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Abstract

Continuous attractor neural networks (CANNs) are emerging as promising mod-
els for describing the encoding of continuous stimuli in neural systems. Due to
the translational invariance of their neuronal interactions, CANNs can hold a con-
tinuous family of neutrally stable states. In this study, we systematically explore
how neutral stability of a CANN facilitates its tracking performance, a capacity
believed to have wide applications in brain functions. We develop a perturbative
approach that utilizes the dominant movement of the network stationary states in
the state space. We quantify the distortions of the bump shape during tracking,
and study their effects on the tracking performance. Results are obtained on the
maximum speed for a moving stimulus to be trackable, and the reaction time to
catch up an abrupt change in stimulus.

1 Introduction

Understanding how the dynamics of a neural network is shaped by the network structure, and con-
sequently facilitates the functions implemented by the neural system, is at the core of using mathe-
matical models to elucidate brain functions [1]. The impact of the network structure on its dynamics
is twofold: on one hand, it decides stationary states of the network which leads to associative mem-
ory; and on the other hand, it carves the landscape of the state space of the network as a whole
which may contribute to other cognitive functions, such as movement control, spatial navigation,
population decoding and object categorization.

Recently, a type of attractor networks, called continuous attractor neural networks (CANNs), has
received considerable attention (see, e.g., [2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13, 5]). These networks
possess a translational invariance of the neuronal interactions. As a result, they can hold a family of
stationary states which can be translated into each other without the need to overcome any barriers.
Thus, in the continuum limit, they form a continuous manifold in which the system is neutrally
stable, and the network state can translate easily when the external stimulus changes continuously.
Beyond pure memory retrieval, this large-scale stucture of the state space endows the neural system
with a tracking capability. This is different from conventional models of associative memory, such
as the Hopfield model [14], in which the basin of each attactor is well separated from the others.

The tracking dynamics of a CANN has been investigated by several authors in the literature (see,
e.g., [3, 4, 5, 8, 11]). These studies have shown that a CANN has the capacity of tracking a moving
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stimulus continuously and that this tracking property can well justify many brain functions. Despite
these successes, however, a detailed analysis of the tracking behaviors of a CANN is still lacking.
These include, for instance, 1) the conditions under which a CANN can successfully track a moving
stimulus, 2) the distortion of the shape of the network state during the tracking, and 3) the effects
of these distortions on the tracking speed. In this paper we will report, as far as we know, the first
systematic study on these issues. We hope this study will help to establish a complete picture about
the potential applications of CANNs in neural systems.

We will use a simple, analytically-solvable, CANN model as the working example. We display
clearly how the dynamics of a CANN is decomposed into different distortion modes, corresponding
to, respectively, changes in the height, position, width and skewness of the network state. We then
demonstrate which of them dominates the tracking behaviors of the network. In order to solve the
dynamics which is otherwise extremely complicated for a large recurrent network, we develop a
time-dependent perturbation method to approximate the tracking performance of the network. The
solution is expressed in a simple closed-form, and we can approximate the network dynamics up to
an arbitory accuracy depending on the order of perturbation used. We expect that our method will
provide a useful tool for the theoretical studies of CANNs. Our work generates new predictions on
the tracking behaviors of CANNs, namely, the maximum tracking speed to moving stimuli, and the
reaction time to sudden changes in external stimuli, both are testable by experiments.

2 The Intrinsic Dynamics of CANNs

We consider a one-dimensional continuous stimulus being encoded by an ensemble of neurons. The
stimulus may represent, for example, the moving direction, the orientation, or a general continuous
feature of an external object. LetU(x, t) be the synaptic input at timet to the neurons with preferred
stimulus of real-valuedx. We will consider stimuli and responses with correlation lengtha much
less than the range ofx, so that the range can be effectively taken to be(−∞,∞). The firing rate
r(x, t) of these neurons increases with the synaptic input, but saturates in the presence of a global
activity-dependent inhibition. A solvable model that captures these features is given by

r(x, t) =
U(x, t)2

1 + kρ
∫

dx′U(x′, t)2
, (1)

whereρ is the neural density, andk is a small positive constant controlling the strength of global
inhibition. The dynamics of the synaptic inputU(x, t) is determined by the external inputIext(x, t),
the network input from other neurons, and its own relaxation. It is given by

τ
dU(x, t)

dt
= Iext(x, t) + ρ

∫

dx′J(x, x′)r(x′, t) − U(x, t), (2)

whereτ is the time constant, which is typically of the order 1 ms, andJ(x, x′) is the neural inter-
action fromx′ to x. The key characteristic of CANNs is the translational invariance of their neural
interactions. In our solvable model, we choose Gaussian interactions with a rangea, namely,

J(x, x′) = exp[−(x − x′)2/(2a2)]J/
√

2πa2. (3)

CANN models with other neural interactions and inhibition mechanisms have been studied [2, 3, 4,
7, 9]. However, our model has the advantage of permitting a systematic perturbative improvement.
Nevertheless, the final conclusions of our model are qualitatively applicable to general cases (to be
further discussed at the end of the paper).

We first consider the intrinsic dynamics of the CANN model in the absence of external stimuli. For
0 < k < kc ≡ ρJ2/(8

√
2πa), the network holds a continuous family of stationary states, which are

Ũ(x|z) = U0 exp

[

− (x − z)2

4a2

]

, (4)

whereU0 = [1 + (1 − k/kc)
1/2]J/(4

√
πak). These stationary states are translationally invariant

among themselves and have the Gaussian bumped shape peaked at arbitrary positionsz.

The stability of the Gaussian bumps can be studied by considering the dynamics of fluctuations.
Consider the network stateU(x, t) = Ũ(x|z) + δU(x, t). Then we obtain

τ
d

dt
δU(x, t) =

∫

dx′F (x, x′)δU(x′, t) − δU(x, t), (5)
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Figure 1: The first four basis functions of the quantum harmonic oscillators, which represent four
distortion modes of the network dynamics, namely, changes in the height, position, width and skew-
ness of a bump state.

where the interaction kernel is given byF (x, x′) = ρ
∫

dx′′J(x, x′′)∂r(x′′)/∂U(x′).

2.1 The motion modes

To compute the eigenfunctions and eigenvalues of the kernelF (x, x′), we choose the wave functions
of the quantum harmonic oscillators as the basis, namely,

vn(x|z) =
exp(−ξ2/2)Hn(ξ)
√

(2π)1/2an!2n
, (6)

whereξ ≡ (x − a)/(
√

2a) and Hn(ξ) is thenth order Hermite polynomial function. Indeed, the
ground state of the quantum harmonic oscillator corresponds to the Gaussian bump, and the first,
second, and third excited states correspond to fluctuations in the peak position, width, and skewness
of the bump respectively (see Fig. 1). The eigenvalues of the kernelF are calculated to be

λ0 = 1 − (1 − k/kc)
1/2; λn = 1/2n−1, for n ≥ 1. (7)

The eigenfunctions ofF can also be analytically calculated, which turn out to be either the
basis functionsvn(x|z) or a linear combination of them. Here we only list the first four of
them, which areu0(x|z) = v0(x|z), u1(x|z) = v1(x|z), u2(x|z) = 1/(

√
2D0)v0(x|z) +

(1 − 2
√

1 − k/kc)/D0v2(x|z), with D0 = [(1 − 2
√

1 − k/kc)
2 + 1/2]1/2 and u3(x|z) =

√

1/7v1(x, z) +
√

6/7v3(x, z).

The eigenfunctions ofF correspond to the various distortion modes of the bump. Sinceλ1 = 1
and all other eigenvalues are less than 1, the stationary state is neutrally stable in one component,
and stable in all other components. The first two eigenfunctions are particularly important. (1)
The eigenfunction for the eigenvalueλ0 is u0(x|z), and represents a distortion of the amplitude of
the bump. As we shall see, amplitude changes of the bump affect its tracking performance. (2)
Central to the tracking capability of CANNs, the eigenfunction for the eigenvalue 1 isu1(x|z) and
is neutrally stable. We note thatu1(x|z) ∝ ∂v0(x|z)/∂z, corresponding to the shift of the bump
position among the stationary states. This neutral stability is the consequence of the translational
invariance of the network. It implies that when there are external inputs, however small, the bump
will move continuously. This is a unique property associated with the special structure of a CANN,
not shared by other attractor models. Other eigenfunctions correspond to distortions of the shape of
the bump, for example, the eigenfunctionu3(x|z) corresponds to a skewed distortion of the bump.

2.2 The energy landscape

It is instructive to consider the energy landscape in the state space of a CANN. SinceF (x, x′) is not
symmetric, a Lyapunov function cannot be derived for Eq. (5). Nevertheless, for each peak position
z, one can define an effective energy functionE|z =

∑

n(1 − λn)bn|2z/2, wherebn|z is the overlap
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Figure 2: The canyon formed by the stationary states of a CANN projected onto the subspace formed
by b1|0, the position shift, andb0|0, the height distortion. Motion along the canyon corresponds to
the displacement of the bump (inset).

betweenU(x)− Ũ(x|z) and thenth eigenfunction ofF centered atz. Then the dynamics in Eq. (5)
can be locally described by the gradient descent ofE|z in the space ofbn|z. Since the set of points
bn|z = 0 for n 6= 1 traces out a line withE|z = 0 in the state space whenz varies, one can envisage a
canyon surrounding the line and facilitating the local gradient descent dynamics, as shown in Fig. 2.
A small force along the tangent of the canyon can move the network state easily. This illustrates
how the landscape of the state space of a CANN is shaped by the network structure, leading to the
neutral stability of the system, and how this neutral stability shapes the network dynamics.

3 The Tracking Behaviors

We now consider the network dynamics in the presence of a weak external stimulus. Suppose the
neural response at timet is peaked atz(t). Since the dynamics is primarily dominated by the trans-
lational motion of the bump, with secondary distortions in shape, we may develop a time-dependent
perturbation analysis using{vn(x|z(t))} as the basis, and consider perturbations in increasing orders
of n. This is done by considering solutions of the form

U(x, t) = Ũ(x|z(t)) +

∞
∑

n=0

an(t)vn(x|z(t)). (8)

Furthermore, since the Gaussian bump is the steady-state solution of the dynamical equation in
the absence of external stimuli, the neuronal interaction term in Eq. (2) can be linearized for weak
stimuli. Making use of the orthonormality and completeness of{vn(x|z(t))}, we obtain from Eq. (2)
expressions fordan/dt at each ordern of perturbation, which are

(

d

dt
+

1 − λn

τ

)

an =
In

τ
−

[

U0

√

(2π)1/2aδn1 +
√

nan−1 −
√

n + 1an+1

]

1

2a

dz

dt

+
1

τ

∞
∑

r=1

√

(n + 2r)!

n!

(−1)r

2n+3r−1r!
an+2r, (9)

whereIn(t) is the projection of the external inputIext(x, t) on thenth eigenfunction.

Determiningz(t) by the center of mass ofU(x, t), we obtain the self-consistent condition

dz

dt
=

2a

τ

(

I1 +
∑

∞

n=3,odd

√

n!!/(n − 1)!!In + a1

U0

√

(2π)1/2a +
∑

∞

n=0,even

√

(n − 1)!!/n!!an

)

. (10)

Eqs.(9) and (10) are the master equations of the perturbation method. We can approximate the
network dynamics up to an arbitary accuracy depending on the choice of the order of perturbation.
In practice, low order perturbations already yield very accurate results.

3.1 Tracking a moving stimulus

Consider the external stimulus consisting of a Gaussian bump, namely,Iext(x, t) = αU0 exp[−(x−
z0)

2/4a2]. Perturbation up to the ordern = 1 yields a1(t) = 0, [d/dt + (1 − λ0)/τ ]a0 =
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Figure 3: (a) The time dependence of the separations starting from different initial values. Symbols:
simulations withN = 200 andv = 0.025. Lines: n = 5 perturbation. Dashed lines:s1 (bottom)
ands2 (top). (b) The dependence of the terminal separations on the stimulus speedv. Symbols:
simulations withN = 200. Dashed line:n = 1 perturbation. Parameters:α = 0.05, a = 0.5,
τ = 1, k = 0.5, ρ = N/(2π), J =

√
2πa2.

αU0

√

(2π)1/2a exp[−(z0 − z)2/8a2]/τ , and

dz

dt
=

α

τ
(z0 − z) exp

[

− (z0 − z)2

8a2

]

R(t)−1, (11)

whereR(t) = 1 + α
∫ t

−∞
(dt′/τ) exp[−(1 − λ0)(t − t′)/τ − (z0 − z(t′))2/8a2], representing the

ratio of the bump height relative to that in the absence of the external stimulus (α= 0). Hence,
the dynamics is driven by a pull of the bump position towards the stimulus positionz0. The factor
R(t) > 1 implies that the increase in amplitude of the bump slows down its response.

The tracking performance of a CANN is a key property that is believed to have wide applications in
neural systems. Suppose the stimulus is moving at a constant velocityv. The dynamical equation
becomes identical to Eq. (11), withz0 = vt. Denoting the lag of the bump behind the stimulus by
s = z0 − z we have, after the transients,

ds

dt
= v − g(s); g(s) ≡ αse−s2/8a2

τ

[

1 +
αe−s2/8a2

1 − λ0

]

−1

. (12)

The value ofs is determined by two competing factors: the first term represents the movement of
the stimulus, which tends to enlarge the separation, and the second term represents the collective
effects of the neuronal recurrent interactions, which tends to reduce the lag. Tracking is maintained
when these two factors match each other, i.e.,v = g(s); otherwise,s diverges.

The functiong(s) is concave, and has the maximum value ofgmax = 2αa/(τ
√

e) at s = 2a.
This means that ifv > gmax, the network is unable to track the stimulus. Thus,gmax defines the
maximum trackable speed of a moving stimulus. Notably,gmax increases with the strength of the
external signal and the range of neuronal recurrent interactions. This is reasonable since it is the
neuronal interactions that induce the movement of the bump.gmax decreases with the time constant
of the network, as this reflects the responsiveness of the network to external inputs.

On the other hand, forv < gmax, there is a stable and unstable fixed point of Eq. (12), respectively
denoted bys1 ands2. When the initial distance is less thans2, it will converge tos1. Otherwise, the
tracking of the stimulus will be lost. Figs. 3(a) and (b) show that the analytical results of Eq. (12)
well agree with the simulation results.

3.2 Tracking an abrupt change of the stimulus

Suppose the network has reached a steady state with an external stimulus stationary att < 0, and
the stimulus position jumps from 0 toz0 suddenly att = 0. This is a typical scenario in experi-
ments studying mental rotation behaviors. We first consider the case that the jump sizez0 is small
compared with the rangea of neuronal interactions. In the limit of weak stimulus, the dynamics is
described by Eq. (11) withR(t) = 1. We are interested in estimating the reaction timeT , which is
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the time taken by the bump to move to a small distanceθ from the stimulus position. The reaction
time increases logarithmically with the jump size, namely,T ≈ (τ/α) ln(|z0|/θ).

0 0.5 1 1.5 2 2.5 3
z

0

0

100

200

300

400
T

Simulation
"n=1" perturbation
"n=2" perturbation
"n=3" perturbation
"n=4" perturbation
"n=5" perturbation

(a)

-2 0 2
x

0

0.5

1

1.5

2

U
(x

)

(b)

Figure 4: (a) The dependence of the reaction timeT on the new stimulus positionz0. Parameters: as
in Fig.3. (b) Profiles of the bump between the old and new positions atz0 = π/2 in the simulation.

When the strengthα of the external stimulus is larger, improvement using a perturbation analysis
up to n = 1 is required when the jump sizez0 is large. This amounts to taking into account the
change of the bump height during its movement from the old to new position. The result is identical
to Eq. (11), withR(t) replaced by

R(t) = 1 +
α

1 − λ0

exp

[

− (1 − λ0)

τ
t

]

+ α

∫ t

0

dt′

τ
exp

[

− (1 − λ0)

τ
(t − t′) − (z0 − z(t′))2

8a2

]

.

(13)
Indeed,R(t) represents the change in height during the movement of the bump. Contributions from
the second and third terms show that it is highest at the initial and final positions respectively, and
lowest at some point in between, agreeing with simulation results shown in Fig. 4(b). Fig. 4(a)
shows that then = 1 perturbation overcomes the insufficiency of the logarithmic estimate, and has
an excellent agreement with simulation results forz0 up to the order of2a. We also compute the
reaction time up to then = 5 perturbation, and the agreement with simulations remains excellent
even whenz0 goes beyond2a. This implies that beyond the range of neuronal interaction, tracking
is influenced by the distortion of the width and the skewed shape of the bump.

4 The Two-Dimensional Case

We can straightforwardly extend the above analysis to two-dimensional (2D) CANNs. Consider
a neural ensemble encoding a 2D continuous stimulusx = (x1, x2), and the network dynamics
satisfies Eqs. (1-3) withx andx′ being replaced byx andx

′, respectively. We can check that the
network holds a continuous family of stationary states given by

Ũ(x|z) = U0 exp

[

− (x − z)2

4a2

]

, (14)

wherez is a free parameter indicating the position of the network state in a 2D manifold, and
(x − z)2 = (x1 − z1)

2 + (x2 − z2)
2 the Euclidean distance betweenx andz.

By applying the stability analysis as in Sec. 2, we obtain the distortion modes of the bump dynamics,
which are expressed as the product of the motion modes in the 1D case, i.e.,

um,n(x|z) = um(x1|z1)un(x2|z2), for m,n = 0, 1, 2, . . . (15)

The eigenvalues for these motion modes are calculated to beλ0,0 = λ0, λm,0 = λm, for m 6= 0,
λ0,n = λn, for n 6= 0, andλm,n = λmλn, for m 6= 0 andn 6= 0.

The modeu1,0(x|z) corresponds to the position shift of the bump in the directionx1 andu0,1(x|z)
the position shift in the directionx2. A linear combination of them,c1u1,0(x|z) + c2u0,1(x|z),
corresponds to the position shift of the bump in the direction(c1, c2). We see that the eigenvalues
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for these motion modes are 1, implying that the network is neutrally stable in the 2D manifold.
The eigenvalues for all other motion modes are less than 1. Figure 5 illustrates the tracking of a
2D stimulus, and the comparison of simulation results on the reaction time with the perturbative
approach. Then = 1 perturbation already has an excellent agreement over a wide range of stimulus
positions.
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Figure 5: (a) The tracking process of the network; (b) The reaction time vs. the jump size. The
simulation result is compared with the theoretical prediction. Parameters:N = 40 × 40, k = 0.5,
a = 0.5, τ = 1, J =

√
2πa2, ρ = N/(2π)2 andα = 0.05.

5 Conclusions and Discussions

To conclude, we have systematically investigated how the neutral stability of a CANN facilitates
the tracking performance of the network, a capability which is believed to have wide applications in
brain functions. Two interesting behaviors are observed, namely, the maximum trackable speed for
a moving stimulus and the reaction time for catching up an abrupt change of a stimulus, logarithmic
for small changes and increasing rapidly beyond the neuronal range. These two properties are asso-
ciated with the unique dynamics of a CANN. They are testable in practice and can serve as general
clues for checking the existence of a CANN in neural systems. In order to solve the dynamics which
is otherwise extremely complicated for a large recurrent network, we have developed a perturbative
analysis to simplify the dynamics of a CANN. Geometrically, it is equivalent to projecting the net-
work state on its dominant directions of the state space. This method works efficiently and may be
widely used in the study of CANNs.

The special structure of a CANN may have other applications in brain functions, for instance, the
highly structured state space of a CANN may provide a neural basis for encoding the topological
relationship of objects in a feature space, as suggested by recent psychophysical experiments [15,
16]. It is likely that the distance between two memory states in a CANN defines the perceptual
similarity between the two objects. Interestingly to note that the perceptual similarity measured by
the psychometric functions of human subjects in a categorization task has a similar logarithimic
nature as that of reaction times in a CANN [17]. To study these issues theoretically and justify the
experimental findings, it is important for us to have analytic solutions of the state space and the
dynamical behaviors of CANNs. We expect the analytical solution developed here will serve as a
valuable mathematical tool.

The tracking dynamics of a CANN has also been studied by other authors. In particular, Zhang
proposed a mechanism of using asymmetrical recurrent interactions to drive the bump, so that the
shape distortion is minimized [4]. Xie et al. further proposed a double ring network model to achieve
these asymmetrical interactions in the head-direction system [8]. It is not clear how this mechanism
can be generated in other neural systems. For instance, in the visual and hippocampal systems, it is
often assumed that the bump movement is directly driven by external inputs (see, e.g., [5, 19, 20]),
and the distortion of the bump is inevitable (indeed the bump distortions in [19, 20] are associated
with visual perception). The contribution of this study is on that we quantify how the distortion of
the bump shape affects the network tracking performance, and obtain a new finding on the maximum
trackable speed of the network.
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Finally, we would like to remark on the generality of the results in this work and their relationships to
other studies in the literature. To pursue an analytical solution, we have used a divisive normalization
to represent the inhibition effect. This is different from the Mexican-hat type of recurrent interactions
used by many authors. For the latter, it is often difficult to get a closed-form of the network stationary
state. Amari used a Heaviside function to simplify the neural response, and obtained the box-
shaped network stationary state [2]. However, since the Heaviside function is not differentiable, it is
difficult to describe the tracking dynamics in the Amari model. Truncated sinusoidal functions have
been used, but it is difficult to use them to describe general distortions of the bumps [3]. Here, by
using divisive normalization and the Gaussian-shaped recurrent interactions, we solve the network
stationary states and the tracking dynamics analytically.

One may be concerned about the feasibility of the divisive normalization. First, we argue that neural
systems can have resources to implement this mechanism [7, 18]. Let us consider, for instance, a
neural network, in which all excitatory neurons are connected to a pool of inhibitory neurons. Those
inhibitory neurons have a time constant much shorter than that of excitatory neurons, and they inhibit
the activities of excitatory neurons in a uniform shunting way, thus achieving the effect of divisive
normalization. Second, and more importantly, the main conclusions of our work are qualitatively
indpendent of the choice of the model. This is because our calculation is based on the fact that the
dynamics of a CANN is dominated by the motion mode of position shift of the network state, and
this property is due to the translational invariance of the neuronal recurrent interactions, rather than
the inhibition mechanism. We have formally proved that for a CANN model, once the recurrent
interactions are translationally invariant, the interaction kernel has a unit eigenvalue with respect to
the position shift mode irrespective of the inhibition mechanism (to be reported elsewhere).

This work is partially supported by the Research Grant Council of Hong Kong (Grant No. HKUST
603606 and HKUST 603607), BBSRC (BB/E017436/1) and the Royal Society.
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