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Abstract

For supervised and unsupervised learning, positive definite kernels allow to use
large and potentially infinite dimensional feature spaces with a computational cost
that only depends on the number of observations. This is usually done through
the penalization of predictor functions by Euclidean or Hilbertian norms. In this
paper, we explore penalizing by sparsity-inducing norms such a& therm or

the block/*-norm. We assume that the kernel decomposes into a large sum of
individual basis kernels which can be embedded in a directed acyclic graph; we
show that it is then possible to perform kernel selection through a hierarchical
multiple kernel learning framework, in polynomial time in the number of selected
kernels. This framework is naturally applied to non linear variable selection; our
extensive simulations on synthetic datasets and datasets from the UCI repository
show that efficiently exploring the large feature space through sparsity-inducing
norms leads to state-of-the-art predictive performance.

1 Introduction

In the last two decades, kernel methods have been a prolific theoretical and algorithmic machine
learning framework. By using appropriate regularization by Hilbertian norms, representer theorems
enable to consider large and potentially infinite-dimensional feature spaces while working within an
implicit feature space no larger than the number of observations. This has led to numerous works on
kernel design adapted to specific data types and generic kernel-based algorithms for many learning
tasks (see, e.g., [1, 2]).

Regularization by sparsity-inducing norms, such agtheorm has also attracted a lot of interest in
recent years. While early work has focused on efficient algorithms to solve the convex optimization
problems, recent research has looked at the model selection properties and predictive performance of
such methods, in the linear case [3] or within the multiple kernel learning framework (see, e.g., [4]).

In this paper, we aim to bridge the gap between these two lines of research by tryind tenoses

inside the feature space. Indeed, feature spaces are large and we expect the estimated predictor
function to require only a small number of features, which is exactly the situation Whe@ms

have proven advantageous. This leads to two natural questions that we try to answer in this paper: (1)
Is it feasible to perform optimization in this very large feature space with cost which is polynomial

in the size of the input space? (2) Does it lead to better predictive performance and feature selection?

More precisely, we consider a positive definite kernel that can be expressed as a large sum of positive
definitebasisor local kernels This exactly corresponds to the situation where a large feature space is
the concatenation of smaller feature spaces, and we aim to do selection among these many kernels,
which may be done through multiple kernel learning. One major difficulty however is that the
number of these smaller kernels is usually exponential in the dimension of the input space and
applying multiple kernel learning directly in this decomposition would be intractable.



In order to peform selection efficiently, we make the extraiagstion that these small kernels can

be embedded in directed acyclic grap{DAG). Following [5], we consider in Section 2 a spe-

cific combination off2-norms that is adapted to the DAG, and will restrict the authorized sparsity
patterns; in our specific kernel framework, we are able to use the DAG to design an optimization
algorithm which has polynomial complexity in the number of selected kernels (Section 3). In simu-
lations (Section 5), we focus atirected grids where our framework allows to perform non-linear
variable selection. We provide extensive experimental validation of our novel regularization frame-
work; in particular, we compare it to the regul&rregularization and shows that it is always com-
petitive and often leads to better performance, both on synthetic examples, and standard regression
and classification datasets from the UCI repository.

Finally, we extend in Section 4 some of the known consistency results of the Lasso and multiple ker-
nel learning [3, 4], and give a partial answer to the model selection capabilities of our regularization
framework by giving necessary and sufficient conditions for model consistency. In particular, we
show that our framework is adapted to estimating consistently onlyutef the relevant variables.
Hence, by restricting the statistical power of our method, we gain computational efficiency.

2 Hierarchical multiple kernel learning (HKL)

We consider the problem of predicting a random varidble ) C R from a random variabl& €

X, whereX and) may be quite general spaces. We assume that we aresgivieth observations
(xi,y;) € X x Y, i = 1,...,n. We define theempirical risk of a function f from X’ to R as
LS l(yi, f(x;)), wherel : Y x R — R¥ is aloss function We only assume thdtis convex

with respect to the second parameter (but not necessarily differentiable). Typical examples of loss
functions are the square loss for regression, 4(g.,j) = %(y — )2 fory € R, and the logistic loss
U(y,9) = log(1+e¥Y) or the hinge losé(y, §) = max{0, 1 — yg} for binary classification, where

y € {—1, 1}, leading respectively to logistic regression and support vector machines [1, 2].

2.1 Graph-structured positive definite kernels

We assume that we are giverpasitive definite kernet : X x X — R, and that this kernel can

be expressed as the sum, over an indeX/5etf basis kernel&,, v € V, i.e, forallz, 2’ € X,
k(z,2") =3, cv ko(z,2"). Foreachy € V, we denote byF, and®, the feature space and feature
map ofk,, i.e., forallz, 2’ € X, ky(x,2’) = (®,(x), P,(2")). Throughout the paper, we denote
by ||| the Hilbertian norm of: and by(u, v) the associated dot product, where the precise space is
omitted and can always be inferred from the context.

Our sum assumption corresponds to a situation where the featur@magand feature spac&
for k is the concatenatiorof the feature map#, (z) for each kernek,, i.e, 7 = [], ., F, and
®(x) = (P, (x))vev. Thus, looking for a certai¥ € F and a predictor functiotfi(x) = (3, ®(z))
is equivalent to looking jointly fof3, € F,, forallv € V., andf(z) = > o (8o, ®u(2))

As mentioned earlier, we make the assumption that th& sein be embedded intalérected acyclic
graph Directed acyclic graphs (DAGSs) allow to naturally define the notiongasénts children,
descendantandancestors Given a nodev € V, we denote by (w) C V the set of its ancestors,
and byD(w) C V, the set of its descendants. We use the convention thatdsya descendant
and an ancestor of itself, i.ey € A(w) andw € D(w). Moreover, forlV C V, we let denote
sources(W) the set ofsourcesof the graphG restricted tolV (i.e., nodes in¥ with no parents
belonging tolV). Given a subset of nodé®” C V, we can define thiaull of W as the union of all
ancestors ofv € W, i.e.,hull(W) = U,y A(w). Given a setV, we define the set axtreme
pointsof W as the smallest subsEtC W such thahull(7") = hull(1¥) (note that it is always well
defined, 8§\, v, pun(r)=nanw 1) See Figure 1 for examples of these notions.

The goal of this paper is to perform kernel selection among the kekpets€ V. We essentially

use the graph to limit the search to specific subsets.dlamely, instead of considering all possible
subsets of active (relevant) vertices, we are only interested in estimating correctly the hull of these
relevant vertices; in Section 2.2, we design a specific sparsity-inducing norms adapted to hulls.

In this paper, we primarily focus on kernels that can be expressed as “products of sums”, and on the
associateg-dimensional directed grids, while noting that our framework is applicable to many other
kernels. Namely, we assume that the input spéidactorizes intg componentst’ = X x - - - x &),

and that we are givep sequences of length + 1 of kernelsk;;(z;,z}), i € {1,...,p}, j €



Figure 1: Example of graph and associated notions. (Leftjiptaof a 2D-grid. (Middle) Example
of sparsity patternx in light blue) and the complement of its hul-(in light red). (Right) Dark
blue points ) are extreme points of the set of all active points (blyedark red points-¢) are the
sources of the set of all red points);

{0,..,q}, such thak(e, ') = X0, TT%y hig (i) = Ty (Z;ﬂzo ks, (xi,x’i)). We

thus have a sum @+ 1)? kernels, that can be computed efficiently as a produgsoins. A natural

DAG onV = []?_,{0,...,q} is defined by connecting eadt, ..., j,) to (j1+1,72,.--,7p),

ooy (J1s-- -y Jp—1,Jp+1). As shown in Section 2.2, this DAG will correspond to the constraint

of selecting a given product of kernels only after all the subproducts are selected. Those DAGs
are especially suited to nonlinear variable selection, in particular with the polynomial and Gaussian
kernels. In this context, products of kernels correspond to interactions between certain variables, and
our DAG implies that we select an interaction only after all sub-interactions were already selected.
Polynomial kernels We considerY; = R, k;;(z;, z}) = (;1) (x;21)7; the full kernel is then equal

to k(z,2") = [T7—; 27— (9) (zix}) = TT}—, (1 + x;2})?. Note that this is not exactly the usual
polynomial kernel (whose feature space is the space of multivariate polynomiatalafegree less
thang), since our kernel considers polynomialsadximaldegres;.

Gaussian kernels We also conside®; = R, and the Gaussian-RBF kernet@==)" The
following decomposition is the eigendecomposition of the non centered covariance operator for a
normal distribution with varianceé/4a (see, e.g., [6]):

e~Me=a)? = yhee (A o~ (a+e)e’ 1Ty (V)| [e~ K (9@ Hy (v2ea!)],

wherec? = a? + 2ab, A = a + b + ¢, and Hy, is the k-th Hermite polynomial. By appropriately
truncating the sum, i.e, by considering that the firdiasis kernels are obtained from the figst

single Hermite polynomials, and tHe + 1)-th kernel is summing over all other kernels, we ob-

tain a decomposition of a uni-dimensional Gaussian kernelgntol componentsq of them are
one-dimensional, the last one is infinite-dimensional, but can be computed by differencing). The
decomposition ends up being close to a polynomial kernel of infinite degree, modulated by an ex-
ponential [2]. One may also use adaptivedecomposition using kernel PCA (see, e.g., [2, 1]),
which is equivalent to using the eigenvectors of the empirical covariance operator associated with
the data (and not the population one associated with the Gaussian distribution with same variance).
In simulations, we tried both with no significant differences.

ANOVA kernels Wheng = 1, the directed grid is isomorphic to the power set (i.e., the set
of subsets) with the inclusion DAG. In this setting, we can decompose the ANOVA kernel [2] as

_ L {2 _ L / 2 _ _ 12
(1 +e b(w 7)) = Z,Jc{l,...,p} [Licse blei=i) = ZJc{l,...,p}e blles =512, and our
framework will select the relevant subsets for the Gaussian kernels.

Kernels or features? In this paper, we emphasize tkernel viewi.e., we are given a kernel (and

thus a feature space) and we explore it ugihgorms. Alternatively, we could use tf@ature view

i.e., we have a large structured set of features that we try to select from; however, the techniques
developed in this paper assume that (a) each feature might be infinite-dimensional and (b) that we
can sum all the local kernels efficiently (see in particular Section 3.2). Following the kernel view
thus seems slightly more natural.

2.2 Graph-based structured regularization

Given € [],cy Fo. the natural Hilbertian normi3|| is defined throughs||? = > .y [18u]*.
Penalizing with this norm is efficient because summing all kerkgis assumed feasible in polyno-

mial time and we can bring to bear the usual kernel machinery; however, it does not lead to sparse
solutions, where manyg, will be exactly equal to zero.



As said earlier, we are only interested in the hull of the gettelements, € F,, v € V; the hull

of a setl is characterized by the set of such thaD(v) C I¢, i.e., such that all descendants:of
are in the complement: hull(I) = {v € V,D(v) C I¢}¢. Thus, if we try to estimataull(I), we
need to determine which € V" are such thab(v) C I°. In our context, we are hence looking at
selecting vertices € V for which 3p(,y = (Bw)wen(v) = 0.

We thus consider the following structured blogk-norm defined asy, ., dol|fpw)l =
2vev (X wenw) |13w11?)/2, where(d,),cy are positive weights. Penalizing by such a norm
will indeed impose that some of the vectots,) € [],,cp,) Fw are exactly zero. We thus con-
sider the following minimization probletn

mingery,., 7 2 iy (i Coey (Bo (@) + 3 (Zyev doll o) 1)
Our Hilbertian norm is a Hilbert space instantiation of the hierarchical norms recently introduced
by [5] and also considered by [7] in the MKL setting. If all Hilbert spaces are finite dimensional, our
particular choice of norms corresponds to @h-tiorm of #2-norms”. While with uni-dimensional
groups/kernels, the/*-norm of />°-norms” allows an efficient path algorithm for the square loss
and when the DAG is a tree [5], this is not possible anymore with groups of size larger than one, or
when the DAG is a not a tree. In Section 3, we propose a novel algorithm to solve the associated
optimization problem in time polynomial in the number of selected groups/kernels, for all group
sizes, DAGs and losses. Moreover, in Section 4, we show under which conditions a solution to the
problem in Eq. (1) consistently estimates the hull of the sparsity pattern.

Finally, note that in certain settings (finite dimensional Hilbert spaces and distributions with abso-
lutely continuous densities), these norms have the effect of selecting a givendelsnafter all of

its ancestorg5]. This is another explanation why hulls end up being selected, since to include a
given vertex in the models, the entire set of ancestors must also be selected.

3 Optimization problem

In this section, we give optimality conditions for the problems in Eq. (1), as well as optimization
algorithms with polynomial time complexity in the number of selected kernels. In simulations we
consider total numbers of kernels larger thad®, and thus such efficient algorithms are essential
to the success of hierarchical multiple kernel learning (HKL).

3.1 Reformulation in terms of multiple kernel learning

Following [8, 9], we can simply derive an equivalent formulation of Eq. (1). Using Cauchy-Schwarz
inequality, we have that for alj € RV such that) > 0 and}_ ., din, < 1,

Bow II? _
(ZUEV d'U”ﬁD(’U)”)2 < ZUEV Hriq(ivw = ZwEV(ZUEA(w) My 1)”571}”21

with equality if and only ifn, = d;'||Bow)|(O,ey dollBow )t We associate to the vector
n € RY, the vecto € RY suchthavw € V, (! = D veA(w) n, . We use the natural convention

that if n, is equal to zero, thet,, is equal to zero for all descendanitof v. We let denotdd the

set of allowed; and Z the set of all associatefl The setH andZ are in bijection, and we can
interchangeably usg € H or the corresponding(n) € Z. Note thatZ is in general not convek
(unless the DAG is a tree, see [10]), and i€ Z, then(,, < (, forall w € D(v), i.e., weights of
descendant kernels are smaller, which is consistent with the known fact that kernels should always
be selected after all their ancestors.

The problem in Eq. (1) is thus equivalent to
min - min 535 (i Y ey (B Po(@0)) + 5 Xuer Gu(m) I Bull. @)

neH BGHvEV]:u
Using the change of variable, = 8,¢, 7/ and®(z) = (¢o/*®,(z))vev, this implies that given
the optimaln (and associated), S corresponds to the solution of the regular supervised learning
problem with kernel matrixs’ = ZwEV CwKyw, WwhereK,, is n x n the kernel matrix associated

We consider the square of the norm, which does not change the regularization properties, but allow simple
links with multiple kernel learning.

2Although Z is not convex, we can still maximize positive linear combinations @ewhich is the only
needed operation (see [10] for details).



with kernelk,,. Moreover, the solution is thefl,, = (., Y .-, @i®,(z;), wherea € R™ are the
dual parameters associated with the single kernel learning problem.

Thus, the solution is entirely determined byc R™ andn € RY (and its corresponding € RY).
More precisely, we have (see proof in [10]):

Proposition 1 The pair (a,7) is optimal for Eq. (1), withvw, 3., = Cuw iy a;Pu (), if and
only if (a) givenn, « is optimal for the single kernel learning problem with kernel mafkix=

Ywev Cw(n)Kw, and(b) givena, n € H maximizes”,, oy (3w ) o Kpa

Moreover, the total duality gap can be upperbounded as the sum of the two separate duality gaps for
the two optimization problems, which will be useful in Section 3.2 (see [10] for more details). Note
that in the case of “flat” regular multiple kernel learning, where the DAG has no edges, we obtain
back usual optimality conditions [8, 9].

Following a common practice for convex sparsity problems [11], we will try to solve a small problem
where we assume we know the setaguch that|3p (.|| is equal to zero (Section 3.3). We then
“simply” need to check that variables in that set may indeed be left out of the solution. In the next
section, we show that this can be done in polynomial time although the number of kernels to consider
leaving out is exponential (Section 3.2).

3.2 Conditions for global optimality of reduced problem

We let denote/ the complement of the set of norms which are set to zero. We thus consider the
optimal solutions of the reduced problem (an), namely,

ming, e, 7, = iy LWis e s (Bos Po(2i)) + 5 (Xpev deﬁD(v)ﬂJ”)Q : 3
with optimal primal variables3;, dual variablesy and optimal pair(n;,¢;). We now consider
necessary conditions and sufficient conditions for this solution (augmented with zeros for non active
variables, i.e., variables ifi®) to be optimal with respect to the full problem in Eq. (1). We denote
byd = >, csdullBpwns|l the optimal value of the norm for the reduced problem.

Proposition 2 (V;) Ifthe reduced solution is optimal for the full problem in Eq. (1) and all kernels
in the extreme points of are active, then we hav@ax; cqources(J<) a'Kia/d? < 62

Proposition 3 (Sy,:)  If max;csources(se) 2wen(s) @ Kuw/ (X eaw)npe ) < 67 + /A,
then the total duality gap is less than

The proof is fairly technical and can be found in [10]; this result constitutes the main technical
contribution of the paper: it essentially allows to solve a very large optimization problem over
exponentially many dimensions in polynomial time.

The necessary conditigV;) does not cause any computational problems. However, the sufficient
condition(S ) requires to sum over all descendants of the active kernels, which is impossible in
practice (as shown in Section 5, we consitleof cardinal often greater thar93®). Here, we need

to bring to bear the specific structure of the kerheln the context of directed grids we consider

in this paper, ifd, can also be decomposed as a product, hen 4 (,)p ) dv is also factorized,

and we can compute the sum overalt D(¢) in linear time inp. Moreover we can cache the sums
Swen) Kw/ (X ueaw)nn( dv)” inorder to save running time.

3.3 Dual optimization for reduced or small problems

When kernelsk,, v € V have low-dimensional feature spaces, we may use a primal rep-
resentation and solve the problem in Eq. (1) using generic optimization toolboxes adapted to
conic constraints (see, e.g., [12]). However, in order to reuse existing optimized supervised
learning code and use high-dimensional kernels, it is preferable to use a dual optimization.
Namely, we use the same technique as [8]: we consideK far Z, the functionB(¢) =

mingery, 7, I Wi, Yo pey (Bos Pu(@)))+5 D wev Co Ll Bwl/?, which is the optimal value
of the single kernel learning problem with kernel mafrix ., ., K.,. Solving Eq. (2) is equivalent
to minimizing B({(n)) with respectta) € H.

If aridge (i.e., positive diagonal) is added to the kernel matrices, the funBtisrifferentiable [8].
Moreover, the functiom — ((n) is differentiable onR*.)"". Thus, the functionm — B[(((1 —



e)n + rp7d=?)] , whered—? is the vector with element; 2, is differentiable ife > 0. We can then

use the same projected gradient descent strategy as [8] to minimize it. The overall complexity of
the algorithm is then proportional ©0(|V |n?)—to form the kernel matrices—plus the complexity

of solving a single kernel learning problem—typically betwegm?) andO(n?). Note that this
algorithm is only used for small reduced subproblems for whidias small cardinality.

3.4 Kernel search algorithm

We are now ready to present the detailed algorithm which extends the feature search algorithm
of [11]. Note that the kernel matrices are never all needed explicitly, i.e., we only need them (a)
explicitly to solve the small problems (but we need only a few of those) and (b) implicitly to compute
the sufficient conditiorS s . ), which requires to sum over all kernels, as shown in Section 3.2.

e Input: kernel matriced(, € R"*", v € V, maximal gag, maximal# of kernels()
e Algorithm

1. Initialization: set/ = sources(V),
compute(«, 1) solutions of Eq. (3), obtained using Section 3.3
2. while(N;) and(S; ) are not satisfied angt(V) < Q
— If (V) is not satisfied, add violating variablessources(J¢) to .J
else, add violating variables iurces(J¢) of (S, .) to J
— Recomputéq, n) optimal solutions of Eqg. (3)
e Output: J, o, m

The previous algorithm will stop either when the duality gap is less thanwhen the maximal
number of kernelg) has been reached. In practice, when the weidghiacrease with the depth of

v in the DAG (which we use in simulations), the small duality gap generally occurs before we reach
a problem larger tha@. Note that some of the iterations only increase the size of the active sets to
check the sufficient condition for optimality; forgetting those does not change the solution, only the
fact that we may actually know that we havesaaptimal solution.

In order to obtain a polynomial complexity, the maximal out-degree of the DAG (i.e., the maximal
number of children of any given node) should be polynomial as well. Indeed, for the digected
grid (with maximum out-degree equal 1, the total running time complexity is a function of the
number of observations, and the numbeR of selected kernels; with proper caching, we obtain the
following complexity, assumin@(n?) for the single kernel learning problem, which is conservative:
O(n®R+n?Rp? +n?R?p), which decomposes into solvirg( R) single kernel learning problems,
cachingO(Rp) kernels, and computin@(R?p) quadratic forms for the sufficient conditions.

4 Consistency conditions

As said earlier, the sparsity pattern of the solution of Eq. (1) will be equal to its hull, and thus we
can only hope to obtain consistency of the hull of the pattern, which we consider in this section. For
simplicity, we consider the case of finite dimensional Hilbert spacesfi,e= R/~) and the square

loss. We also hold fixed the vertex setiofi.e., we assume that the total number of features is fixed,
and we letn tend to infinity and\ = \,, decrease with.

Following [4], we make the following assumptions on the underlying joint distributiofXafY"):
(a) the joint covariance matriX of (®(x,)),cv (defined with appropriate blocks of sife x f,,)
is invertible, (D)E(Y|X) = 3" oy (Bu,, Puw(z)) with W C V andvar(Y'|X) = o > 0 almost
surely. With these simple assumptions, we obtain (see proof in [10]):

5 [ Zww S3w Diag(do B |~ vew Bw II?

Proposition 4 (Sufficient condition) If ~ max weD(t)

tesources(We)
< 1, then@ and the hull ofW are consistently estimated whapn'/? — co and\,, — 0.

(X veaw)np) 4)?

Proposition 5 (Necessary condition)lf the 3 and the hull of W are consistently estimated for
some Sequen%! thenmaXtES()urces(Wc) ||2wW2a}W Dlag(dﬂ/HBD(u) ||)7J€W/6W||2/d§ < L

Note that the last two propositions are not consequences of the similar results for flat MKL [4],
because the groups that we consider are overlapping. Moreover, the last propositions show that we
indeed can estimate the correct hull of the sparsity pattern if the sufficient condition is satisfied. In
particular, if we can make the groups such that the between-group correlation is as small as possible,
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Figure 2: Comparison on synthetic examples: mean squaredoxer 40 replications (with halved
standard deviations). Left: non rotated data, right: rotated data. See text for details.

dataset n p k #() L2 greedy lassaxr MKL HKL
abalone 4177 10 pol4~107 [44.2:1.3 43.9:1.4 47.90.7 44.51.1 43.3t1.0
abalone 4177 10 rbf~10' |43.0:0.9 45.0:1.7 49.6:1.7 43.721.0 43.6:1.1
bank-32fh 8192 32 pol4~10%? [40.10.7 39.2:0.8 41.3-0.7 38.7:0.7 38.9t0.7
bank-32fh 8192 32 rbf ~10%! |39.0t0.7 39.7:0.7 66.16.9 38.4:0.7 38.4:-0.7
bank-32fm 8192 32 pol4~10%* | 6.0:0.1 5.0:0.2 7.0+0.2 6.10.3 5.1H0.1
bank-32fm 8192 32 rbf ~10%! | 57402 5.8:0.4 36.34.1 5.9:0.2 4.6+0.2
bank-32nh 8192 32 pol4~10%? [44.3t1.2 46.3:1.4 45.80.8 46.0:1.2 43.6t1.1
bank-32nh 8192 32 rbf~103! |44.3:t1.2 49.4:1.6 93.6:2.8 46.1+1.1 43.5+1.0
bank-32nm 8192 32 pol4~10*2 |17.280.6 18.2:0.8 19.5-0.4 21.0:0.7 16.8:0.6
bank-32nm 8192 32 rbf~103! |16.9t0.6 21.0:0.6 62.3-2.5 20.9-0.7 16.4-0.6
boston 506 13 pol4~10Y |17.13.6 24.7410.8 29.32.3 22.22.2 18.13.8
boston 506 13 rbf ~10'? |16.4:4.0 32.4:8.2 29.4-1.6 20.22.1 17.14.7
pumadyn-32fh 8192 32 pol4+10%? |57.3t0.7 56.4:0.8 57.5-:0.4 56.4:0.7 56.4:0.8
pumadyn-32fh 8192 32 rbf~103! |57.740.6 72.20222.5 89.32.0 56.50.8 55.7:0.7
pumadyn-32fm 8192 32 pol4~10%? | 6.9t0.1 6.4t1.6 7.5:0.2 7.0:0.1 3.1+0.0
pumadyn-32fm 8192 32 rbf~103' | 5.0:0.1 46.2051.6 44.25.7 7.1#0.1 3.4+0.0
pumadyn-32nh 8192 32 pol4v10?% [ 84.2£1.3 73.3:25.4 84.80.5 83.6:1.3 36.7:0.4
pumadyn-32nh 8192 32 rbf~103! |56.5£1.1 81.3-25.0 98.%#0.7 83.2:1.3 35.5t0.5
pumadyn-32nm 8192 32 pol4-10%? [60.11.9 69.9:32.8 78.%1.1 77.50.9 5.5+0.1
pumadyn-32nm 8192 32 rbf~103! |15.40.4 67.3t42.4 95.91.9 77.6:0.9 7.240.1

Table 1: Mean squared errors (multiplied by 100) on UCI regiogsdatasets, normalized so that the
total variance to explain is 100. See text for details.

we can ensure correct hull selection. Finally, it is worth noting that if the ratiganax, ¢ a (. dv

tend to infinity slowly withn, then we always consistently estimate the depth of the hull, i.e., the
optimal interaction complexity. We are currently investigating extensions to the non parametric
case [4], in terms of pattern selection and universal consistency.

5 Simulations

Synthetic examples We generated regression data as follows: 1024 samples op € [22,27]
variables were generated from a random covariance matrix, and theylab® was sampled as a
random sparse fourth order polynomial of the input variables (with constant number of monomials).
We then compare the performance of our hierarchical multiple kernel learning method (HKL) with
the polynomial kernel decomposition presented in Section 2 to other methods that use the same
kernel and/or decomposition: (a) the greedy strategy of selecting basis kernels one after the other, a
procedure similar to [13], and (b) the regular polynomial kernel regularization with the full kernel
(i.e., the sum of all basis kernels). In Figure 2, we compare the two approaches on 40 replications in
the following two situations: original data (left) and rotated data (right), i.e., after the input variables
were transformed by a random rotation (in this situation, the generating polynomial is not sparse
anymore). We can see that in situations where the underlying predictor function is sparse (left),
HKL outperforms the two other methods when the total number of variabilesreases, while in

the other situation where the best predictor is not sparse (right), it performs only slightly better: i.e.,
in non sparse problemé.-norms do not really help, but do help a lot when sparsity is expected.

UCl datasets Forregression datasets, we compare HKL with polynomial (degree 4) and Gaussian-
RBF kernels (each dimension decomposed into 9 kernels) to the following approaches with the same



dataset n p k #(V) L2 greedy  HKL

mushrooms 1024 117 pol4v10%? | 0.4:0.4 0.1+0.1 0.11+0.2
mushrooms 1024 117 rb&10''?2| 0.140.2 0.14+0.2 0.H0.2
ringnorm 1024 20 pol4~10'* | 3.8£1.1 5.9£1.3 2.040.3
ringnorm 1024 20 rbf ~10'9 | 1.240.4 2.40.5 1.6:0.4
spambase 1024 57 pol4:10*° | 8.3t1.0 9.7A1.8 8.140.7
spambase 1024 57 rbf~10°* | 9.4+1.3 10.6:1.7 8.4£1.0
twonorm 1024 20 pol4~10' | 2.9+0.5 4.740.5 3.2:0.6
twonorm 1024 20 rbf ~10'° | 2.8+0.6 5.14-0.7 3.2-0.6
magicO4 1024 10 pol4~10" [15.9£1.0 16.0£1.6 15.6£0.8
magic04 1024 10 rbf ~10'° |15.40.9 17.71.3 15.6:0.9

Table 2: Error rates (multiplied by 100) on UCI binary clagsifion datasets. See text for details.

kernel: regular Hilbertian regularization (L2), same greedy approach as earlier (greedy), regulariza-
tion by the/!*-norm directly on the vectas, a strategy which is sometimes used in the context of
sparse kernel learning [14] but does not use the Hilbertian structure of the kernel{)assoliple

kernel learning with the kernels obtained by summing all kernels associated with a single variable
(MKL). For all methods, the kernels were held fixed, while in Table 1, we report the performance
for the best regularization parameters obtained by 10 random half splits.

We can see from Table 1, that HKL outperforms other methods, in particular for the datasets bank-
32nm, bank-32nh, pumadyn-32nm, pumadyn-32nh, which are datasets dedicated to non linear re-
gression. Note also, that we efficiently explore DAGs with very large numbers of ve#tidés

For binary classification datasets, we compare HKL (with the logistic loss) to two other methods (L2,
greedy) in Table 2. For some datasets (e.g., spambase), HKL works better, but for some others, in
particular when the generating problem is known to be non sparse (ringnorm, twonorm), it performs
slightly worse than other approaches.

6 Conclusion

We have shown how to perform hierarchical multiple kernel learning (HKL) in polynomial time in
the number of selected kernels. This framework may be applied to many positive definite kernels
and we have focused on polynomial and Gaussian kernels used for nonlinear variable selection.
In particular, this paper shows that trying to udetype penalties may be advantageous inside the
feature space. We are currently investigating applications to string and graph kernels [2].
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