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Abstract

Cell assemblies exhibiting episodes of recurrent coherent activity have been
observed in several brain regions including the striatum[1] and hippocampus
CA3[2]. Here we address the question of how coherent dynamically switching
assemblies appear in large networks of biologically realistic spiking neurons in-
teracting deterministically. We show by numerical simulations of large asymmet-
ric inhibitory networks with fixed external excitatory drive that if the network has
intermediate to sparse connectivity, the individual cells are in the vicinity of a bi-
furcation between a quiescent and firing state and the network inhibition varies
slowly on the spiking timescale, then cells form assemblies whose members show
strong positive correlation, while members of different assemblies show strong
negative correlation. We show that cells and assemblies switch between firing and
quiescent states with time durations consistent with a power-law. Our results are in
good qualitative agreement with the experimental studies. The deterministic dy-
namical behaviour is related to winner-less competition[3], shown in small closed
loop inhibitory networks with heteroclinic cycles connecting saddle-points.

1 Introduction

Cell assemblies exhibiting episodes of recurrent coherent activity have been observed in several
brain regions including the striatum[1] and hippocampus CA3[2], but how such correlated activity
emerges in neural microcircuits is not well understood. Here we address the question of how coher-
ent assemblies can emerge in large inhibitory neural networks and what this implies for the structure
and function of one such network, the striatum.

Carrillo-Reid et al.[1] performed calcium imaging of striatal neuronal populations and revealed spo-
radic and asynchronous activity. They found that burst firing neurons were widespread within the
field of observation and that sets of neurons exhibited episodes of recurrent and synchronized burst-
ing. Furthermore dimensionality reduction of network dynamics revealed functional states defined
by cell assemblies that alternated their activity and displayed spatiotemporal pattern generation.
Recurrent synchronous activity traveled from one cell assembly to the other often returning to the
original assembly; suggesting a robust structure. Assemblies were visited non-randomly in sequence
and not all state transitions were allowed. Moreover the authors showed that while each cell assem-
bly comprised different cells, a small set of neurons was shared by different assemblies. Although
the striatum is an inhibitory network composed of GABAergic projection neurons, similar types of
cell assemblies have also been observed in excitatory networks such as the hippocampus. In a re-
lated and similar study Sasaki et al.[2] analysed spontaneous CA3 network activity in hippocampal
slice cultures using principal component analysis. They found discrete heterogeneous network states
defined by active cell ensembles which were stable against external perturbations through synaptic
activity. Networks tended to remain in a single state for tens of seconds and then suddenly jump
to a new state. Interestingly the authors tried to model the temporal profile of state transitions by a



hidden Markov model, but found that the transitions could not be simulated in this way. The authors
suggested that state dynamics is non-random and governed by local attractor-like dynamics.

We here address the important question of how such assemblies can appear deterministically in bio-
logically realistic cell networks. We focus our modeling on the inhibitory network of the striatum,
however similar models can be proposed for networks such as CA3 if the cell assembly activity is
controlled by the inhibitory CA3 interneurons. Network synchronization dynamics[4, 5] of random
sparse inhibitory networks of CA3 interneurons has been addressed by Wang and Buzsaki[5]. They
determined specific conditions for population synchronization including that the ratio between the
synaptic decay time constant and the oscillation period be sufficiently large and that a critical mini-
mal average number of synaptic contacts per cell, which was not sensitive to the network size, was
required. Here we extend this work focusing on the formation of burst firing cell assemblies

The striatum is composed of GABAergic projection neurons with fairly sparse asymmetric in-
hibitory collaterals which seem quite randomly structured and that receive an excitatory cortical
projection[6]. Each striatal medium spiny neuron (MSN) is inhibited by about 500 other MSNs
in the vicinity via these inhibitory collaterals and similarly each MSN inhibits about 500 MSNs.
However only about 10% — 30% of MSNss are actually excited by cortex at any particular time. This
implies that each MSN is actively inhibited by about 50 — 150 cortically excited cells in general. It is
important to understand why the striatum has this particular structure, which is incompatible with its
putative winner-take-all role. We show by numerical computer simulation that very general random
networks of biologically realistic neurons coupled with inhibitory Rall-type synapses[7] and indi-
vidually driven by excitatory input can show switching assembly dynamics. We commonly observed
a switching bursting regime in networks with sparse to intermediate connectivity when the level of
network inhibition approximately balanced the external excitation so that the individual cells were
near a bifurcation point. In our simulations, cells and assemblies slowly and spontaneously switch
between a depolarized firing state and a more hyperpolarized quiescent state. The proportion of
switching cells varies with the network connectivity, peaking at low connection probability for fixed
total inhibition. The sorted cross correlation matrix of the firing rates time series for switching cells
shows a fascinating multiscale clustered structure of cell assemblies similar to observations in[1, 2].

The origin of the deterministic switching dynamics in our model is related to the principle of winner-
less competition (WLC) which has previously been observed by Rabinovich and coworkers[3] in
small inhibitory networks with closed loops based on heteroclinic cycles connecting saddle points.
Rabinovich and coworkers[3] demonstrate that such networks can generate stimulus specific patterns
by switching among small and dynamically changing neural ensembles with application to insect ol-
factory coding[8, 9], sequential decision making[10] and central pattern generation[11]. Networks
produce this switching mode of dynamical activity when lateral inhibitory connections are strongly
non-symmetric. WLC can represent information dynamically and is reproducible, robust against in-
trinsic noise and sensitive to changes in the sensory input. A closely related dynamical phenomenon
is referred to as chaotic itinerancy,[12]. This is a state that switches between fully developed chaos
and ordered behavior. The orbit remains in the vicinity of lower dimensional quasi-stable nearly pe-
riodic “attractor ruins” for some time before eventually exiting to a state of high dimensional chaos.
This high-dimensional state is also quasi-stable, and after chaotic wandering the orbit is again at-
tracted to one of the attractor ruins. Our study suggests attractor switching may be ubiquitous in
biologically realistic large sparse random inhibitory networks.

2 Model

The network is composed of biologically realistic model neurons in the vicinity of a bifurcation
from a stable fixed point to spiking limit cycle dynamical behaviour. To describe the cells we use
the Iy, p + I, model described in Izhikevich[13] although any model near such a bifurcation would
be appropriate. The I, ), + I, cell model is two-dimensional and described by,

dv;
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having leak current Iy, persistent Na*t current [ Na,p With instantaneous activation kinetic and a
relatively slower persistent K current Ic. V;(t) is the membrane potential of the i — th cell, C



the membrane capacitance, E7, yq 1 are the channel reversal potentials and g, yq 5 are the maximal
conductances. n;(t) is K channel activation variable of the 7 — th cell. The steady state activation
curves Mo, and nq are both described by, o, (V) = 1/(1+exp{(VZ —V)/kZ }) where x denotes
mornand VZ and k%, are fixed parameters. 7, is the fixed timescale of the K™ activation variable.
The term I;(t) is the input current to the i — th cell.

The parameters are chosen so that the cell is the vicinity of a saddle-node on invariant circle bifurca-
tion. As the current /;(¢) in Eq.1 increases through the bifurcation point the stable node fixed point
and the unstable saddle fixed point annihilate each other and a limit cycle having zero frequency is
formed[13]. Increasing current further increases the frequency of the limit cycle. The input current
I;(t) in Eq.1 is composed of both excitatory and inhibitory parts and given by,

L(t) = If + ) —koyn,ig () (Vi) = Viyn). 3)

J

The excitatory part is represented by I7” and models the effect of the cortico-striatal synapses. It has a
fixed magnitude for the duration of a simulation, but varying across cells. In the simulations reported
here the I¢ are quenched random variables drawn uniformly randomly from the interval [Iy; ¢, I f +
1] where Ij; = 4.51 is the current at the saddle-node bifurcation point. These values of excitatory
input current mean that all cells would be on limit cycles and firing with low rates if the network
inhibition were not present. In fact the inhibitory network may cause some cells to become quiescent
by reducing the total input current to below the bifurcation point. Since the inhibitory current part
is provided by the GABAergic collaterals of the striatal network it is dynamically variable. These
synapses are described by Rall-type synapses[7] in Eq.3 where the current into postsynaptic neuron
1 is summed over all inhibitory presynaptic neurons j and Vj,,, and k,yy, ;; are channel parameters.
g;(t) is the quantity of postsynaptically bound neurotransmitter given by,

dgj
T
for the j — th presynaptic cell. Here V;y, is a threshold, and ©(z) is the Heaviside function. g; is es-
sentially a low-pass filter of presynaptic firing. The timescale 7, should be set relatively large so that
the postsynaptic conductance follows the exponentially decaying time average of many preceding
presynaptic high frequency spikes.

= O(V;(t) = Vin) — g;(t) S

The network structure is described by the parameters kg, ;; = (Ksyn/p)€i; Xi; Where €;; is another
uniform quenched random variable on [0.5,1.5] independent in ¢ and j. X;; = 1 if cells ¢ and j
are connected and zero otherwise. In the simulations reported here we use random networks where
cells ¢ and j are connected with probability p, and there are no self-connections, X;; = 0. kg, is a
parameter which is rescaled by the connection probability p so that average total inhibition on each
cell is constant independent of p. All simulations were carried out with fourth order Runge-Kutta.

3 Results

Figure 1(a) shows a time series segment of membrane potentials V;(t) for some randomly selected
cells from an N = 100 cell network. The switching between firing and quiescent states can clearly
be seen. Cells fire with different frequencies and become quiescent for variable periods before start-
ing to fire again apparently randomly. However the model has no stochastic variables and therefore
this switching is caused by deterministic chaos. As explained above the firing rate is determined
by the proximity of the limit cycle to the saddle-node bifurcation and can therefore be arbitrarily
low for this type of bifurcation. Since we have set the unit parameters so that all units are near
the bifurcation point even weak network inhibition is able to cause the cells to become quiescent
at times. The parameter settings are biologically realistic[13] and MSN cells are known to show
irregular quiescent and firing states in vivo[14].

The complex bursting structure is easier to see from raster plots. A segment from a N = 100
cell time series is shown in Fig.1(b). This figure clearly shows attractor switching, or chaotic
itinerancy[12], where a quasi-stable nearly-periodic state (an “attractor ruin”) is visited from higher
dimensional chaos. To make this plot the cells have been ordered by the k-means algorithm with
five clusters (see below). The cells are coloured according to the cluster assigned to them by the
algorithm. During the periodic window, most cells are silent however some cells fire continuously
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Figure 1: (a) Membrane potential V;(¢) time series segment for a few cells from a N = 100 cell
network simulation with 20 connections per cell. Each cell time series is a different colour. (b)
Spike raster plot from an N = 100 cell network simulation with 20 connections per cell. Each line
is a different cell and the 71 cells which fire at least one spike during the period shown are plotted.
Cells are ordered by k-means with five clusters and coloured according to their assigned clusters.

at fixed frequency and some cells fire in periodic bursts. In fact the cells which fire in bursts have
been separated into two clusters, as can be seen in Fig.1(b), the blue and green clusters. These two
clusters fire periodic bursts in anti-phase. Cell assemblies can also be seen in the chaotic regions.
The cells in the black cluster fire together in a burst around ¢ = 17500 while the cells in the orange
cluster fire a burst together around ¢ = 16000. Fig.2(a) shows another example of a spike raster plot
from a N = 100 cell network simulation where again the cells have been ordered by the k-means
algorithm with five clusters. Now cell assemblies, blue, orange and red coloured, can clearly be seen
which appear to switch in alternation. This switching is further interrupted from time to time by the
green and black assemblies.

Due to the presence of attractor switching where cell assemblies can burst in antiphase we can
expect the appearance of strongly positively and strongly negatively correlated cell pairs. Correlation
matrices are constructed by dragging a moving window over a long spike time series and counting
the spikes to construct the associated firing rate time series. The correlation matrix of the rate time
series is then sorted by the k-means method[2], which is equivalent to PCA. Each cell is assigned
to one of a fixed number of clusters and the cells indices are reordered accordingly. Fig.2(b) shows
the cross-correlation matrix corresponding to the spike raster plot in Fig.2(a) with cells ordered the
same way. Within an assembly cells are positively correlated, while cells in different assemblies
often show negative correlation.

Larger networks with appropriate connectivites also show complex identity-temporal patterns. A
patch-work of switching cell assembly clusters can be seen in the spike raster plot and corresponding
cross-correlation matrix shown in Figs.2(c) and (d) respectively for a N = 500 cell system where the
cells have been ordered by the k-means algorithm, now with 30 clusters. Any particular assembly
can seem to be burst firing periodically for a spell before becoming quiescent for long spells. Other
cell assemblies burst very occasionally for no apparent reason. Notice from the cross-correlation
matrices in Fig.2(b) and (d) that although some cell assemblies are positively correlated with each
other, they have different relationships to other cell assemblies, and therefore cannot be combined
into a single larger assemblies.

Fig.2(c) reveals many cells switching between a firing state and quiescent state. What is the struc-
ture of this switching state? To investigate this we analyse inter spike interval (ISI) distributions.
Shown in Fig.1(b) are three ISI distributions for three 500 cell network simulations in the sparse to
intermediate regime with 30 connections per cell. The distributions are very broad and far from the
exponential distribution one would expect from a Poisson process. They are consistent with a scale-
free power law behaviour for three orders of magnitude, but exponentially cut off at large ISIs due
to finite size effects. It is this distribution which produces the appearance of the complex identity-
temporal patterns shown in the 500 cell time series figure in Fig.2(c) with the long ISIs interspersed
with the bursts of short ISIs. Power-law distributions are characteristic of systems showing chaotic



@ | ' ! ' I m |

601~ . 60

501- B 50
- :
_“.540 :
E i
=307
[*]

i L | i :
o 10 20 30 40 50 60
cell number

cell number
cell number
2

100

Zw—

40000 50000
time (msec) cell number

100 200 300

Figure 2: (a) Spike raster plot from all 69 cells in a 100 cell network with 20 connections per cell
which fire at least one spike. The cells are ordered by k-means with five clusters and coloured
according to their assigned cluster. (b) Cross-correlation matrix corresponding to (a). The cells are
ordered by the k-means algorithm the same way as (a). Red colour means positive correlation, blue
means negative correlation, colour intensity matches strength. White is weak or no correlation. (c)
Spike raster plot from an N = 500 cell sparse network with 6 connections per cell. The 379 cells
which fire at least one spike during the period shown are plotted. The cells are ordered by k-means
with 30 clusters. (d) Cross-correlation matrix corresponding to (c) with same conventions as (b).

attractor switching and have been studied in connection with deterministic intermittency[15]. In-
termittency consists of laminar phases where the system orbits appear to be relatively regular, and
bursts phases where the motion is quite violent and irregular. Interestingly a power-law distribution
of state sojourn times was also observed in the hippocampal study of by Sasaki et al.[2] described
above. Plenz and Thiagarajan[16] discuss cortical cell assemblies in the framework of scale free
avalanches which are associated with intermittency[17].

The broad power-law distribution produces the temporal aspect of the complex identity-temporal
patterns observed in the time series in Fig.2(c), however the fact that the cells show strong cross-
correlation produces the spatial structure aspect. In the above we have shown how this structure can
be revealed using the k-means sorting algorithm. By combining the spikes of cells in a cluster into a
“cluster spike train” preserving each spikes’ timing we can study the ISIs of cluster spike time series.
However the k-means algorithm produces a different clustering depending on the initial choice of
centroids. To control for this we perform the clustering many, here 200, times and combine the ISI
time series so generated into a single distribution. The black circles in Fig.3(a) show the cluster
ISI distribution after cells have been associated to clusters with the k-means algorithm with 10
clusters. The cluster ISI distribution, like the individual cell ISI distribution, also shows a power-
law over several orders of magnitude. This implies clusters also burst in a multiple scale way. The
slope of the power law is greater than the individual cell result and the cut-off is lower as would
be expected when spike trains are combined. Nevertheless the distribution is still very broad. To
demonstrate this we perform a bootstrap type test where rather than making each cluster spike train
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Figure 3: (a) Green, brown, blue: Three cell cuamulative ISI distributions from 500 cell network sim-
ulations with 30 connections per cell, all cells combined. Log-log scale. The slope of the dashed line
is —1.38. Black: ISI distribution for clusters formed by k-means algorithm corresponding to green
single cell distribution. The slope of the solid line is —2.35. Red: ISI distribution for clusters formed
from cells randomly corresponding to green single cell distribution. (b) Variation of connectivity for
500 cell networks. Inset shows low connectivity detail. Each point calculated from a different net-
work simulation for observation period ¢ = 2000 to t = 12000 msec. Red: Proportion of cells
which fire at least one spike during the period. Blue: Proportion of cells firing periodically. Black:
Average absolute cross-correlation (|C;;|) between all cells in network calculated from rate time
series constructed from counting spikes in moving window of size 2000 msec. Green: Coefficient
of variation (C'y) of ISI distribution averaged across all cells in network rescaled by 1/3.

from the cells associated to the cluster we perform the same k-means clustering to obtain correct
cluster sizes but then scramble the cell indices, associating the cells to the clusters randomly. Again
we do this 200 times and combine all the results into one cluster ISI distribution. The red circles
in Fig.3(a) show this random cluster ISI distribution. The distribution is much narrower than the
distribution obtained from the non-randomized k-means clustering. This demonstrates further that
the time series have a clustered structure which can be revealed by the k-means algorithm and that the
clusters produced have a larger periods of quiescence between bursting than would be expected from
randomly associating cells, even when the cells themselves have power-law distributed ISIs. This
broadened distribution produced by the clustering reflects the complex identity-temporal structure
of the ordered spike time series figures such as shown in Fig.2(c).

The model has several parameters, in particular the connection probability p. How does the forma-
tion of switching assembly dynamics depend on the network connectivity? To study this we perform
many numerical simulations while varying p. As described above the synaptic efficacy is rescaled
by the connection probability so the total inhibition on each cell is fixed and therefore effects arise
purely from variations in connectivity.

Fig.3(b) (red) shows the proportion of cells which fire at least one spike versus average connections
per cell for 500 cell network simulations. This quantity shows a transition around 5 connections per
cell to state where almost all the network is burst firing and then decays off to a plateau region at
higher connectivity. Fig.3(b) (blue) shows the proportion of cells firing periodically. This is zero
above the transition. Below the transition a large proportion of cells are not inhibited and firing
periodically due to the excitatory cortical drive, while another large proportion are not firing at all,
inhibited by the periodically firing group. At high connectivities however most cells receive similar
inhibition levels which leaves a certain proportion firing. Fig.3(b) (green) shows the coefficient of
variation Cy, of the single cell ISI distribution averaged across all cells and rescaled by 1/3. Cy is
defined to be the ISI standard deviation normalized by the mean ISI. It is unity for Poisson processes.
Below the transition C'y is very low due to many periodic firing cells. At high connectivities it is also
low and inspection of spike time series shows all cells firing with fairly regular ISIs. In intermediate
regions however this quantity can become very large reflecting long periods of quiescent interrupted
by high frequency bursting, as also reflected in the single cell ISI distributions in Fig.3(a). Fig.3(b)
(black) shows the average absolute cross-correlation (|C;;|) where C;; is the cross-correlation co-



efficient between cells ¢ and j firing rate time series’ and its absolute value is averaged across all
cells. This quantity also shows the low connectivity transition but peaks around 200 connections per
cell, where many cells are substantially cross-correlated (both positively and negatively). This is in
accordance with the study of Wang and Buzsaki[5]. Fig.3(b) therefore displays an interesting regime
between about 50 and 200 connections per cell where many cells are burst firing with long periods
of quiescence but have substantial cross-correlation. It is in this regime that spike time series often
show the complex identity-temporal patterns and switching cell assemblies exemplified in Fig.2(c).

4 Discussion

We have shown that inhibitory networks of biologically realistic spiking neurons obeying deter-
ministic dynamical equations with sparse to intermediate connectivity can show bursting dynamics,
complex identity-temporal patterns and form cell assemblies. The cells should be near a bifurca-
tion point where even weak inhibition can cause them to become quiescent. The synapses should
have a slower timescale, 7, > 10 in Eq.4, which produces a low pass filter of presynaptic spiking.
This slow change in inhibition allows the bursting assembly dynamics since presynaptic cells do
not instantly inhibit postsynaptic cells, but inhibition builds up gradually, allowing the formation of
assemblies which eventually becoming strong enough to quench the postsynaptic cell activity.

At low connectivities sets of cells with sufficiently few and/or sufficiently weak connections between
them will exist and these cells will fire together as an assembly due to the cortical excitation, if the
rest of the network which inhibits them is sufficiently quiescent for a period. Such a set of weakly
connected cells can be inhibited by another such set of weakly connected cells if each member of
the first set is inhibited by a sufficient number of cells of the second set. When the second set ceases
firing the first set will start to fire. These assemblies can exist in asymmetric closed loops which
slowly switch active set. Multiple “frustrated” interlocking loops can exist where the slow switching
of one loop will interfere with the dynamical switching of another loop; only when inhibition on one
member set is removed will the loop be able to continue slow switching, producing a type of neural
computation. Furthermore any given cell can be a member of several such sets of weakly connected
cells, as also described by Assisi and Bazhenov[18]. This can explain the findings of Carrillo-Reid
et.al.[1] who show some cells firing with only one assembly and other cells firing in multiple assem-
blies. These cross-coupled switching assemblies with partially shared members produce complex
multiple timescale dynamics and identity-temporal patterning for appropriate connectivities.

Switching assemblies are most likely to be observed in networks of sparse to intermediate connectiv-
ities. This is consistent with WLC based attractor switching. Indeed networks with non-symmetric
inhibitory connections which form closed circuits display WLC dynamics[3] and these will be likely
to occur in networks with sparse to intermediate connectivities. The spike time series in Figs.2(a)
and (c), indicate that cell assemblies switch non-randomly in sequence due to the deterministic at-
tractor switching. This is in good agreement with Carrillo-Reid et al.[1] study of striatal dynamics
and also with the Sasaki et al.[2] study of CA3 cell assemblies. Our time series and the cross-
correlation matrices demonstrate that while most cells fire with only one particular assembly, some
cells are shared between assemblies, as observed by Carrillo-Reid et al.[1]. We have shown that
cells form assemblies of positively correlated cells and assemblies are negatively correlated with
each other, in accordance with the similarity matrix results shown in Sasaki et al.[2].

Very interestingly cell assemblies are predominantly found in a connectivity regime appropriate for
the striatum[6], where each cell is likely to be connected to about 100 cortically excited cells, sug-
gesting the striatum may have adapted to be in this regime. Studies of spontaneous firing in the
striatum also show very variable firing patterns with long periods of quiescence[14], as shown in our
simulations at this connectivity. Based on studies of random striatal connectivity[6] we have simu-
lated a random network without real spatial dimension. In support of this assumption Carrillo-Reid
et al.[1] find that correlated activity is spatially distributed, noting that neurons firing synchronously
could be hundreds of microns apart intermingled with silent cells.

Although we leave this point for future work the dynamics can also be affected by the details of
the spiking. Detailed inspection of the spike raster plot in Fig.1(b) confirms three cells firing with
identical frequency. Since these cells are driven by different levels of cortical excitation, the syn-
chronization can only result from an entrainment produced by the spiking. This is possible in cells
with close firing rates since the effect an inhibitory spike has on a post-synaptic cell depends on



the post-synaptic membrane potential[13, 19]. In this way the spiking can affect cluster formation
dynamics and may prolong the lifetime of visits to quasi-stable periodic states. The coupling of as-
sembly dynamics and spiking may be relevant for coding in the insect olfactory lobe for example[9].

The striatum is the main input structure to the basal ganglia (BG). Correlated activity in cortico-basal
ganglia circuits is important in the encoding of movement, associative learning, sequence learning
and procedural memory. Aldridge and Berridge[21] demonstrate that the striatum implements ac-
tion syntax in rats grooming behaviour. BG may contain central pattern generators (CPGs) that
activate innate behavioral routines, procedural memories, and learned motor programs[20] and re-
current alternating bursting is characteristic of cell assemblies included in CPGs[20]. WLC has been
applied to modeling CPGs[11]. Our modeling suggests that complex switching dynamics based in
the sparse striatal inhibitory network may allow the generation of cell assemblies which interface
sensory driven cortical patterns to dynamical sequence generation. Further work is underway to
demonstrate how these dynamics may be utilized in behavioural tasks recruiting the striatum.
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