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Abstract

A principled mechanism for identifying conditional dependencies in time-series
data is provided through structure learning of dynamic Bayesian networks
(DBNs). An important assumption of DBN structure learning is that the data are
generated by a stationary process—an assumption that is not true in many impor-
tant settings. In this paper, we introduce a new class of graphical models called
non-stationary dynamic Bayesian networks, in which the conditional dependence
structure of the underlying data-generation process is permitted to change over
time. Non-stationary dynamic Bayesian networks represent a new framework for
studying problems in which the structure of a network is evolving over time. We
define the non-stationary DBN model, present an MCMC sampling algorithm for
learning the structure of the model from time-series data under different assump-
tions, and demonstrate the effectiveness of the algorithm on both simulated and
biological data.

1 Introduction

Structure learning of dynamic Bayesian networks allows conditional dependencies to be identified
in time-series data with the assumption that the data are generated by a distribution that does not
change with time (i.e., it is stationary). An assumption of stationarity is adequate in many situations
since certain aspects of data acquisition or generation can be easily controlled and repeated. How-
ever, other interesting and important circumstances exist where that assumption does not hold and
potential non-stationarity cannot be ignored.

As one example, structure learning of DBNs has been used widely in reconstructing transcriptional
regulatory networks from gene expression data [1]. But during development, these regulatory net-
works are evolving over time, with certain conditional dependencies between gene products be-
ing created as the organism develops, while others are destroyed. As another example, dynamic
Bayesian networks have been used to identify the networks of neural information flow that operate
in the brains of songbirds [2]. However, as the songbird learns from its environment, the networks
of neural information flow are themselves slowly adapting to make the processing of sensory infor-
mation more efficient. As yet another example, one can use a DBN to model traffic flow patterns.
The roads upon which traffic passes do not change on a daily basis, but the dynamic utilization of
those roads changes daily during morning rush, lunch, evening rush, and weekends.

If one collects time-series data describing the levels of gene products in the case of transcriptional
regulation, neural activity in the case of neural information flow, or traffic density in the case of traffic
flow, and attempts to learn a DBN describing the conditional dependencies in these time-series, one
could be seriously misled if the data-generation process is non-stationary.

Here, we introduce a new class of graphical model called a non-stationary dynamic Bayesian net-
work (nsDBN), in which the conditional dependence structure of the underlying data-generation
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process is permitted to change over time. In the remainder of the paper, we introduce and define the
nsDBN framework, present a simple but elegant algorithm for efficiently learning the structure of
an nsDBN from time-series data under different assumptions, and demonstrate the effectiveness of
these algorithms on both simulated and experimental data.

1.1 Previous work

In this paper, we are interested in identifying how the conditional dependencies between time-series
change over time; thus, we focus on the task of inferring network structure as opposed to param-
eters of the graphical model. In particular, we are not as interested in making predictions about
future data (such as spam prediction via a naı̈ve Bayes classifier) as we are in analysis of collected
data to identify non-stationary relationships between variables in multivariate time-series. Here we
describe the few previous approaches to identifying non-stationary networks and discuss the advan-
tages and disadvantages of each. The model we describe in this paper has none of the disadvantages
of the models described below primarily because it makes fewer assumptions about the relationships
between variables.

Recent work modeling the temporal progression of networks from the social networks community
includes an extension to the discrete temporal network model [3], in which the the networks are
latent (unobserved) variables that generate observed time-series data [4]. Unfortunately, this tech-
nique has certain drawbacks: the variable correlations remain constant over time, only undirected
edges can be identified, and segment or epoch divisions must be identified a priori.

In the continuous domain, some research has focused on learning the structure of a time-varying
Gaussian graphical model [5] with a reversible-jump MCMC approach to estimate the time-varying
variance structure of the data. However, some limitations of this method include: the network
evolution is restricted to changing at most a single edge at a time and the total number of segments is
assumed known a priori. A similar algorithm—also based on Gaussian graphical models—iterates
between a convex optimization for determining the graph structure and a dynamic programming
algorithm for calculating the segmentation [6]. This approach is fast, has no single edge change
restriction, and the number of segments is calculated a posteriori; however, it does require that the
graph structure is decomposable. Additionally, both of the aforementioned approaches only identify
undirected edges and assume that the networks in each segment are independent, preventing data
and parameters from being shared between segments.

2 Brief review of structure learning of Bayesian networks

Bayesian networks are directed acyclic graphical models that represent conditional dependencies
between variables as edges. They define a simple decomposition of the complete joint distribution—
a variable is conditionally independent of its non-descendants given its parents. Therefore, the joint
distribution of every variable xi can be rewritten as

∏
i P (xi|πi, θi), where πi are the parents of xi,

and θi parameterizes the conditional probability distribution between a variable and its parents. The
posterior probability of a given network G (i.e., the set of conditional dependencies) after having
observed data D is estimated via Bayes’ rule: P (G|D) ∝ P (D|G)P (G). The structure prior P (G)
can be used to incorporate prior knowledge about the network structure, either about the existence
of specific edges or the topology more generally (e.g., sparse); if prior information is not available,
this is often assumed uniform. The marginal likelihood P (D|G) can be computed exactly, given
a conjugate prior for θi. When the θi are independent and multinomially distributed, a Dirichlet
conjugate prior is used, and the data are complete, the exactly solution for the marginal likelihood
is the Bayesian-Dirichlet equivalent (BDe) metric [7]. Since we will be modifying it later in this
paper, we show the expression for the BDe metric here:

P (D|G) =
n∏

i=1

qi∏
j=1

Γ(αij)
Γ(αij + Nij)

ri∏
k=1

Γ(αijk + Nijk)
Γ(αijk)

(1)

where qi is the number of configurations of the parent set πi, ri is the number of discrete states of
variable xi, Nij =

∑ri

k=1 Nijk, Nijk is the number of times Xi took on the value k given the parent
configuration j, and αij and αijk are Dirichlet hyper-parameters on various entries in Θ. If αijk

is set everywhere to α/(qiri), we get a special case of the BDe metric: the uniform BDe metric
(BDeu).
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Given a metric for evaluating the marginal likelihood P (D|G), a technique for finding the best net-
work(s) must be chosen. Heuristic search methods (i.e., simulated annealing, greedy hill-climbing)
may be used to find a best network or set of networks. Alternatively, sampling methods may be
used to estimate a posterior over all networks [8]. If the best network is all that is desired, heuris-
tic searches will typically find it more quickly than sampling techniques. In settings where many
modes are expected, sampling techniques will more accurately capture posterior probabilities re-
garding various properties of the network.

Finally, once a search or sampling strategy has been selected, we must determine how to move
through the space of all networks. A move set defines a set of local traversal operators for moving
from a particular state (i.e., a network) to nearby states. Ideally, the move set includes changes that
allow posterior modes to be frequently visited. For example, it is reasonable to assume that networks
that differ by a single edge will have similar likelihoods. A well designed move set results in fast
convergence since less time is spent in the low probability regions of the state space. For Bayesian
networks, the move set is often chosen to be {add an edge, delete an edge, and reverse an edge} [8].

DBNs are an extension of Bayesian networks to time-series data, enabling cyclic dependencies
between variables to be modeled across time. Structure learning of DBNs is essentially the same
as described above, except that modeling assumptions are made regarding how far back in time one
variable can depend on another (minimum and maximum lag), and constraints need to be placed
on edges so that they do not go backwards in time. For notational simplicity, we assume hereafter
that the minimum and maximum lag are both 1. More detailed reviews of structure learning can be
found in [9, 10].

3 Learning non-stationary dynamic Bayesian networks

We would like to extend the dynamic Bayesian network model to account for non-stationarity. In
this section, we detail how the structure learning procedure for DBNs to must be changed to account
for non-stationarity when learning non-stationary DBNs (nsDBNs).

Assume that we observe the state of n random variables at N discrete times. Call this multivariate
time-series data D, and further assume that it is generated according to a non-stationary process,
which is unknown. The process is non-stationary in the sense that the network of conditional de-
pendencies prevailing at any given time is itself changing over time. We call the initial network of
conditional dependencies G1 and subsequent networks are called Gi for i = 2, 3, . . . ,m. We define
∆gi to be the set of edges that change (either added or deleted) between Gi and Gi+1. The number
of edge changes specified in ∆gi is Si. We define the transition time ti to be the time at which Gi

is replaced by Gi+1 in the data-generation process. We call the period of time between consecu-
tive transition times—during which a single network of conditional dependencies is operative—an
epoch. So we say that G1 prevails during the first epoch, G2 prevails during the second epoch, and
so forth. We will refer to the entire series of prevailing networks as the structure of the nsDBN.

Since we wish to learn a set of networks instead of one network we must derive a new expression
for the marginal likelihood. Assume that there exist m different epochs with m − 1 transition
times T = {t1, . . . , tm−1}. The network Gi+1 prevailing in epoch i + 1 differs from network Gi

prevailing in epoch i by a set of edge changes we call ∆gi. We would like to determine the sequence
of networks G1, . . . , Gm that maximize the posterior:

P (G1, . . . , Gm|D,T ) ∝ P (D|G1, . . . , Gm, T )P (G1, . . . , Gm) (2)
∝ P (D|G1,∆g1, . . . ,∆gm−1, T )P (G1,∆g1, . . . ,∆gm−1) (3)
∝ P (D|G1,∆g1, . . . ,∆gm−1, T )P (G1)P (∆g1, . . . ,∆gm−1) (4)

We assume the prior over networks can be further split into independent components describing the
initial network and subsequent edge changes, as demonstrated in Equation (4). As in the stationary
setting, if prior knowledge about particular edges or overall topology is available, an informative
prior can be placed on G1. In the results reported here, we assume this to be uniform. We do,
however, place some prior assumptions on the ways in which edges change in the structure. First,
we assume that the networks evolve smoothly over time. To encode this prior knowledge, we place
an exponential prior with rate λs on the total number of edge changes s =

∑
i Si. We also assume

that the networks evolve slowly over time (i.e., a transition does not occur at every observation) by
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placing another exponential prior with rate λm on the number of epochs m. The updated posterior
for an nsDBN structure is given as:

P (G1,∆g1, . . . ,∆gm−1|T ) ∝ P (D|G1,∆g1, . . . ,∆gm−1, T ) e−λsse−λmm

To evaluate the new likelihood, we choose to extend the BDe metric because after the parameters
have been marginalized away, edges are the only representation of conditional dependencies that
are left; this provides a useful definition of non-stationarity that is both simple to define and easy
to analyze. We will assume that any other sources of non-stationarity are either small enough to
not alter edges in the predicted network or large enough to be approximated by edge changes in the
predicted network.

In Equation (1), Nij and Nijk are calculated for a particular parent set over the entire dataset D.
However, in an nsDBN, a node may have multiple parent sets operative at different times. The
calculation for Nij and Nijk must therefore be modified to specify the intervals during which each
parent set is operative. Note that an interval may be defined over several epochs. Specifically, an
epoch is defined between adjacent transition times while an interval is defined over the epochs during
which a particular parent set is operative (which may include all epochs).

For each node i, the previous parent set πi in the BDe metric is replaced by a set of parent sets πih,
where h indexes the interval Ih during which parent set πih is operative for node i. Let pi be the
number of such intervals and let qih be the number of configurations of πih. Then we can write:

P (D|G1, . . . , Gm, T ) ∝
n∏

i=1

pi∏
h=1

qih∏
j=1

Γ(αij(Ih))
Γ(αij(Ih) + Nij(Ih))

ri∏
k=1

Γ(αijk(Ih) + Nijk(Ih))
Γ(αijk(Ih))

(5)

where the counts Nijk and pseudocounts αijk have been modified to apply only to the data in
each interval Ih. The modified BDe metric will be referred to as nsBDe. We have chosen to set
αijk(Ih) = (αijk|Ih|)/N (e.g., proportional to the length of the interval during which that particular
parent set is operative).

We use a sampling approach rather than heuristic search because the posterior over structures in-
cludes many modes. Additionally, sampling allows us to answer questions like “what are the most
likely transition times?”—a question that would be difficult to answer in the context of heuristic
search.

Because the number of possible nsDBN structures is so large (significantly greater than the number
of possible DBNs), we must be careful about what options are included in the move set. To achieve
quick convergence, we want to ensure that every move in the move set efficiently jumps between
posterior modes. Therefore, the majority of the next section is devoted to describing effective move
sets under different levels of uncertainty.

4 Different settings regarding the number and times of transitions

An nsDBN can be identified under a variety of settings that differ in the level of uncertainty about
the number of transitions and whether the transition times are known. The different settings are
abbreviated according to the type of uncertainty: whether the number of transitions is known (KN)
or unknown (UN) and whether the transition times themselves are known (KT) or unknown (UT).

When the number and times of transitions are known a priori (KNKT setting), we only need to
identify the most likely initial network G1 and sets of edge changes ∆g1 . . .∆gm−1. Thus, we wish
to maximize Equation (4).

To create a move set that results in an effectively mixing chain, we consider which types of local
moves result in jumps between posterior modes. As mentioned earlier, structures that differ by
a single edge will probably have similar likelihoods. Additionally, structures that have slightly
different edge change sets will have similar likelihoods. The add edge, remove edge, add to edge
set, remove from edge set, and move from edge set moves are listed as (M1) − (M5) in Table 1 in
the Appendix.

Knowing in advance the times at which all the transitions occur is often unrealistic. When the
number of transitions is known but the times are unknown a priori (KNUT setting), the transition
times T must also be estimated a posteriori.
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Figure 1: Structure learning of nsDBNs under several settings. A. True non-stationary data-
generation process. Under the KNKT setting, the recovered structure is exactly this one. B. Under
the KNUT setting, the algorithm learns the model-averaged nsDBN structure shown. C: Posterior
probabilities of transition times when learning an nsDBN in the UNUT setting (with λs = 1 and
λm = 5). The blue triangles represent the true transition times and the red dots represent one stan-
dard deviation from the mean probability obtained from several runs. D: Posterior probabilities of
the number of epochs.

Structures with the same edge sets but slightly different transition times will probably have similar
likelihoods. Therefore, we can add a new move that proposes a local shift to one of the transition
times: let d be some small positive integer and let the new time t′i be drawn from a discrete uniform
distribution t′i ∼ DU(ti − d, ti + d) with the constraint that ti−1 < t′i < ti+1. Initially, we set the
m − 1 transition times so that the epochs are roughly equal in length. The complete move set for
this setting includes all of the moves described previously as well as the new local shift move, listed
as (M6) in Table 1 in the Appendix.

Finally, when the number and times of transitions are unknown (UNUT setting), both m and T must
be estimated. While this is the most interesting setting, it is also the most difficult since one of
the unknowns is the number of unknowns. Using the reversible jump Markov chain Monte Carlo
sampling technique [11], we can further augment the move set to allow for the number of transitions
to change. Since the number of epochs m is allowed to vary, this is the only setting that incorporates
the prior on m.

To allow the number of transitions to change during sampling, we introduce merge and split op-
erations to the move set. For the merge operation, two adjacent edge sets (∆gi and ∆gi+1) are
combined to create a new edge set. The transition time of the new edge set is selected to be the mean
of the previous locations weighted by the size of each edge set: t′i = (Siti +Si+1ti+1)/(Si +Si+1).
For the split operation, an edge set ∆gi is randomly chosen and randomly partitioned into two new
edge sets ∆g′i and ∆g′i+1 with all subsequent edge sets re-indexed appropriately. Each new transi-
tion time is selected as described above. The move set is completed with the inclusion of the add
transition time and delete transition time operations. These moves are similar to the split and merge
operations except they also increase or decrease s, the total number of edge changes in the structure.
The four additional moves are listed as (M7)− (M10) in Table 1 in the Appendix.

5 Results on simulated data

To evaluate the effectiveness of our method, we first apply it to a small, simulated dataset. The
first experiment is on a simulated ten node network with six single-edge changes between seven
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epochs where the length of each epoch varies between 20 and 400 observations. The true network
is shown in Figure 1A. For each of the three settings, we generate ten individual datasets and then
collect 250,000 samples from each, with the first 50,000 samples thrown out for burn-in. We repeat
the sample collection 25 times for each dataset to obtain variance estimates on posterior quantities
of interest. The sample collection takes about 25 seconds for each dataset on a 3.6GHz dual-core
Intel Xeon machine with 4 GB of RAM, but all runs can easily be executed in parallel. To obtain a
consensus (model averaged) structure prediction, an edge is considered present at a particular time
if the posterior probability of the edge is greater than 0.5.

In the KNKT setting, the sampler rapidly converges to the correct solution. The value of λm has
no effect in this setting, and the value of λs is varied between 0.1 and 50. The predicted structure
is identical to the true structure shown in Figure 1A for a broad range of values: 0.5 ≤ λs ≤ 10.0,
indicating robust and accurate learning.

In the KNUT setting, transition times are unknown and must be estimated a posteriori. The value
of λm still has no effect in this setting and the value of λs is again varied between 0.1 and 50. The
predicted consensus structure is shown in Figure 1B for λs = 5.0; this choice of λs provides the
most accurate predictions.

The estimated structure and transition times are very close to the truth. All edges are correct, with
the exception of two missing edges in G1, and the predicted transition times are all within 10 of the
true transition times. We also discovered that the convergence rate under the KNUT and the KNKT
settings were very similar for a given m. This implies that the posterior over transition times is quite
smooth; therefore, the mixing rate is not greatly affected when sampling transition times. Finally,
we consider the UNUT setting, when the number and times of transitions are both unknown.

We use the range 1 ≤ λs ≤ 5 because we know from the previous settings that the most accurate
solutions were obtained from a prior within this range; the range 1 ≤ λm ≤ 50 is selected to provide
a wide range of estimates for the prior since we have no a priori knowledge of what it should be.

We can examine the posterior probabilities of transition times over all sampled structures, shown
in Figure 1C. Highly probable transition times correspond closely with the true transition times
indicated by blue triangles; nevertheless, some uncertainty exists on about the exact locations of t3
and t4 since the fourth epoch is exceedingly short. We can also examine the posterior number of
epochs, shown in Figure 1D. The most probable posterior number of epochs is six, close to the true
number of seven.

To identify the best parameter settings for λs and λm, we examine the best F1-measure (the harmonic
mean of the precision and recall) for each. The best F1-measure of 0.992 is obtained when λs = 5
and λm = 1, although nearly all choices result in an F1-measure above 0.90 (see Appendix).

To evaluate the scalability of our technique, we also simulated data from a 100 variable network
with an average of fifty edges over five epochs spanning 4800 observations, with one to three edges
changing between each epoch. Learning nsDBNs on this data for λs ∈ {1, 2, 5} and λm ∈ {2, 3, 5}
results in F1-measures above 0.93, with the λs = 1 and λm = 5 assignments to be best for this data,
with an F1-measure of 0.953.

6 Results on Drosophila muscle development gene expression data

We also apply our method to identify non-stationary networks using Drosophila development gene
expression data from [12]. This data contains expression measurements over 66 time steps of 4028
Drosophila genes throughout development and growth during the embryonic, larval, pupal, and adult
stages of life. Using a subset of the genes involved in muscle development, some researchers have
identified a single directed network [13], while others have learned a time-varying undirected net-
work [4]. To facilitate comparison with as many existing methods as possible, we apply our method
to the same data. Unfortunately, no other techniques predict non-stationary directed networks, so
our prediction in Figure 2C is compared to the stationary directed network in Figure 2A and the
non-stationary undirected network in Figure 2B.

While all three predictions share many edges, certain similarities between our prediction and one
or both of the other two predictions are of special interest. In all three predictions, a cluster seems
to form around myo61f, msp-300, up, mhc, prm, and mlc1. All of these genes except up are in the
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Figure 2: Learning nsDBNS from the Drosophila muscle development data. A. The directed net-
work reported by [13]. B. The undirected networks reported by [4]. C. The nsDBN structure learned
under the KNKT setting with λs = 2.0. Only the edges that occurred in greater than 50 percent of
the samples are shown, with thicker edges representing connections that occurred more frequently.
D. Posterior probabilities of transition times using λm = λs = 2 under the UNUT setting. Blue
triangles represent the borders of embryonic, larval, pupal, and adult stages. E. Posterior probability
of the number of epochs under the UNUT setting.

myosin family, which contains genes involved in muscle contraction. Within the directed predictions,
msp-300 primarily serves as a hub gene that regulates the other myosin family genes. It is interesting
to note that the undirected method predicts connections between mcl1, prm, and mhc while neither
directed method make these predictions. Since msp-300 seems to serve as a regulator to these genes,
the method from [4] may be unable to distinguish between direct interactions and correlations due
to its undirected nature.

Despite the similarities, some notable differences exist between our prediction and the other two
predictions. First, we predict interactions from myo61f to both prm and up, neither of which is
predicted in the other methods, suggesting a greater role for myo61f during muscle development.
Also, we do not predict any interactions with twi. During muscle development in Drosophila, twi
acts as a regulator of mef2 that in turn regulates some myosin family genes, including mlc1 and
mhc [14]; our prediction of no direct connection from twi mirrors this biological behavior. Finally,
we note that in our predicted structure, actn never connects as a regulator (parent) to any other
genes, unlike in the network in Figure 2A. Since actn (actinin) only binds actin, we do not expect it
to regulate other muscle development genes, even indirectly.

We can also look at the posterior probabilities of transition times and epochs under the UNUT
setting. These plots are shown in Figure 2D and 2E, respectively. The transition times with high
posterior probabilities correspond well to the embryonic→larval and the larval→pupal transitions,
but a posterior peak occurs well before the supposed time of the pupal→adult transition; this reveals
that the gene expression program governing the transition to adult morphology is active well before
the fly emerges from the pupa, as would clearly be expected. Also, we see that the most probable
number of epochs is three or four, mirroring closely the total number of developmental stages.

Since we could not biologically validate the fly network, we generated a non-stationary time-series
with the same number of nodes and a similar level of connectivity to evaluate the accuracy a re-
covered nsDBN on a problem of exactly this size. We generated data from an nsDBN with 66
observations and transition times at 30, 40, and 58 to mirror the number of observations in embry-
onic, larval, pupal, and adult stages of the experimental fly data. Since it is difficult to estimate the
amount of noise in the experimental data, we simulated noise at 1:1 to 4:1 signal-to-noise ratios.
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Finally, since many biological processes have more variables than observations, we examined the
effect of increasing the number of experimental replicates. We found that the best F1-measures
(greater than 0.75 across all signal-to-noise ratios and experimental replicates) were obtained when
λm = λs = 2, which is why we used those values to analyze the Drosophila muscle network data.

7 Discussion

Non-stationary dynamic Bayesian networks provide a useful framework for learning Bayesian net-
works when the generating processes are non-stationary. Using the move sets described in this
paper, nsDBN learning is efficient even for networks of 100 variables, generalizable to situations of
varying uncertainty (KNKT, KNUT, and UNUT), and the predictions are stable over many choices
of hyper-parameters. Additionally, by using a sampling-based approach, our method allows us to
assess a confidence for each predicted edge—an advantage that neither [13] nor [4] share.

We have demonstrated the feasibility of learning an nsDBN in all three settings using simulated data,
and in the KNKT and UNUT settings using real biological data. Although the predicted fly muscle
development networks are difficult to verify, simulated experiments of a similar scale demonstrate
highly accurate predictions, even with noisy data and few replicates.

Non-stationary DBNs offer all of the advantages of DBNs (identifying directed non-linear interac-
tions between multivariate time-series) and are additionally able to identify non-stationarities in the
interactions between time-series. In future work, we hope to analyze data from other fields that
have traditionally used dynamic Bayesian networks and instead use nsDBNs to identify and model
previously unknown or uncharacterized non-stationary behavior.
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