
Temporal Difference Based Actor Critic Learning -
Convergence and Neural Implementation

Dotan Di Castro, Dmitry Volkinshtein and Ron Meir
Department of Electrical Engineering

Technion, Haifa 32000, Israel
{dot@tx},{dmitryv@tx},{rmeir@ee}.technion.ac.il

Abstract

Actor-critic algorithms for reinforcement learning are achieving renewed popular-
ity due to their good convergence properties in situations where other approaches
often fail (e.g., when function approximation is involved). Interestingly, there is
growing evidence that actor-critic approaches based on phasic dopamine signals
play a key role in biological learning through cortical and basal ganglia loops.
We derive a temporal difference based actor critic learning algorithm, for which
convergence can be proved without assuming widely separated time scales for the
actor and the critic. The approach is demonstrated by applying it to networks
of spiking neurons. The established relation between phasic dopamine and the
temporal difference signal lends support to the biological relevance of such algo-
rithms.

1 Introduction

Actor-critic (AC) algorithms [22] were probably among the first algorithmic approaches to reinforce-
ment learning (RL). In recent years much work focused on state, or state-action, value functions as a
basis for learning. These methods, while possessing desirable convergence attributes in the context
of table lookup representation, led to convergence problems when function approximation was in-
volved. A more recent line of research is based on directly (and usually parametrically) representing
the policy, and performing stochastic gradient ascent on the expected reward, estimated through try-
ing out various actions and sampling trajectories [3, 15, 23]. However, such direct policy methods
often lead to very slow convergence due to large estimation variance. One approach suggested in
recent years to remedy this problem is the utilization of AC approaches, where the value function
is estimated by a critic, and passed to an actor which selects an appropriate action, based on the
approximated value function. The first convergence result for a policy gradient AC algorithm based
on function approximation was established in [13], and extended recently in [5, 6]. At this stage
it seems that AC based algorithms provide a solid foundation for provably effective approaches to
RL based on function approximation. Whether these methods will yield useful solutions to practical
problems remains to be seen.

RL has also been playing an increasingly important role in neuroscience, and experimentalists have
directly recorded the activities of neurons while animals perform learning tasks [20], and used imag-
ing techniques to characterize human brain activities [17, 24] during learning. It was suggested long
ago that the basal ganglia, a set of ancient sub-cortical brain nuclei, are implicated in RL. Moreover,
these nuclei are naturally divided into two components, based on the separation of the striatum (the
main input channel to the basal ganglia) into the ventral and dorsal components. Several imaging
studies [17, 24] have suggested that the ventral stream is associated with value estimation by a so
called critic, while the dorsal stream has been implicated in motor output, action selection, and
learning by a so called actor. Two further experimental findings support the view taken in this work.

First, it has been observed [20] that the short latency phasic response of the dopamine neurons in
the midbrain strongly resembles the temporal difference (TD) signal introduced in theory of TD-
learning [22], which can be used by AC algorithms for both the actor and the critic. Since mid-brain
dopaminergic neurons project diffusively to both the ventral and dorsal components of the striatum,
these results are consistent with a TD-based AC learning interpretation of the basal ganglia. Second,
recent results suggest that synaptic plasticity occurring at the cortico-striatal synapses is strongly
modulated by dopamine [18]. Based on these observations it has been suggested that the basal gan-
glia take part in TD based RL, with the (global) phasic dopamine signal serving as the TD signal
[16] modulating synaptic plasticity.

Some recent work has been devoted to implementing RL in networks of spiking neurons (e.g., [1,
9, 12]). Such an approach may lead to specific and experimentally verifiable hypotheses regarding
the interaction of known synaptic plasticity rules and RL. In fact, one tantalizing possibility is to
test these derived rules in the context of ex-vivo cultured neural networks (e.g., [19]), which are
connected to the environment through input (sensory) and output (motor) channels. We then envision
dopamine serving as a biological substrate for implementing the TD signal in such a system. The
work cited above is mostly based on direct policy gradient algorithms, (e.g., [3]), leading to non-
AC approaches. Moreover, these algorithms were based directly on the reward, rather than on the
biologically better motivated TD signal, which provides more information than the reward itself,
and is expected to lead to improved convergence.

2 A Temporal Difference Based Actor-Critic Algorithm

The TD-based AC algorithm developed in this section is related to the one presented in [5, 6]. While
the derivation of the present algorithm differs from the latter work (which also stressed the issue of
the natural gradient) , the essential novel theoretical feature here is the establishment of convergence1

without the restriction to two time scales which was used in [5, 6, 13]. This result is also important
in a biological context, where, as far as we are aware, there is no evidence for such a time scale
separation.

2.1 Problem Formulation

We consider a finite Markov Decision Process (MDP) in discrete time with a finite state set X of
size |X | and a finite action set U . The MDP models the environment in which the agent acts. Each
selected action u ∈ U determines a stochastic matrix P (u) = [P (y|x, u)]x,y∈X where P (y|x, u) is
the transition probability from a state x ∈ X to a state y ∈ X given the control u. A parameterized
policy is described by a conditional probability function, denoted by µ(u|x, θ), which maps obser-
vation x ∈ X into a control u ∈ U given a parameter θ ∈ RK . For each state x ∈ X the agent
receives a corresponding reward r(x). The agent’s goal is to adjust the parameter θ in order to attain
maximum average reward over time.

For each θ ∈ RK , we have a Markov Chain (MC) induced by P (y|x, u) and µ(u|x, θ). The state
transitions of the MC are obtained by first generating an action u according to µ(u|x, θ), and then
generating the next state according to P (y|x, u)]x,y∈X . Thus, the MC has a transition matrix P (θ) =
[P (y|x, θ)]x,y∈X which is given by P (y|x, θ) =

∫
U P (y|x, u)dµ(u|x, θ). We denote the set of these

transition probabilities by P = {P (θ)|θ ∈ RK}, and its closure by P̄ . We denote by P (x, u, y)
the stationary probability to be in state x, choose action u and go to state y. Several technical
assumptions are required in the proofs below.

Assumption 2.1. (i) Each MC P (θ), P (θ) ∈ P̄ , is aperiodic, recurrent, and contains a single
equivalence class. (ii) The function µ(u|x, θ) is twice differentiable. Moreover, there exist positive
constants Br and Bµ, such that for all x ∈ X , u ∈ U , θ ∈ RK and 1 ≤ k1, k2 ≤ K, we have
|r(x)| ≤ Br, |∂µ(u|x, θ)/∂θk| ≤ Bµ, |∂2µ(u|x, θ)/∂θk1θk2 | ≤ Bµ.

As a result of assumption 2.1(i), we have the following lemma regarding the stationary distribution
(Theorem 3.1 in [8]).

1Throughout this paper convergence refers to convergence to a small ball around a stationary point; see
Theorem 2.6 for a precise definition.

Lemma 2.1. Under Assumption 2.1(i), each MC, P (θ) ∈ P̄ , has a unique stationary distribution,
denoted by π(θ), satisfying π(θ)′P (θ) = π(θ)′, where x′ is the transpose of vector x.

Next, we define a measure for performance of an agent in an environment. The average reward per
stage of a MC starting from an initial state x0 ∈ X is defined by

J(x|θ) , lim
T→∞

Eθ

[
1
T

T∑
n=0

r(xn)
∣∣∣x0 = x

]
,

where Eθ[·] denotes the expectation under the probability measure P (θ), and xn is the state at time
n. The agent’s goal is to find θ ∈ RK which maximizes J(x|θ). The following lemma shows
that under Assumption 2.1, the average reward per stage does not depend on the initial states (see
Theorem 4.7 in [10]).
Lemma 2.2. Under Assumption 2.1 and Lemma 2.1, the average reward per stage, J(x|θ), is inde-
pendent of the starting state, is denoted by η(θ), and satisfies η(θ) = π(θ)′r.

Based on Lemma 2.2, the agent’s goal is to find a parameter vector θ, which maximizes the average
reward per stage η(θ). Performing the maximization directly on η(θ) is hard. In the sequel we
show how this maximization can be performed by optimizing η(θ), using ∇η(θ). A consequence of
Assumption 2.1 and the definition of η(θ) is the following lemma (see Lemma 1 in [15]).
Lemma 2.3. For each x, y ∈ X and for each θ ∈ RK , the functions P (y|x, θ), π(x|θ), and η(θ),
are bounded, twice differentiable, and have bounded first and second derivatives.

Next, we define the differential value function of state x ∈ X which represents the average reward
the agent receives upon starting from a state x0 and reaching a recurrent state x∗ for the first time.
Mathematically,

h(x|θ) , Eθ

[
T∑

n=0

(r(xn)− η(θ))
∣∣∣x0 = x

]
, (1)

where T , min{k > 0|xk = x∗}. We define h(θ) , (h(x1|θ), . . . , h(x|X ||θ)) ∈ R|X |. For each
θ ∈ RK and x ∈ X , h(x|θ), r(x), and η(θ) satisfy Poisson’s equation (see Theorem 7.4.1 in [4]),

h(x|θ) = r(x)− η(θ) +
∑

y∈X
P (y|x, θ)h(y|θ). (2)

Based on the differential value definition we define the temporal difference (TD) between the states
x ∈ X and y ∈ X . Formally,

d(x, y) , r(x)− η(θ) + h(y|θ)− h(x|θ). (3)

The TD measures the difference between the differential value estimate following the receipt of
reward r(x) and a move to a new state y, and the estimate of the current differential state value at
state x.

2.2 Algorithmic details and single time scale convergence

We start with a definition of the likelihood ratio derivative, ψ(x, u|θ) , ∇µ(u|x, θ)/µ(u|x, θ),
which we assume to be bounded.
Assumption 2.2. For all x ∈ X , u ∈ U , and θ ∈ RK , there exists a positive constant, Bψ, such
that |ψ(x, u|θ)| ≤ Bψ < ∞.

In order to improve the agent’s performance, we need to follow the gradient direction. The following
theorem shows how the gradient of the average reward per stage can be calculated by the TD signal.
Similar variants of the theorem were proved using the Q-value [23] or state value [15] instead of the
TD-signal.
Theorem 2.4. The gradient of the average reward per stage for θ ∈ RK can be expressed by

∇η(θ) =
∑

x,y∈X ,u∈U
P (x, u, y)ψ(x, u|θ) (d(x, y) + f(x)) (f(x) arbitrary). (4)

The theorem was proved using an advantage function argument in [6]. We provide a direct proof
in section A of the supplementary material. The flexibility resulting from the function f(x) allows
us to encode the TD signal using biologically realistic positive values only, without influencing the
convergence proof. In this paper, for simplicity, we use f(x) = 0.

Based on Theorem 2.4, we suggest an TD-based AC algorithm. This algorithm is motivated by [15]
where an actor only algorithm was proposed. In [15] the differential value function was re-estimated
afresh for each regenerative cycle leading to a large estimation variance. Using the continuity of the
actor’s policy function in θ, the difference between the estimates between regenerative cycles is
small. Thus, the critic has a good initial estimate at the beginning of each cycle, which is used
here in order to reduce the variance. A related AC algorithm was proposed in [5, 6], where two
time scales were assumed in order to use Borkar’s two time scales convergence theorem [7]. In our
proposed algorithm, and associated convergence theorem, we do not assume different time scales
for the actor and for the critic.

We present batch mode update equations2 in Algorithm 1 for the actor and the critic. The algorithm
is based on some recurrent state x∗; the visit times to this state are denoted by t0, t1, Updated
occur only at these times (batch mode). We define a cycle of the algorithm by the time indices which
satisfy tm ≤ n < tm+1. The variables d̃, h̃(x), and η̃ are the critic’s estimates for d, h(x|θ), and
η(θ) respectively.

Algorithm 1 Temporal Difference Based Actor Critic Algorithm
1: Given

• An MDP with finite set X of states and a recurrent state x∗, satisfying 2.1(i).
• Hitting times t0 < t1 < t2 < · · · for the state x∗.
• Step coefficients γm such that

∑∞
m=1 γm = ∞ and

∑∞
m=1 γ2

m < ∞.
• A parameterized policy µ(u|x, θ), θ ∈ RK , which satisfies Assumption 2.1(ii).
• A set H , constants Bh̃ and Bθ, and an operator ΠH according to Assumption B.1.
• Step parameters Γη and Γh satisfying Theorem 2.6.

2: Initiate the critic’s variables:
• η̃0 = 0 (the estimate of the average reward per stage)
• h̃0(x) = 0, ∀x ∈ X (the estimate of the differential value function)

3: Initiate the actor: θ0 = 0 and choose f(x) (see (4))
4: for each state xtm+1 visited do
5: Critic: For all x ∈ X , Nm(x) , min{tm < k < tm+1|xk = x}, (min(∅) = ∞)

d̃(xn, xn+1) = r(xn)− η̃m + h̃m(xn+1)− h̃m(xn),

h̃m+1(x) = h̃m(x) + γmΓh




tm+1−1∑

n=Nm(x)

d̃(xn, xn+1)


 , ∀x ∈ X ,

η̃m+1 = η̃m + γmΓη

tm+1−1∑
n=tm

(r(xn)− η̃m).

6: Actor: θm+1 = θm + γm

∑tm+1−1
n=tm

ψ(xn, un|θm)(d̃(xn, xn+1) + f(xn))
7: Project each component of h̃m+1 and θm+1 onto H (see Assumption B.1.).
8: end for

In order to prove the convergence of Algorithm 1, we establish two basic results. The first shows that
the algorithm converges to the set of ordinary differential equations (5), and the second establishes
conditions under which the differential equations converge locally.

2In order to prove convergence certain boundedness conditions need to be imposed, which appear as step
7 in the algorithm. For lack of space, the precise definition of the set H is given in Assumption B.1 of the
supplementary material.

Theorem 2.5. Under Assumptions 2.1 and B.1, Algorithm 1 converges to the following set of ODE’s




θ̇ = T (θ)∇η(θ) + C(θ) (η(θ)− η̃) +
∑

x∈X
D(x)(θ)

(
h(x|θ)− h̃(x)

)
,

˙̃
h(x) = Γh

(
h(x|θ)− h̃(x)

)
+ ΓhT (θ) (η(θ)− η̃) , x ∈ X

˙̃η = ΓηT (θ) (η(θ)− η̃) ,

(5)

with probability 1, where

T = min{k > 0|x0 = x∗, xk = x∗}, T (θ) = Eθ[T], C(θ) = Eθ

[
T−1∑
n=0

ψ(xn, un|θ)
∣∣∣x0 = x∗

]
,

D(x)(θ) = Eθ

[
T−1∑
n=0

1 {xn+1 = x}ψ(xn, un|θ)
∣∣∣x0 = x∗

]
+ Eθ

[
T−1∑
n=0

(1 {xn = x}ψ(xn, un|θ)
∣∣∣x0 = x∗

]
,

and where T (θ), C(θ), and D(x)(θ) are continuous with respect to θ.

Theorem 2.5 is proved in section B of the supplementary material, based on the theory of stochas-
tic approximation, and more specifically, on Theorem 5.2.1 in [14]. An advantage of the proof
technique is that it does not need to assume two time scales.

The second theorem, proved in section C of the supplementary material, states the conditions for
which η(θt) converges to a ball around the local optimum.

Theorem 2.6. If we choose Γη ≥ B2
η̇/εη and Γh ≥ B2

ḣ
/εh, for some positive constants εh and εη ,

then lim supt→∞ ‖∇η(θ(t))‖ ≤ ε, where ε , BCεη + |X |BDεh. The constants Bη̇ and Bḣ are
defined in Section C of the supplementary material.

3 A Neural Algorithm for the Actor Using McCulloch-Pitts Neurons

In this section we apply the previously developed algorithm to the case of neural networks. We start
with the classic binary valued McCulloch-Pitts neuron, and then consider a more realistic spiking
neuron model. While the algorithm presented in Section 2 was derived and proved to converge in
batch mode, we apply it here in an online fashion. The derivation of an online learning algorithm
from the batch version is immediate (e.g., [15]), and a proof of convergence in this setting is currently
underway.

A McCulloch-Pitts actor network

The dynamics of the binary valued neurons, given at time n by {ui(n)}N
i=1, ui(n) ∈ {0, 1}, is

assumed to be based on stochastic discrete time parallel updates, given by

Pr(ui(n) = 1) = σ(vi(n)) where vi(n) =
N∑

j=1

wijuj(n− 1) (i = 1, 2, . . . , N).

Here σ(v) = 1/(1 + exp(−v)), and the parameters θ in Algorithm 1 are given by {wij}, where
wij(n) is the j 7→ i synaptic weight at time n. Each neuron’s stochastic output ui is viewed as an
action.

Applying the actor update from Algorithm 1 we obtain the following online learning rule

wij(n + 1) = wij(n) + γd(x(n), x(n + 1)) (ui(n)− σ(vi(n)))uj(n− 1). (6)

where d(x(n), x(n + 1)) is the TD signal.

The update (6) can be interpreted as an error-driven Hebbian-like learning rule modulated by the
TD signal. It resembles the direct policy update rule presented in [2], except that in this rule the
reward signal is replaced by the TD signal (computed by the critic). Moreover, the eligibility trace
formalism in [2] differs from our formulation.

We describe a simulation experiment conducted using a one layered feed-forward artificial neu-
ral network which functions as an actor, combined with a non biologically motivated critic. The
purpose of the experiment is to examine a simple neuronal model, using different actor and critic
architectures. The actor network consists of a single layered feed-forward network of McCulloch-
Pitts neurons, and TD modulated synapses as described above, where the TD signal is calculated by
a critic. The environment is a maze with barriers consisting of 36 states, see Figure 1(b), where a
reward of value 1 is provided at the top right corner, and is zero elsewhere. Every time the agent
receives a reward, it is transferred randomly to a different location in the maze. At each time step,
the agent is given an input vector which represents the state. The output layer consists of 4 output
neurons where each neuron represents an action from the action set U = {up, down, left, right}. We
used two different input representations for the actor, consisting either of 12 or 36 neurons (note that
the minimum number of input neurons to represent 36 states is 6, and the maximum number is 36).
The architecture with 36 input neurons represents each maze state with one exclusive neuron, thus,
there is no overlap between input vectors. The architecture with 12 input neurons uses a representa-
tion where each state is represented by two neurons, leading to overlaps between the input vectors.
We tested two types of critic: a table based critic which performs iterates according to Algorithm 1,
and an exact TD which provides the TD of the optimal policy. The results are shown in Figure 1(c),
averaged over 25 runs, and demonstrate the importance of good input representations and precise
value estimates.

(a) (b)

0 5 10 15

x 10
5

0

0.02

0.04

0.06

0.08

0.1

0.12

Number of Steps

A
ve

ra
ge

 R
ew

ar
d

pe
r

St
ag

e

(c)

Figure 1: (a) A illustration of the McCulloch-Pitts network. (b) A diagram of the maze where the agent needs
to reach the reward at the upper right corner. (c) The average reward per stage in four different cases: an actor
consisting of 12 input neurons and a table based critic (blue crosses), an actor consisting of 36 input neurons
and a table based critic (green stars), an actor consisting of 12 input neurons and exact critic (red circles), and
an actor consisting of 36 input neurons and an exact TD (black crosses). The optimal average reward per stage
is denoted by the dotted line, while a random agent achieves a reward of 0.005.

A spiking neuron actor

Actual neurons function in continuous time producing action potentials. In extension of [1, 9], we
developed an update rule which is based on the Spike Response Model (SRM) [11]. For each neuron
we define a state variable vi(t) which represents the membrane potential. The dynamics of vi(t) is
given by

vi(t) = ϑi(t− t̂i) +
N∑

j=1

wij(t)
∑

tf
j

εij(t− t̂i, t− tfj), (7)

where wij(t) is the synaptic efficacy, t̂i is the last spike time of neuron i prior o t, ϑi(t) is the
refractory response, tfj are the times of the presynaptic spikes emitted prior to time t, and εij(t −
t̂i, t − tfj) is the response induced by neuron j at neuron i. The second summation in (7) is over
all spike times of neuron j emitted prior to time t. The neuron model is assumed to have a noisy
threshold, which we model by an escape noise model [11]. According to this model, the neuron fires
in the time interval [t, t + δt) with probability ui(t)δt = ρi(vi(t) − vth)δt, where vth is the firing
threshold and ρi(·) is a monotonically increasing function. When the neuron reaches the threshold
it is assumed to fire and the membrane potential is reset to vr.

We consider a network of continuous time neurons and synapses. Based on Algorithm 1, using a
small time step δt, we find

wij(t + δt) = wij(t) + γd(t)ψij(t). (8)

We define the output of the neuron (interpreted as an action) at time t by ui(t). We note that the
neuron’s output is discrete and that at each time t, a neuron can fire, ui(t) = 1, or be quiescent,
ui(t) = 0. Using the definition of ψ from Section 2.2, yields (similar to [9])

ψij(t) =





ρ′i(t)
ρi(t)

∑
Ht

j
εij(t− t̂i, t− tfj), if ui(t) = 1

− δtρ′i(t)
1−δtρi(t)

∑
Ht

j
εij(t− t̂i, t− tfj), if ui(t) = 0

Taking the limit δt → 0, yields the following continuous time update rule

dwij(t)
dt

= γd(t)

Fpost({tf
i })︷ ︸︸ ︷(

(1/ρi(t))
∑

Hi

δ(t− tfi)− 1

)
ρ′i(t)

Fpre({tf
j })︷ ︸︸ ︷∑

Ht
j

εij(t− t̂i, t− tfj) . (9)

Similarly to [1, 9] we interpret the update rule (9) as a TD modulated spike time dependent plasticity
rule. A detailed discussion and interpretation of this update in a more biological context will be left
to the full paper.

We applied the update rule (9) to an actor network consisting of spiking neurons based on (7). The
network’s goal was to reach a circle at the center of a 2D plain =, where the agent can move, using
Newtonian dynamics, in the four principle directions. The actor is composed of an input layer and
a single layer of modifiable weights. The input layer consists of ‘sensory’ neurons which fire ac-
cording to the agent’s location in the environment. The synaptic dynamics of the actor is determined
by (9). The critic receives the same inputs as the actor, but uses a linear function approximation
architecture rather than the table lookup used in Algorithm 1. A standard parameter update rule
appropriate for this architecture (e.g., ch. 8 in [22]) was used to update the critic’s parameters3. The
output layer of the actor consists of four neuronal groups, representing the directions in which the
agent can move, coded based on a firing rate model using Gaussian tuning curves. The TD signal
is calculated according to (3). Whenever it reaches the centered circle, it receives a reward, and is
transferred randomly to a new position in the environment.

Results of such a simulation are presented in Figure 3. Figure 3-a displays the agent’s typical random
walk like behavior prior to learning, . Figure 3-b depicts four typical trajectories representing the
agent’s actions after a learning phase. Finally, Figure 3-c demonstrates the increase of the average
reward per stage, η, vs. time.

0 10 20
0

5

10

15

20

(a)
0 10 20

0

5

10

15

20

(b)

0 200 400 600
0

0.005

0.01

0.015

0.02

time[sec]

η

(c)

Figure 2: (a) Typical agent tracks prior to learning. (b) Agent trajectories following learning. (c) Average
reward per stage plotted against time.

4 Discussion

We have presented a temporal difference based actor critic learning algorithm for reinforcement
learning. The algorithm was derived from first principles based on following a noisy gradient of the

3Algorithm 1 relies on a table lookup critic, while in this example we used a function approximation based
critic, due to the large (continuous) state space.

average reward, and a convergence proof was presented without relying on the widely used two time
scale separation for the actor and the critic. The derived algorithm was applied to neural networks,
demonstrating their effective operation in maze problems. The motivation for the proposed algo-
rithm was biological, providing a coherent computational explanation for several recently observed
phenomena: actor critic architectures in the basal ganglia, the relation of phasic dopaminergic neu-
romodulators to the TD signal, and the modulation of the spike time dependent plasticity rules by
dopamine. While a great deal of further work needs to be done on both the theoretical and biologi-
cal components of the framework, we hope that these results provide a tentative step in the (noisy!)
direction of explaining biological RL.

References
[1] D. Baras and R. Meir. Reinforcement learning, spike time dependent plasticity and the bcm rule. Neural

Comput., 19(8):22452279, 2007

[2] J. Baxter and P.L. Bartlett. Hebbian synaptic modifications in spiking neurons that learn. (Technical rep.).
Canberra: Research School of Information Sciences and Engineering, Australian National University,
1999.

[3] J. Baxter and P.L. Bartlett. Infinite-Horizon Policy-Gradient Estimation. J. of Artificial Intelligence Re-
search, 15:319–350, 2001.

[4] D.P. Bertsekas. Dynamic Programming and Optimal Control, Vol I., 3rd Ed. Athena Scinetific, 2006.

[5] S. Bhatnagar, R. Sutton, M. Ghavamzadeh, and M. Lee. Incremental natural actor-critic algorithms. In J.C.
Platt, D. Koller, Y. Singer, and S. Roweis, editors, Advances in Neural Information Processing Systems 20,
pages 105–112. MIT Press, Cambridge, MA, 2008.

[6] S. Bhatnagar, R.S. Sutton, M. Ghavamzadeh, and M. Lee. Natural actor-critic algorithms. Automatica, To
appear, 2008.

[7] V.S. Borkar. Stochastic approximation with two time scales. Syst. Control Lett., 29(5):291294, 1997.

[8] P. Bremaud. Markov Chains: Gibbs Fields, Monte Carlo Simulation, and Queues. Springer, 1999.

[9] R.V. Florian. Reinforcement learning through modulation of spike-timing-dependent synaptic plasticity.
Neural Computation, 19:14681502, 2007.

[10] R.G. Gallager. Discrete Stochastic Processes. Kluwer Academic Publishers, 1995.

[11] W. Gerstner and W.M. Kistler. Spinking Neuron Models. Cambridge University Press, Cambridge, 2002.

[12] E.M. Izhikevich. Solving the Distal Reward Problem through Linkage of STDP and Dopamine Signaling.
Cerebral Cortex, 17(10):2443-52, 2007.

[13] V.R. Konda and J. Tsitsiklis. On actor critic algorithms. SIAM J. Control Optim., 42(4):11431166, 2003.

[14] H.J. Kushner and G.G. Yin. Stochastic Approximation Algorithms and Applications. Springer, 1997.

[15] P. Marbach and J. Tsitsiklis. Simulation-Based Optimization of Markov Reward Processes. IEEE. Trans.
Auto. Cont., 46:191–209, 1998.

[16] P.R. Montague, P. Dayan, and T.J. Sejnowski. A framework for mesencephalic dopamine systems based
on predictive hebbian learning. Journal of Neuroscience, 16:19361947, 1996.

[17] J. ODoherty, P. Dayan, J. Schultz, R. Deichmann, K. Friston, and R.J. Dolan. Dissociable roles of ventral
and dorsal striatum in instrumental conditioning. Science, 304:452454, 2004.

[18] J.N.J. Reynolds and J.R. Wickens. Dopamine-dependent plasticity of corticostriatal synapses. Neural Net-
works, 15(4-6):507521, 2002.

[19] S. Marom and G. Shahaf. Development, learning and memory in large random networks of cortical neu-
rons: lessons beyond anatomy. Quarterly Reviews of Biophysics, 35:6387, 2002.

[20] W. Schultz. Multiple reward signals in the brain. Nature Reviews Neuroscience, 1:199207, Dec. 2000.

[21] S. Singh and P. Dayan. Analytical mean squared error curves for temporal difference learning. Machine
Learning, 32:540, 1998.

[22] R. S. Sutton and A. G. Barto. Reinforcement Learning. MIT Press, 1998.

[23] R. Sutton, D. McAllester, S. Singh and Y. Mansour. Policy-Gradient Methods for Reinforcement Learning
with Function Approximation. Advances in Neural Information Processing Systems, 12:1057–1063, 2000.

[24] E.M. Tricomi, M.R. Delgado, and J.A. Fiez. Modulation of caudate activity by action contingency. Neu-
ron, 41(2):281292, 2004.

