented here demonstrate that such
mismatch kernels with larger (k, m) can lead to state-of-the-art predictive performance even when
compared with more complex models such as [2].

We use three standard benchmark datasets to compare with previously published results: the SCOP
dataset (7329 sequences with 2862 labeled) [7] for remote protein homology detection, the Ding-
Dubchak dataset! (27 folds, 694 sequences) [14, 15] for protein fold recognition, and music genre
data® (10 classes, 1000 sequences, || = 1024) [16] for multi-class genre prediction. For protein
sequence classification under the semi-supervised setting, we also use the Protein Data Bank (PDB,
17,232 sequences), the Swiss-Prot (101,602 sequences), and the non-redundant (NR) databases
as the unlabeled datasets, following the setup of [17]. All experiments are performed on a single
2.8GH z CPU. The datasets used in our experiments and the suplementary data/code are available
athttp://segam.rutgers.edu/new-inexact/new—inexact.html.

6.1 Running time analysis

We compare the running time of our algorithm on synthetic and real data with the trie-based com-
putations. For synthetic data, we generate strings of length n = 10° over alphabets of different
sizes and measure the running time of the trie-based and our sufficient statistics based algorithms
for evaluating mismatch string kernel. Figure 1 shows relative running time 73, /Tss, in logarith-
mic scale, of the mismatch-trie and mismatch-SS as a function of the alphabet size. As can be seen
from the plot, our algorithm demonstrates several orders of magnitude improvements, especially for
large alphabet sizes.

Table 1 compares running times of our algorithm and the trie-based algorithm for different real
dataset (proteins, DNA, text, music) for a single kernel entry (pair of strings) computation. We
observe the speed improvements ranging from 100 to 10° times depending on the alphabet size.

We also measure the running time for full 7329-by-7329 mismatch(5,2) kernel matrix computa-
tions for SCOP dataset under the supervised setting. The running time of our algorithm is 1525
seconds compared to 196052 seconds for the trie-based computations. The obtained speed-up of
128 times is as expected from the theoretical analysis (our algorithm performs 31 counting-sort
iterations in total over 5-, 4-, 3-, 2-, and 1- mers, which gives the running time ratio of approxi-
mately 125 when compared to the trie-based complexity). We observe similar improvements under

'nttp://ranger.uta.edu/ chqgding/bioinfo.html
http://opihi.cs.uvic.ca/sound/genres

Table 1: Running time (in seconds) for kernel compu-
1 tation between two strings on real data

unning time, T, /T,

g;r(;%ein protein dna text music
£ n 36672 116 570 242 6892
|2 20 20 4 29224 1024

(5,1)-trie 1.6268 0.0212 0.0260 20398 526.8
(5,1)-ss 0.1987 0.0052 0.0054 0.0178 0.0331

W e e w e _oratio 8 4 > 10° 16,000
alphabet sizo (5,2)-trie 31.5519 0.2918 0.4800 - -

(5,2)-ss 0.2957 0.0067 0.0064 0.0649 0.0941
Figure 1: Relative running time 7ir;c/Tss time ratio 100 44 75 - -

(in logarithmic scale) of the mismatch-trie and
mismatch-ss as a function of the alphabet size
(mismatch(3,1) kernel, n = 10°)

the semi-supervised setting for neighborhood mismatch kernels; for example, computing a smaller
neighborhood mismatch(5,2) kernel matrix for the labeled sequences only (2862-by-2862 matrix)
using the Swiss-Prot unlabeled dataset takes 1,480 seconds with our algorithm, whereas performing
the same task with the trie-based algorithm takes about 5 days.

6.2 Empirical performance analysis

In this section we show predictive performance results for several sequence analysis tasks using our
new algorithms. We consider the tasks of the multi-class music genre classification [16], with results
in Table 2, and the protein remote homology (superfamily) prediction [9, 2, 18] in Table 3. We also
include preliminary results for multi-class fold prediction [14, 15] in Table 4.

On the music classification task, we observe significant improvements in accuracy for larger number
of mismatches. The obtained error rate (35.6%) on this dataset compares well with the state-of-the-
art results based on the same signal representation in [16]. The remote protein homology detection,
as evident from Table 3, clearly benefits from larger number of allowed mismatches because the
remotely related proteins are likely to be separated by multiple mutations or insertions/deletions.
For example, we observe improvement in the average ROC-50 score from 41.92 to 52.00 under a
fully-supervised setting, and similar significant improvements in the semi-supervised settings. In
particular, the result on the Swiss-Prot dataset for the (7, 3)-mismatch kernel is very promising and
compares well with the best results of the state-of-the-art, but computationally more demanding,
profile kernels [2]. The neighborhood kernels proposed by Weston et al. have already shown very
promising results in [7], though slightly worse than the profile kernel. However, using our new
algorithm that significantly improves the speed of the neighborhood kernels, we show that with
larger number of allowed mismatches the neighborhood can perform even better than the state-
of-the-art profile kernel: the (7,3)-mismatch neighborhood achieves the average ROC-50 score of
86.32, compared to 84.00 of the profile kernel on the Swiss-Prot dataset. This is an important result
that addresses a main drawback of the neighborhood kernels, the running time [7, 2].

Table 2: Classification per- Table 3: Classification performance on protein remote homology
formance on music genre prediction

classification (multi-class) dataset mismatch (5,1) mismatch (5,2) mismatch (7,3)
Method Error ROC ROC50 ROC ROC50 ROC ROC50

Mismatch (5,1) 42.6£6.34 SCOP (supervised) 87.75 41.92 90.67 49.09 91.31 52.00
Mismatch (5,2) 35.6+4.99 SCOP (unlabeled) 90.93 67.20 91.42 69.35 92.27 73.29
SCOP (PDB) 97.06 80.39 97.24 81.35 97.93 84.56
SCOP (Swiss-Prot) 96.73 81.05 97.05 82.25 97.78 86.32

For multi-class protein fold recognition (Table 4), we similarly observe improvements in perfor-
mance for larger numbers of allowed mismatches. The balanced error of 25% for the (7,3)-mismatch
neighborhood kernel using Swiss-Prot compares well with the best error rate of 26.5% for the state-

of-the-art profile kernel with adaptive codes in [15] that used a much larger non-redundant (NR)
dataset. Using NR, the balanced error further reduces to 22.5% for the (7,3)-mismatch.

Table 4: Classification performance on fold prediction (multi-class)

Top 5

Top 5 Balanced Top 5 .. Top5 Top5
Method Error Error Error g?rl(e)l;lced Recall Recall Precision Precision Fl
Mismatch (5,1) 51.17 22.72 53.22 28.86 46.78 71.14 90.52 95.25 61.68 81.45
Mismatch (5,2) 42.30 19.32 44.89 22.66 55.11 77.34 67.36 84.77 60.62 80.89
Mismatch (5,2)t 27.42 14.36 24.98 13.36 75.02 86.64 79.01 91.02 76.96 88.78
Mismatch (7,3) 43.60 19.06 47.13 22.76 52.87 77.24 84.65 91.95 65.09 83.96
Mismatch (7,3)" 26.11 12.53 25.01 12.57 74.99 87.43 85.00 92.78 79.68 90.02
Mismatch (7, 3)* 23.76 11.75 22.49 12.14 77.59 87.86 84.90 91.99 81.04 89.88

T used the Swiss-Prot sequence database; T used NR (non-redundant) database

7 Conclusions

We presented new algorithms for inexact matching of the discrete-valued string representations that
reduce computational complexity of current algorithms, demonstrate state-of-the-art performance
and significantly improved running times. This improvement makes the string kernels with approxi-
mate but looser matching a viable alternative for practical tasks of sequence analysis. Our algorithms
work with large databases in supervised and semi-supervised settings and scale well in the alphabet
size and the number of allowed mismatches. As a consequence, the proposed algorithms can be
readily applied to other challenging problems in sequence analysis and mining.

References

(1]
(2]

(3]
(4]
(5]
(6]
(7]

[8]
(9]

(10]
(11]
(12]
(13]
(14]
[15]
[16]
(17]
(18]

Jianlin Cheng and Pierre Baldi. A machine learning information retrieval approach to protein fold recog-
nition. Bioinformatics, 22(12):1456—-1463, June 2006.

Rui Kuang, Eugene Ie, Ke Wang, Kai Wang, Mahira Siddiqi, Yoav Freund, and Christina S. Leslie.
Profile-based string kernels for remote homology detection and motif extraction. In CSB, pages 152—
160, 2004.

Christina S. Leslie, Eleazar Eskin, Jason Weston, and William Stafford Noble. Mismatch string kernels
for SVM protein classification. In NIPS, pages 1417-1424, 2002.

Soren Sonnenburg, Gunnar Rétsch, and Bernhard Scholkopf. Large scale genomic sequence SVM clas-
sifiers. In ICML ’05, pages 848-855, New York, NY, USA, 2005.

John Shawe-Taylor and Nello Cristianini. Kernel Methods for Pattern Analysis. Cambridge University
Press, New York, NY, USA, 2004.

Christina Leslie and Rui Kuang. Fast string kernels using inexact matching for protein sequences. J.
Mach. Learn. Res., 5:1435-1455, 2004.

Jason Weston, Christina Leslie, Eugene Ie, Dengyong Zhou, Andre Elisseeff, and William Stafford Noble.
Semi-supervised protein classification using cluster kernels. Bioinformatics, 21(15):3241-3247, 2005.
Vladimir N. Vapnik. Statistical Learning Theory. Wiley-Interscience, September 1998.

Christina S. Leslie, Eleazar Eskin, and William Stafford Noble. The spectrum kernel: A string kernel for
SVM protein classification. In Pacific Symposium on Biocomputing, pages 566-575, 2002.

S. V. N. Vishwanathan and Alex Smola. Fast kernels for string and tree matching. Advances in Neural
Information Processing Systems, 15, 2002.

M. Gribskov, A.D. McLachlan, and D. Eisenberg. Profile analysis: detection of distantly related proteins.
Proceedings of the National Academy of Sciences, 84:4355-4358, 1987.

Juho Rousu and John Shawe-Taylor. Efficient computation of gapped substring kernels on large alphabets.
J. Mach. Learn. Res., 6:1323—1344, 2005.

Pavel Kuksa, Pai-Hsi Huang, and Vladimir Pavlovic. Fast protein homology and fold detection with
sparse spatial sample kernels. In /CPR 2008, 2008.

Chris H.Q. Ding and Inna Dubchak. Multi-class protein fold recognition using support vector machines
and neural networks. Bioinformatics, 17(4):349-358, 2001.

Iain Melvin, Eugene Ie, Jason Weston, William Stafford Noble, and Christina Leslie. Multi-class protein
classification using adaptive codes. J. Mach. Learn. Res., 8:1557-1581, 2007.

Tao Li, Mitsunori Ogihara, and Qi Li. A comparative study on content-based music genre classification.
In SIGIR ’03, pages 282-289, New York, NY, USA, 2003. ACM.

Pavel Kuksa, Pai-Hsi Huang, and Vladimir Pavlovic. On the role of local matching for efficient semi-
supervised protein sequence classification. In BIBM, 2008.

Tommi Jaakkola, Mark Diekhans, and David Haussler. A discriminative framework for detecting remote
protein homologies. In Journal of Computational Biology, volume 7, pages 95-114, 2000.

