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Abstract

We consider multi-armed bandit problems where the number of arms is larger
than the possible number of experiments. We make a stochastic assumption on
the mean-reward of a new selected arm which characterizes its probability of be-
ing a near-optimal arm. Our assumption is weaker than in previous works. We
describe algorithms based on upper-confidence-bounds applied to a restricted set
of randomly selected arms and provide upper-bounds on the resulting expected
regret. We also derive a lower-bound which matches (up to a logarithmic factor)
the upper-bound in some cases.

1 Introduction

Multi-armed bandit problems describe typical situations where learning and optimization should be
balanced in order to achieve good cumulative performances. Usual multi-armed bandit problems
(see e.g. [8]) consider a finite number of possible actions (or arms) from which the learner may
choose at each iteration. The number of arms is typically much smaller than the number of ex-
periments allowed, so exploration of all possible options is usually performed and combined with

exploitation of the apparently best ones.

In this paper, we investigate the case when the number of arms is infinite (or larger than the available
number of experiments), which makes the exploration of all the arms an impossible task to achieve:
if no additional assumption is made, it may be arbitrarily hard to find a near-optimal arm. Here we
consider a stochastic assumption on tiean-rewardof any new selected arm. When a new arm

k is pulled, its mean-reward;, is assumed to be an independent sample from a fixed distribution.
Moreover, given the mean-rewagg for any armk, the distribution of theewardis only required

to be uniformly bounded and non-negative without any further assumption. Our assumptions essen-
tially characterize the probability of pulling near-optimal arms. That is, giver [0, 1] as the best
possible mean-reward amd> 0 a parameter of the mean-reward distribution, the probability that a
new arm is-optimal is of ordee” for smalle, i.e. P(y, > p* —e) = O(e?) for e — 0. Note that we

write f(e) = O(g(e)) for e — 0 when3eq, 2, €9 > 0 such thatve < €y, c1g(e) < f(€) < cag(e).

*The major part of this work was completed during the research internship at Certis and INRIA SequelL.



Like in multi-armed bandits, this setting exhibits a tradehaftween exploitation (selection of the
arms that are believed to perform well) and exploration. The exploration takes two forms here:
discovery (pulling a new arm that has never been tried before) and sampling (pulling an arm already
discovered in order to gain information about its actual mean-reward).

Numerous applications can be found e.g. in [5]. It includes labor markets (a worker has many
opportunities for jobs), mining for valuable resources (such as gold or oil) when there are many
areas available for exploration (the miner can move to another location or continue in the same
location, depending on results), and path planning under uncertainty in which the path planner has
to decide among a route that has proved to be efficient in the past (exploitation), or a known route
that has not been explored many times (sampling), or a brand new route that has never been tried
before (discovery).

Let us writek; the arm selected by our algorithm at timeWe define the regret up to timeas

R, = nu* — >}, . From the tower ruleER,, is the expectation of the difference between

the rewards we would have obtained by drawing an optimal arm (an arm having a mean-reward
equal to*) and the rewards we did obtain during the time steps.,n. Our goal is to design an
arm-pulling strategy such as to minimize this regret.

Overview of our results: We writewv,, = O(u,,) when for someu, C > 0, v, < Cuy, (log(un))?,

for all n > ny. We assume that the rewards of the arms li@iri]. Our regret bounds depend on
whethery* = 1 or u* < 1. Forp* = 1, our algorithms are such th&R,, = O(n?/(1+9)). For

p* < 1, we haveER, = O(n?/0+9)if g3 > 1, and (only)ER,, = O(n'/?) if 3 < 1. Moreover

we derive the lower-bound: for any > 0, u* < 1, any algorithm satisfieBR,, > Cn?/(+5) for
someC > 0. Finally we propose an algorithm having the anytime property, which is based on an
arm-increasing rule.

Our algorithms essentially consist in pullirfg different arms randomly chosen, wheké is of
ordern®/? if u* < 1 andg < 1, andn?/(1+9) otherwise, and using a variant of the UCB (Upper
Confidence Bound) algorithm ([3],[2]) on this set&farms, which takes into account the empirical
variance of the rewards. This last point is crucial to get the proposed raté ferl andg < 1, i.e.

in cases where there are many arms with small variance.

Previous works on many-armed bandits: In [5], a specific setting of an infinitely many-armed
bandit is considered, namely that the rewards are Bernoulli random variables with parameter
wherep follows a uniform law over a given intervdl, .*]. All mean-rewards are therefore in

[0, #*]. They proposed three algorithms. (1) Théailure strategywhere an arm is played as long

asls are received. When(ais received, a new arm is played and this strategy is repeated forever.
(2) Them-run strategyuses the 1-failure strategy until eithercontinuousls are received (from the

same arm) orn different arms have been played. In the first case, we continue to play forever the
current arm. In the second case, the arm that gave the most wins is chosen to play for the remaining
rounds. Finally, (3) then-learning strategyses the 1-failure strategy during the firstounds, and

for the remaining rounds it chooses the arm that gave the msadiring the firsin rounds.

For u* = 1, the authors of [5] have shown that 1-failure strategy,-run strategy, antbg(n)+/n-
learning strategy have a regigk,, < 2,/n. They also provided a lower bound on the regret of any
strategy:ER,, > v/2n. For u* < 1, the corresponding optimal strategies gfe;*-run strategy
and./nu* log(nu*)-learning strategy. All these algorithms require the knowledge of the horizon

of the game. In many applications, it is important to design algorithms having the anytime property,
that is, the upper bounds on the expected rel§iet have the similar order for ath. Under the
same Bernoulli assumption on the reward distributions, such algorithms has been obtained in [9].

In comparison to their setting (uniform distribution corresponds te 1), our upper- and lower-
bounds are also of ordern up to a logarithmic factor, and we do not assume that we know exactly
the distribution of the mean-reward. However it is worth noting that the proposed algorithms in
[5, 9] heavily depend on the Bernoulli assumption of the rewards and are not easily transposable to
general distributions. Note also that the Bernoulli assumption does not work for the real problems
mentioned above, where the outcomes may take several possible values.

Thus an important aspect of our work, compared to previous many-armed bandits, is that our setting
allows general reward distributions for the arms, under a simple assumption on the mean-reward.



2 Main results

In our framework, each arm of a bandit is characterized by the distribution of the rewards (obtained
by drawing that arm) and the essential parameter of the distribution of rewards is its expectation.
Another parameter of interest is the standard deviation. With low variance, poor arms will be easier
to spot while good arms will have higher probability of not being disregarded at the beginning due
to unlucky trials. To draw an arm is equivalent to draw a distributioof mean-rewards. Let

p= [wr(dw)ando? = [(w— p)?v(dw) denote the expectation and variance o he quantities

1 ando are random variables. Our assumptions are the following:

(A) Rewards are uniformly bounded: without loss of generality, we assume all rewardg@&rg.in
(B) the expected reward of a randomly drawn arm satisfies: there;exist(0, 1) ands > 0 s.t.

P{u > pu* — e} = O(#), fore — 0 1)

(C) there is a functiorV : [0, 1] — R such tha{c? < V(u* — u)} = 1.

The key assumption here is (B). It gives us (the order of) the number of arms that needs to be drawn
before finding an arm that isclose to the optimurn(i.e., an arm for whichx > 1* —¢). Assumption
(B) implies that there exists positive constantsindc, such that for any € [0, *], we havé

c1€® <P{u>p* — ey <P{u>p* — e} < cpé’. (2)
For example, the uniform distribution df, *) satisfies the Condition (1) with = 1.
Assumption (C) always holds fdr (u) = p*(1 — p* + u) (sinceVariWW < EW (1 — EW) when
W € [0, 1]). However it is convenient when the near-optimal arms have low variance (for instance,
this happens when* = 1).
Let X 1, Xk 2,... denote the rewards obtained when pulling @m These are i.i.d. random
variables with common expected value denoted Let X, = %ijlX,w- and Vi, =
%Z;:l(Xk’j — X1.5)? be the empirical mean and variance associated with thesfidsaws of

armk. LetTy(¢) denote the number of times arkris chosen by the policy during the firsplays.

We will use as a subroutine of our algorithms the following version of UCB (Upper Confidence
Bound) algorithm as introduced in [2]. LéE;),>o be a nondecreasing sequence of nonnegative
real numbers. It will be referred to as the exploration sequence since the larger it is, the more UCB
explores. For any arrh and nonnegative integesst, introduce

Winki | 36

-
Bk,s,t = Xk,s +
S S

®3)

with the conventiorl /0 = +oc. Define the UCB-V (for Variance estimate) policy:

UCB-V policy for a set KC of arms:
Attimet, play an arm inC maximizing By, 7, (¢—1),¢-

From [2, Theorem 1], the main property B, s ; is that with probability at least— 5(log t)e /2,

for anys < [0,t] we haveu, < By . So provided thak; is large,By, 1, :—1),; iS an observable
guantity at timet which upper boundg;, with high probability. We consider nondecreasing se-
quenceg&,) in order that these bounds hold with probability increasing with time. This ensures that
the low probability event, that the algorithm might concentrate the draws on suboptimal arms, has a
decreasing probability with time.

2.1 UCB revisited for the infinitely many-armed bandit

When the number of arms of the bandit is greater than the total number of plays, it makes no sense
to apply UCB-V algorithm (or other variants of UCB [3]) since its first step is to draw each arm once
(to haveBy, 1, :—1), finite). A more meaningful and natural approach is to decide at the beginning

'Precise computations lead to a number which is of oedérup to possibly a logarithmic factor.
?Indeed, (1) implies that for som@ < c¢; < ¢, there exist® < ¢y < p* such that for anyg < o,
e’ <P{u>p* —e} <P{u>pu* — et < che’. Then one may take, = ¢\ e andc, = max(e;”, ch).



that only K arms will be investigated in the entire experiment. Tkieshould be sufficiently small

with respect tan (the total number of plays), as in this way we have fewer plays on bad arms and
most of the plays will be on the best &f arms. The numbek should not be too small either, since
we want that the best of thE arms has an expected reward close to the best possible arm.

It is shown in [2, Theorem 4] that in the multi-armed bandit, taking a too small exploration se-
guence (e.g. such & < %log t) might lead to polynomial regret (instead of logarithmic for e.g.

& = 2logt) in a simple 2-armed bandit problem. However, we will show that this is not the case
in the infinitely many-armed bandit, where one may (and should) take much smaller exploration
sequences (typically of ordésg log t). The reason for this phenomenon is that in this setting, there
are typically many near-optimal arms so that the subroutine UCB-V may miss some good arms (by
unlucky trials) without being hurt: there are many other near-optimal arms to discover! This illus-
trates a trade off between the two aspects of exploration: sample the current, not well-known, arms
or discover new arms.

We will start our analysis by considering the following UCB-V(co) algorithm:

UCB-V(o0) algorithm: Given parameterd’ and the exploration sequeng® )

e Randomly choos& arms,
e Run the UCB-V policy on the set of th&€ selected arms.

Theorem 1 If the exploration sequence satisfielog(10logt) < & < logt, then forn > 2 and
K > 2 the expected regret of the UCB-V(c0) algorithm satisfies:

ER, < C{ (log K)nk /7 + K(logm)E[ (YL + 1) A (na)] }, 4)

whereA = p* — p with 4 the random variable corresponding to the expected reward of a sampled
arm from the pool, and whel€ is a positive constant depending only@nand 3 (see(2)).

Proof: The UCB-V(c0) algorithm has two steps: randomly chodsearms and run a UCB sub-
routine on the selected arms. The first part of the proof studies what happens during the UCB
subroutine, that is, conditionally to the arms that have been randomly chosen during the first step
of the algorithm. In particular we consider in the following that . .., ux are fixed. From the
equality (obtained using Wald’s theorem):

ER, = Y1 E{Ty(n)} Ay (5)

with Ay = p* — g, it suffices to boundt Ty (n). The proof is inspired from the ones of Theorems

2 and 3 in [2]. The novelty of the following lemma is to include the product of probabilities in the
last term of the right-hand-side. This enables us to incorporate the idea that if there are a lot of
near-optimal arms, it is very unlikely that suboptimal arms are often drawn.

Lemma 1 For any real number and any positive integer, we have

ETi(n) < u+ Y0 iy S P(Brst > 7) + Syt [ P(3s" € [0,], Biwre < 7)
(6)

where the expectations and probabilities are conditioned on the set of selected arms.
Proof: We haveTy(n) —u < > .1 Zi(u,t) whereZy(u,t) = 1;,—k,1, (1)>u- We have

Z, (u’ t) < 1Vk/¢k’ By, my(t-1),02 B 1y, (t—1),6Tk(t=1)>u

< lssequt) Bro>r + vk 3s7€(0,t] By v (<7

where the last inequality holds since if the two terms in the last sum are equal to zero, then it implies
that there exist&’ # k such that for any’ € [0, ¢] and anys € [u,t], By s/t > T > By, 5. Taking

the expectation of both sides, using a union bound and the independence between rewards obtained
from different arms, we obtain Lemma 1

Now we use Inequality (6) withr = % = pg + % = u* - %, and u the smallest integer

larger thar82 ( 2 4 L log n. These choices are made to ensure that the probabilities in the r.h.s.
g A An p
k

4



of (6) are small. Precisely, for any> v andt < n, we have
202 + Ar/4E, LS \/[20,3 +A/2logn . logn

3
S S u u
[2024+A4 /2] A2 342 _Ap| [eR+Ar/4 3 A A
< 33[0 2+ Ak ~+ 32[02 +Ak] - 4k[ §§+Ak + 8 o2 +’CAJ < Tk7
where the last inequality holds since it is equivalenfuite- 1)? > 0 for x = k2+A . Thus:

— &
P(By,st > 7) <P(Xps + \/@Jr?)—t > e + Ag/2)
<P(Xps + \/@ 3& > g + A /2) + P(Viys > 0F + Ap/4) @)

<P(Xps — i > Ar/4) +P(M of > Ay /4)
< 26—5Ai/(32a,€+8Ak/3),

where in the last step we used Bernstein’s inequality twice. Summing up we obtain

t s —uA2 /(3202487 /3)
—sA2 /(32024874 /3) _ o € * '
Z:]P’(Bk,s,t >7) <2 Z e 5Pk k+84k/3) _ 21 Sy ey
< (8ok 4 L) emuab/eartsany < (Weh 4 1), (®)

where we have used that— e ™ > 4x/5for 0 < a < 3/8. Now let us bound the product of
probabilities in (6). Since = u* — Ag/2, we have

[[ PEsec0,4], Bu.r<7) < 1T P(3s € [0,t], By su < i) -
k'#k kg >pt—Ay /2

Now from [2, Theorem 1], with probability at least— 5(logt)e—%t/2, for anys € [0,t] we have
pr < By st FOré > 2log(10logt), this givesP(3s € [0,t], By st < Mk) < 1/2. Putting all
the bounds of the different terms of (6) leads to
2 1 8007, 7 N
< _K _ _ —Na
ETk(n) 1+32(A2+A>10gn+(A2 +Ak>+n2 K

with Na, the cardinal of{k’ € {1,...,K} : ux > a — Ay/2}. SinceA, < p* < 1 and
Tk (n) < n, the previous inequality can be simplified into

ETy(n) < { [50(2—% n ﬁ) 1ogn] A n} 4+ n2Nay, )

Here, for the sake of simplicity, we are not interested in having tight constants. From here on, we
will take the expectations with respect to all sources of randomness, that is including the one coming
from the first step of UCB-V(0). The quantities,, ..., Ak are i.i.d. random variables satisfying

0 < Ay < p*andP(A;, < €) = O(¢#). The quantitiesr,, ..., oy are i.i.d. random variables
satisfying almost surely? < V(Ay,). From (5) and (9), we have

ER, = KE{Ti(n)A1} < KE{ [50( 422 + 1) ogn] A (nA1) +nA 2N } (10)

Let p denote the probability that the expected rewardf a randomly drawn arm satisfigs >

w* — 6/2 for a givend. Conditioning onA; = ¢, the quantityN,, follows a binomial distribution

with parametergd — 1 andp, henceE(2~ V21 |A; = 6) = (1 —p+p/2)K~1. By using (2), we get:
E{A27"a} = B{A (1 —P(p > p* — A1/2)/2)5 7'} <Ex(Ay),

with x (u) = u(1 — c3u?)X~ andcz = ¢1/2°. We havex’(u) = (1 — czu?)X72[1 — c3(1 + (K —

. (1— 1 )K—l
1)B)U6:| SO thatX(U,) < X(UO) with ug = W andX(UO) = W <
C'K /8 for C' a positive constant depending omlyand. For anyu; € [ug, 1*], we have

Ex (A1) < x(uo)P(A1 < ur) + x(ur)P(A1 > u1) < x(uo)P(Ar < ur) + x(u1)-

Let us takeu; = C”(logTK) Y for 7 a positive constant depending enand 3 sufficiently large

to ensurey; > up andx(u;) < K~1~/8. We obtainEx(A;) < CK~1/#12E for an appropriate
constantC depending or; andg. Putting this into (10), we obtain the result of Theorenil.



The r.h.s. of Inequality (4) contains two terms. The first tésrthe bias: when we randomly draw
K arms, the expected reward of the best drawn arm(i& —'/%)-optimal. So the best algorithm,

once theK arms are fixed, will yield a regred(nK —'/7). The second term is the estimation. It
indicates the difference between the UCB subroutine’s performance and the best drawn arm.

2.2 Strategy for fixed play number

Consider that we know in advance the total number of ptaysd the value of3. In this case,
one can use the UCB-V(c0) algorithm with paramekéiof order of the minimizer of the r.h.s. of
Inequality (4). This leads to the following UCB-F (for Fixed horizon) algorithm.

UCB-F (fixed horizon): given total number of plays, and parameterg* andg of (1)
8 ; ,
e ChooseK arms withK of order nl Ifg < _1’“_ < 1
n?+1  otherwise,i.e. ifu* =1org > 1

e Run the UCB-V algorithm with thé& chosen arms and an exploration sequence satisfying
2log(10logt) < & < logt (11)

Theorem 2 For anyn > 2, the expected regret of the UCB-F algorithm satisfies
C(logn)y/n ifg<landuy* <1
ER, < C(logn)*>y/n if3=1andu* <1 (12)
C(logn)nt+5  otherwise,ie. ifu* =1org > 1
with C' a constant depending only en, c; and S (see(2)).

Proof: The result comes from Theorem 1 by bounding the expectatienE [( &) 1) A (nA)].
First, as mentioned before, Assumption (C) is satisfiedfoh) = p*(1 — p* + A). Soforp* =1
and this choice of functiofr’, we haveE < 2. Forpu* < 1, sinceA < p*, we haveE < E¥(A)
with ¥(t) = 2% A (nt). The function¥ is continuous and differentiable by parts. Using Fubini’s
theorem and Inequality (2), we have

E¥(A) = U(p* EfA t)dt = fo "(H)P(A < t)dt
X 2 4 72“??/2 2n' 3 B <1

< 2+f\/%t%02tﬁdt§ 2 + colog(n/2) if 3=1

2+ 202 ifg>1

Putting these bounds in Theorem 1, we get

-8

C1{ (log K)ynK /8 + (logn)KnT} if < landp* <1
ER, <{ C{(log K)nk-1/% + (1ogn)2K} if 3=1andy* < 1
C< (log K)nK =8 4 (logn)K } otherwise;y* =1org > 1

with C a constant only depending en, c; and 5. The numberK of selected arms in UCB-F is
taken of the order of the minimizer of these bounds up to a logarithmic fadtor.

Theorem 2 makes no difference between a logarithmic exploration sequence and an iterated loga-
rithmic exploration sequence. However in practice, it is clearly better to take an iterated logarithmic
exploration sequence, for which the algorithm spends much less time on exploring all suboptimal
arms. For sake of simplicity, we have fixed the constants in (11). It is easy to check that for
& = (log, and( > 1, Inequality (12) still holds but with a constafitdepending linearly irg.

Theorem 2 shows that whert = 1 or 5 > 1, the bandit subroutine takes no time in spotting near-
optimal arms (the use of UCB-V algorithm using variance estimate is crucial for this), whereas for
8 < 1andu* < 1, which means a lot of near-optimal arms with possibly high variances, the bandit
subroutine has difficulties in achieving low regret.

The next theorem shows that our regret upper bounds are optimal up to logarithmic terms except for
the case? < 1 andu* < 1. We do not know whether the rat(n”/?logn) for 3 < 1 andp* < 1
is improvable. This remains an open problem.



Theorem 3 For any 8 > 0 andu* < 1, any algorithm suffers a regret larger tham 777 for some
small enough constartdepending o, and .

Sketch of proof. If we want to have a regret smaller than®/(1+5) we need that most draws are

done on an arm having an individual regret smaller thancn=/(1+5)_ To find such an arm, we

need to try a number of arms larger th@fe—" = C’c¢=Pn?/(1+5) arms for som&’ > 0 depending

oncy andg. Since these arms are drawn at least once and since most of these arms give a constant
regret, it leads to a regret larger th&f ¢~ n?/(1+5) with C” depending o, and 3. Forc small

enough, this contradicts that the regret is smaller the#i(! 7). So it is not possible to improve on
then?/(1+8) rate.O]

2.3 Strategy for unknown play number

To apply the UCB-F algorithm we need to know the total number of plagnd we choose the
correspondingk’ arms before starting. Whem is unknown ahead of time, we propose here an
anytime algorithm with a simple and reasonable way of chooAiry adding a new arm from time
to time into the set of sampled arms. L&}, denote the number of arms played up to timeWe
setK, = 0. We define the UCB-AIR (for Arm-Increasing Rule):

UCB-AIR (Arm-Increasing Rule): given parameterg* and/ of (1),
e Attimen, try a new arm if

K < ns if 3 <landp* <1
nt R otherwiseyu* = 1org > 1
e Otherwise apply UCB-V ori,,_; drawn arms with an exploration sequence satisfying
2log(10logt) < & < logt

This arm-increasing rule makes our algorithm applicabletieranytime problem. This is a more
reasonable approach in practice than restarting-based algorithms like the ones using the doubling
trick (see e.g. [4, Section 5.3]). Our second main result is to show that the UCB-AIR algorithm has
the same properties as the UCB-F algorithm (proof omitted from this extended abstract).

Theorem 4 For any horizon time: > 2, the expected regret of the UCB-AIR algorithm satisfies
C(logn)*y/n  ifg<landyu* <1
ER, < B L
C(logn)*nT  otherwise, i.e. ifu* =1org3 > 1
with C' a constant depending only @f, c; and 3 (see(2)).

(13)

3 Comparison with continuum-armed bandits and conclusion

In continuum-armed bandits (see e.g. [1, 6, 4]), an infinity of arms is also considered. The arms
lie in some Euclidean (or metric) space and their mean-reward is a deterministic and smooth (e.g.
Lipschitz) function of the arms. This setting is different from ours since our assumption is stochastic
and does not consider regularities of the mean-reward w.r.t. the arms. However, if we choose an
arm-pulling strategy which consists in selecting randomly the arms, then our setting encompasses
continuum-armed bandits. For example, consider the doffialif and a mean-reward functign
assumed to be locally equivalent to a Holder function (of order [0, +0c0)) around any maximum

z* (the number of maxima is assumed to be finite), i.e.

w(z*) — p(x) = 6(||lz* — z||*) whenz — x*. (14)
Pulling randomly an armX according to the Lebesgue measure[@n]?, we have:P(u(X) >
p* =€) = O(P(| X —z*||* < €)) = O(e¥/*), for e — 0. Thus our assumption (1) holds with
8 = d/a, and our results say thatjif* = 1, we haveER,, = O(n?/(1+F)) = O(nd/(otd)),
Ford = 1, under the assumption thais a-Hélder (i.e.|u(z)—u(y)| < c|jz — y||* for0 < o < 1),
[6] provides upper- and lower-bounds on the redgigt = ©(n(*+1)/(2a+1)  Our results gives



ER,, = O(n'/(e+1) which is better for all values af. The reason for this apparent contradiction
is that the lower bound in [6] is obtained by the construction of a very irregular function, which
actually does not satisfy our local assumption (14).

Now, under assumptions (14) for any> 0 (around a finite set of maxima), [4] provides the rate
ER,, = O(y/n). Our result gives the same rate wheh < 1 but in the casg.* = 1 we obtain the
improved raté€R,, = O(n'/(*+t1)) which is better whenever > 1 (because we are able to exploit

the low variance of the good arms). Note that like our algorithm, the algorithms in [4] as well as in
[6], do not make an explicit use (in the procedure) of the smoothness of the function. They just use
a ‘uniform’ discretization of the domain.

On the other hand, the zooming algorithm of [7] adapts to the smoothnges{mbre arms are
sampled at areas whegeis high). For any dimensiod, they obtainER,, = O(n(¢+1)/(@'+2)),
whered’ < d is their 'zooming dimension’. Under assumptions (14) we dedtice “~1d using

the Euclidean distance as metric, thus their regréths, = O(n(#(@—D+e)/(dla—1)+20)) = For
locally quadratic functions (i.ex = 2), their rate isO(n(4+2)/(4+4)) whereas ours i@ (n®/(2t9),

Again, we have a smaller regret although we do not use the smoothne&s ofir algorithm. Here

the reason is that the zooming algorithm does not make full use of the fact that the function is locally
quadratic (it considers a Lipschitz property only). However, in the easel, our rates are worse

than algorithms specifically designed for continuum armed bandits.

Hence, the comparison between the many-armed and continuum-armed bandits settings is not easy
because of the difference in nature of the basis assumptions. Our setting is an alternative to the
continuum-armed bandit setting which does not require the existence of an underlying metric space
in which the mean-reward function would be smooth. Our assumption (1) naturally deals with
possibly very complicated functions where maxima may be located in any part of the space. For the
continuum-armed bandit problems when there are relatively many near-optimal arms, our algorithm
will be also competitive compared to the specifically designed continuum-armed bandit algorithms.
This result matches the intuition that in such cases, a random selection strategy will perform well.

To conclude, our contributions are: (i) Compared to previous results on many-armed bandits, our
setting allows general mean-reward distributions for the arms, under a simple assumption on the
probability of pulling near-optimal arms. (ii) We show that, for infinitely many-armed bandits, we
need much less exploration of each arm than for finite-armed bandit®§tterm may be replaced

by log log). (iii) Our variant of UCB algorithm, making use of the variance estimate, enables to
obtain higher rates in cases when the variance of the near-optimal arms is small. (iv) We propose the
UCB-AIR algorithm, which is anytime, taking advantage of an arm-increasing rule. (v) We provide

a lower-bound matching the upper-bound (up to a logarithmic factor) in thexcase or u* = 1.
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