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Abstract

Our setting is a Partially Observable Markov Decision Process with continuous
state, observation and action spaces. Decisions are based on a Particle Filter for
estimating the belief state given past observations. We consider a policy gradient
approach for parameterized policy optimization. For that purpose, we investigate
sensitivity analysis of the performance measure with respect to the parameters of
the policy, focusing on Finite Difference (FD) techniques. We show that the naive
FD is subject to variance explosion because of the non-smoothness of the resam-
pling procedure. We propose a more sophisticated FD method which overcomes
this problem and establish its consistency.

1 Introduction

We consider a Partially Observable Markov Decision Problem (POMDP) (see e.g. (Lovejoy, 1991;
Kaelbling et al., 1998)) defined by a state procgss);>1 € X, an observation process;);>1 €

Y, adecision (or action) procegd,);>1 € A which depends on a policy (mapping from all possible
observation histories to actions), and a reward functionX — R. Our goal is to find a policy

« that maximizes a performance measu(e), function of future rewards, for example in a finite
horizon setting:

n
def
J(m) S E[Dr(Xy)]. 1)
t=1
Other performance measures (such as in infinite horizon with discounted rewards) could be handled
as well. In this paper, we consider the caseaftinuous state, observation, and action spaces.

The state procesds a Markov decision process taking its values in a (measurable) state Xpace
with initial probability measure: € M(X) (i.e. X; ~ p), and which can be simulated using a
transition functionf’ and independent random numbers, i.e. for atl 1,

Xt-‘,—l = }7()(13714,57 Ut); W|th Ut lflvd v, (2)
whereF' : X x Ax U — X and(U,o(U),v) is a probability space. In many practical situations
U = [0,1]? andU; is ap-uple of pseudo random numbers. For simplicity, we adopt the notations

F(xo,ap,u) ef F,,(u), whereF), is the first transition function (i.eXy, = F},(Uy) with Uy ~ v).

Theobservation processY;),>1 lies in a (measurable) spakeand is linked with the state process

by the conditional probability measufgY; € dy;|X; = x¢) = g(z, y¢) dy:, whereg : X x Y —

[0, 1] is the marginal density function &f, given X;. We assume that observations are conditionally
independent given the state process. Here also, we assume that we can simulate an observation
using a transition functiods and independent random numbers, i¥. > 1, V; = G(X;, V4),
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whereV, "X (for the sake of simplicity we consider the same probability sgate (U), v)).

Now, theaction process(A4;);>; depends on golicy = which assigns to each possible observation
historyY;.; (where we adopt the usual notation 1 to denote the collection of integesssuch that
1 < s <t),anactiond; € A.

In this paper we will consider policies that depend onhkéef state (also calledfiltering distri-
bution) conditionally to past observations. The belief state, writtgfioelongs taM (X) (the space

of all probability measures o) and is defined by, (dz;, Y1.;) def P(X; € dz|Y1.+), and will be
written b, (dx;) or evenb, for simplicity when there is no risk of confusion. Because of the Markov
property of the state dynamics, the belief state, Y;.,) is the most informative representation about
the current statX; given the history of past observatiolis;. It represents sufficient statistics for
designing an optimal policy in the class of observations-based policies.

The temporal and causal dependencies of the dynamics of a generic POMDP using belief-based
policies is summarized in Figure 1 (left): at timethe stateX; is unknown, onlyY; is observed,

which enables (at least in theory) to updatdased on the previous beligf_;. The policyr takes

as input the belief statle and returns an actiod; (the policy may be deterministic or stochastic).
However, since the belief state is an infinite dimensional object, and thus cannot be represented in
a computer, we first simplify the class of policies that we consider here to be defined over a finite
dimensional space dfelief-features f : M(X) — R¥ which represents relevant statistics of the

filtering distribution. We writé, ( ;) for the value of the:-th feature (amond\’) (where we use the

usual notatiorb( f) def « f(x)b(dz) for any functionf defined onX and measuré € M(X)),

and denoté, (f) the vector (of sizé() with component$; (f. ). Examples of features arg(z) = «
(mean value)f(z) = «’« (for the covariance matrix). Other more complex features (e.g. entropy
measure) could be used as well. Such a paticyRX — A selects an actiod; = 7 (b;(f)), which

in turn, yields a new stat&’, ;.

Except for simple cases, such as in finite-state finite-observation processes (where a Viterbi algo-
rithm could be applied (Rabiner, 1989)), and the case of linear dynamics and Gaussian noise (where
a Kalman filter could be used), there is no closed-form representation of the belief stateb; Thus
must be approximated in our general setting. A popular method for approximating the filtering
distribution is known a®article Filters (PF) (also callednteracting Particle Systemsor Sequen-

tial Monte-Carlo). Such particle-based approaches have been used in many applications (see e.qg.
(Doucet et al., 2001) and (Del Moral, 2004) for a Feynman-Kac framework) for example for pa-
rameter estimation in Hidden Markov Models and control (Andrieu et al., 2004) and mobile robot
localization (Fox et al., 2001). An PF approximates the belief dtate M (X) by a set of parti-
cles(z}V) (points of X), which are updated sequentially at each new observation by a transition-

selection procedure. In particular, the belief feathyief) is approximated by;- Zfil f(x}), and
the policy is thus a function that takes as input the activation of the fedgtatethe position of

the particles:4;, = =(3 Zﬁvzl f(x1)). For such methods, the general scheme for POMDPs using
Particle Filter-based policies is described in Figure 1 (right).

In this paper, we consider a class of policigsparameterized by a (multi-dimensional) parameter

6 and we search for the value éfthat maximizes the resulting criteriaf(my), now written.J(6)

for simplicity. We focus on a policy gradient approach: the POMDP is replaced by an optimization
problem on the space of policy parameters, and a (stochastic) gradient asdéé} mnconsidered.

For that purpose (and this is the object of this work) we investigate the estimatiod (@f) (where

the gradienV refers to the derivative w.r.®9), with an emphasis on Finite-Difference techniques.
There are many works about such policy gradient approach in the field of Reinforcement Learning,
see e.g. (Baxter & Bartlett, 1999), but the policies considered are generally not based on the result of
an PF. Here, we explicitly consider a class of policies that are based on a belief state constructed by a
PF. Our motivations for investigating this case are based on two facts: (1) the belief state represents
sufficient statistics for optimality, as mentioned above. (2) PFs are a very popular and efficient tool
for constructing the belief state in continuous domains.

After recalling the general approach for evaluating the performance of a PF-based policy (Section 2),
we describe (in Section 3.1) a naive Finite-Difference (FD) approach (defined by a stép fire
estimatingVJ(#). We discuss the bias and variance tradeoff and explain the problem of variance
explosion wherh is small. This problem is a consequence of the discontinuity of the resampling
operation w.r.t. the parametér Our contribution is detailed in Section 3.2: We propose a modified



FD estimate folv.J(¢) which (along the random sample path) has Bé5?) and varianc®(1/N),

thus overcomes the drawback of the previous naive method. An algorithm is described and illustrated
in Section 4 on a simple problem where the optimal policy exhibits a tradeoff between greedy reward
optimization and localization.
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Figure 1: Left figure: Causal and temporal dependencies in MIP® Right figure: PF-based
scheme for POMDPs where the belief featbiref) is approximated by Zﬁil fah).

2 Particle Filters (PF)

We first describe a generic PF for estimating the belief state based on past observations. In Sub-
section 2.1 we detail how to control a real-world POMDP and in Subsection 2.2 how to estimate
the performance of a given policy in simulation. In both cases, we assume that the models of the

dynamics (state, observation) are known. The basic PF, called Bootstrap Filter, see (Doucet et al.,
2001) for details, approximates the belief stateoy an empirical distribution? ef Zf\il Wy, 01
(whered denotes a Dirac distribution) made of particlesz V. It consists in iterating the two
following steps: at time, given observation,,

e Transition step: (also calledimportance sampling or mutation) a successor particles
populationz}*V is generated according to the state dynamics from the previous population

~1:N
21N The (importance sampling) weightg v 4 % are evaluated,
j=1 trJt

¢ Selection step:Resample (with replacement) particlesz}?V from the sefi}*" according

. . . N def ~kIN . L
to the weightsw*V. We writez}'V = Z*  wherek}!'V are the selection indices.

Resampling is used to avoid the problem of degeneracy of the algorithm, i.e. that most of the weights
decreases to zero. It consists in selecting new particle positions such as to preserve a consistency
property (i.e. SN | wig(F) = E[& SN, ¢(«1)]). The simplest version introduced in (Gordon

et al., 1993) chooses the selection indié¢s’ by an independent sampling from the set N
according to a multinomial distribution with parameters”, i.e. P(k{ = j) = w, forall 1 <

1 < N. The idea is to replicate the particles in proportion to their weights. Many variants have been
proposed in the literature, among which the stratified resampling method (Kitagawa, 1996) which is
optimal in terms of variance, see e.g. (Cap al., 2005).

Convergence issues bf (f) tob,,(f) (e.g. Law of Large Numbers or Central Limit Theorems) are
discussed in (Del Moral, 2004) or (Douc & Moulines, 2008). For our purpose we note that under
weak conditions on the featuffe we have the consistency property* (f) — b(f), almost surely.

2.1 Control of a real system by an PF-based policy

We describe in Algorithm 1 how one may use an PF-based polidgr the control of a real-world
system. Note that from our definition f,, the particles are initialized withi}V u I

2.2 Estimation of J(#) in simulation

Now, for the purpose of policy optimization, one should be capable of evaluating the performance
of a policy in simulation. J(6), defined by (1), may be estimated in simulation provided that



Algorithm 1 Control of a real-world POMDP
for t = 1ton do
Observe: y,,
Particle transition step:

SetilN = F(zlN, ary, ulN) with w2 % . Setw! N = 9@ )
i 9@ )]

Particle resampllng step:

Setr} N = xf ~ wherek!*N are given by the selection step according to the weigiity .

Select action: a; = mg(& SN, (1)),
end for

the dynamics of the state and observation are known. Makipticéxthe dependency w.r.t. the
random sample path, written (which accounts for the state and observation stochastic dynam-
ics and the random numbers used in the PF-based policy), we wiit¢ = E,[J,(0)], where

Jw(0) o o, (X w(0)), making the dependency of the state ww.andé explicit.

Algorithm 2 describes how to evaluate an PF-based policy in simulation. The function returns an
estimate, written/2Y (9), of J,, (). Using previously mentioned asymptotic convergence results
for PF, one hasimy .., JY (0) = J,(0), aimost surely (a.s.). In order to approximat@), one

would perform several caIIs to the algorithm, receivinQ] (6) (for 1 < m < M), and calculate
their empirical mear’; M JN (6), which tends to/ (6) a.s., when\l, N — co.

m=1“wm

Algorithm 2 Estimation of.J,,(#) in simulation

fort =1tondo
Define state:
ry = F(x1,a0-1,us—1) With us_y ~ v,
Define observation:
yr = G(x¢,ve) With vy ~ v,
Particle transition step:

~1:N
Setz}'N = F(alN, a;_1,ur) with u ]\1’ . Setw; N = 2%$1tg(%?tit)’
pl g

Particle resampllng step:

Setr} N = xf ~ wherek}*N are given by the selection step according to the weight¥,
Select action: a; = mo(+ Zi:l f(zh)),

end for

Return JY (6) ' S r(xy).

3 A policy gradient approach

Now we want to optimize the value of the parameitesimulation. Then, once a “good” parameter

0* is found, we would use Algorithm 1 to control the real system using the corresponding PF-based
policy my-. Gradient approaches have been studied in the field of continuous space Hidden Markov
Models in (Fichoud et al., 2003; &ou et al., 2001; Doucet & Tadic, 2003). The authors have
used alikelihood ratio approach to evaluate' J(¢). Such methods suffer from high variance, in
particular for problems with small noise. In order to reduce the variance, it has been proposed in
(Poyadijis et al., 2005) to use a marginal particle filter instead of a simple path-based particle filter.
This approach is efficient in terms of variance reduction but its computational complesityvis).

Here we investigate a pathwise (i.e. along the random sample.patnsitivity analysis of/,,(6)

(w.r.t. 9) for the purpose of (stochastic) gradient optimization. We start with a naive Finite Difference
(FD) approach and show the problem of variance explosion. Then we provide an alternative, called
common indices FD, which overcomes this problem.

In the sequel, we make the assumptions that all relevant functions, (F, =) are continuously
differentiable w.r.t. their respective variables. Note that although this is not explicitly mentioned, all
such functions may depend on time.



3.1 Naive Finite-Difference (FD) method

Let us consider the derivative gf) component-wisely, writing.J (6) the derivative of/ () w.r.t. a
one-dimensional parameter. If the paramétisrmulti-dimensional, the derivative will be calculated

in each direction. Fok > 0 we define the centered finite-difference quotisnt’ Mhm")
Since J(0) is differentiable therim,,_.o I, = dJ(#). Consequently, a method for approxmatmg
0J(#) would consist in estimating, for a sufficiently small. We know that/(6) can be numeri-

cally estimated by Zf‘f: JY (). Thus, it seems natural to estimdjeby

M

I}ZlVJ\Idefl{ Z 0+h_72 }

m=1 m’/=1
where we used independent random numbers to evall{@te- k) and.J(6# — h). From the con-

sistency of the PF, we deduce thaty, o limys v oo I, = 8J(0). This naive FD estimate
exhibits the following bias-variance tradeoff (see (Coquelin et al., 2008) for the proof):

Proposition 1 (Bias-variance trade-off)Assume thaf (0) is three times continuously differentiable
in a small neighborhood o, then the asymptotic (whel — oo) bias of the naive FD estimate
1M is of orderO(h?) and its variance i€) (N ' M~ 1h=2).

In order to reduce the bias, one should choose a smdlut then the variance would blow up.
Additional computational resource (larger number of partidi8swill help controlling the vari-

ance. However, in practice, e.g. for stochastic optimization, this leads to an intractable amount of
computational effort since any consistent FD-based optimization algorithm (e.g. such as the Kiefer-
Wolfowitz algorithm) will need to consider a sequence of stepisat decreases with the number of
gradient iterations. But if the number of particles is bounded, the variance term will diverge, which
may prevent the stochastic gradient algorithm from converging to a local optimum.

In order to reduce the variance of the previous estimator whensmall, one may useommon
random numberso estimate both/ (6 + h) and J(§ — h) (i.e. w,, = w.). The variance then
reduces t@)(N 1M ~th~1) (see e.g. (Glasserman, 2003)), which still explodes for small

Now, under the additional assumption that along almost all random samplevpétle function

0 — JXY(9) is a.s. continuous, then the variance would reduc@(® —*M 1) (see Section (7.1)

of (Glasserman, 2003)). Unfortunately, this is not the case here because of the discontinuity of the
PF resampling operation w.rd. Indeed, for a fixed, the selection indices} " (taking values in

a finite setl : N) are usually a non-smooth function of the weights™ , which depend o#.

Therefore the naive FD method using PF cannot be applied in general because of variance explosion
of the estimate wheh is small, even when using common random number.

3.2 Common-indices Finite-Difference method

Let us consided,, (6) = >_;-_, r(Xt.,(0)) making explicit the dependency of the state witand a
random sample path. Under our assumptions, the gradiént, (6) is well defined. Nowlet us fix

w. For clarity, we now omit to write the dependency when no confusion is possible. The function
6 — X;(0) (foranyl < ¢t < n) is smooth because all transition functions are smooth, the policy is
smooth, and the belief stabgis smooth w.r.t.#. Underlying the belief featurg, o( f) dependency
w.r.t. 6, we write:

6 T b o(f) T X (8) T (6).
As already mentioned, the problem with the naive FD method is that the PF esﬁffgafe =

+ Zf\il f(z4(0)) of by e(f) is not smooth w.r.t.# because it depends on the selection indices
k1N (9) which, taken as a function éf(through the weights), is not continuous. We write

N
non-smoo 1 7 SMOoOo
0 "N, (f) = 5 _F(@i(6) T ().

So a natural idea to recover continuity in a FD method would consists in using exactly the same
selection indices for quantities relatedéte- h and® — h. However, using the same indices means
using the same weights during the selection procedure for both trajectories. But this would lead to
a wrong estimator because the weights strongly dependstiorough the observation functign



Our idea is thus to use the same selection indices but use a lik®od ratio in the belief feature
estimation. More precisely, let us write/*V (9) the selection indices obtained for paramétesind
consider a parametéf in a small neighborhood @. Then, an PF estimate foy ¢ (f) is

bN

acf o~ (0,0 oy e i gy def Tlact 9(x5(0), ys(6"))
N ST GO g, with 126, 00) 4 La=1 9T
v )= SN g gy O W00 S ) 0)

being the likelihood ratios computed along the particle paths, and where the partigi¢g¢') have

been generated using the same selection indig€S#) (and the same random sample padhas

those used fof. The next result states the consistency of this estimate and is our main contribution
(see (Coquelin et al., 2008) for the proof).

Proposition 2. Under weak conditions offi (see e.g. (Del Moral & Miclo, 2000)), there exists a
neighborhood of, such that for any’ in this neighborhoodbﬁ’e,(f) defined by (3) is a consistent

estimator ob, ¢/ (f), .. imy_.o0 bfg/(f) = by¢/(f) almost surely.

®)

Thus, for any perturbed valu# around#, we may run an PF where in the resampling step, we
use the same selection indideg) (¢) as those obtained fér. Thus the mapping’ — b/, (f) is
smooth. We write:

0 % 6N, (f) defined by (3)72" LY (6").

From the previous proposition we deduce thgt(¢) is a consistent estimator fof, (6).

A possible implementation for the gradient estimation is described by Algorithm 3. The algo-
rithm works by updating® families of state, observation, and particle populations, denoted by
'+’, ’-', and ’'0’ for the values of the parametef + h, 6§ — h, and 6 respectively. For the
performance measure defined by (1), the algorithm returnsah@amon indices FDestimator:

BN 37>y r(zi) — r(z; ) wherezy,, andzi,, are upper and lower trajectories simulated
under the random sample path Note that although the selection indices are the same, the particle
populations '+, ’-’, and 'o’ are different, but very close (whénis small). Hence the likelihood
ratios/} ' converge td whenh — 0, which avoids a source of variance whiers small.

The resulting estimatad? J LM 9, JN for J(9) would calculate an average ovif
sample pathss;.p, of the return of Algorithm 3 called/ times. This estimator overcomes the
drawbacks of the naive FD estimate: #isymptotic bias is of orderO(h?) (like any centered FD
scheme) buits variance is of order O(N~1M ~1) (the Central Limit Theorem applies to the belief
feature estimator (3) thus &, JY as well). Since the variance does not degenerate whesmall,
one should choosk as small as possible to reduce the mean-squared estimation error.

The complexity of Algorithm 3 is linear in the number of particlds Note that in the current
implementation we use8l populations of particles per derivative. Of course, we could consider a
non-centered FD scheme approximating the derivative ﬁﬁﬁﬁz;ﬂe) which is of first order but

which only require particle populations. If the parameter is multidimensional, the full gradient
estimate could be obtained by usiAg+ 1 populations of particles. Of course, in gradient ascent
methods, such FD gradient estimate may be advantageously combined with clever techniques such
as simultaneous perturbation stochastic approximation (Spall, 2000), conjugate or second-order gra-
dient approaches.

Note that wherh, — 0, our estimator converges to émfinitesimal Perturbation Analysis (IPA)

estimator (Glasserman, 1991). The same ideas as those presented above could be used to derive an
IPA estimator. The advantage of IPA is that it would use one population of particles only (for the

full gradient) which may be interesting when the number of paraméteislarge. However, the

main drawback is that this approach would require to compute analytically the derivatives of all the
functions w.r.t. their respective variables, which may be time consuming for the programmer.

4 Numerical Experiment

Because of space constraints, our purpose here is simply to illustrate numerically the theoretical
findings of previous FD methods (in terms of bias-variance contributions) rather than to provide a
full example of POMDP policy optimization. We consider a very simple navigation task for a 2d
robot. The robot is defined by its coordinatgsc R2. The observation is a noisy measurement



Algorithm 3 Common-indices Finite Difference estimatef,,

Initialize likelihood ratios:
Setly ™Vt =1,10N =1,
for t = 1tondo
State processesSampleu;_; ~ v and
Setzf = F(2¢_1,af_q,ui—1), setey = F(x} |, a1, w_1), setr; = F(x;_,,a; 1, u—1),
Observation processesSamplev; ~ v and
Setyy = G(27, vr), Setyt_‘— = G(x:rvvt) sety, = G(zy ,vt),

id
Particle transition step Drawu} Y Yy and
~1:N, 1:N
Setz;’ O*F(It V0 ag g uty),

~1:N,+ LN+ 1: ~1:N,— LN,— — 1.N
Setz, F(‘Tt v al g, ubh), setr, = F(x, 2y a1, ui0Y),
Setwl N __ 9(1 7yt)
¢ Z;V 1 g(:vt ﬂlt)
. _ N, _
Sett! Nt = 9@ Wl N gyl N— 0@ ) LN -
9(T; % y7) (T, % y7)

Particle resampllng step:
Let kv be the selection indices obtained from the weights",

LN . REN N RN

Setz; M0 =7t % sety; VT =37t T setal N T =3 T,
BN N.— ELN

Setl;y VT =it T sett] N =T,

Actions:

Setaf = m (% Xisy f(2”)),
1o+ i _ l‘ _ i
Setaf = o (Tiy s e (@0)) sty = mo-n (X s =/ (7).
j=1"
end for ) )
Return: 9, JY & s | rled)ores)

of the squared distance to the origin (the goal): A l|z¢|? + v¢, wherewv, i N(0,02) (o7 is

the variance of the noise). At each time step, the agent may choose a ditgdjiath ||a.|| = 1),
which results in moving the state, of a st&pn the corresponding direction; |, = x; + da; + uy,

wherew, “&F N(0,021) is an additive noise. The initial statg is drawn fromv, a uniform
distribution over the square-1, 1]2. We consider a class of policies that depend on a single feature

belief: the mean of the belief state (i.f(x) = z). The PF-based policy thus uses the barycenter of

the particle populatiom, def % vazl zi. Let us writem* the +90° rotation of a vectorm. We

consider policiesrg(m) = % parameterized by < [0, 1]. The chosen action is thus
a; = mp(my). If the robot was well localized (i.en; close toz;), then the policyrg—, would move

the robot towards the direction of the goal, wheregas; would move it in an orthogonal direction.

The performance measure (to be minimized) is definet{ @s= E[||x,,||], wheren is a fixed time.

We plot in Figure 2 the performance and gradient estimation obtained when running Algorithms 2
and 3, respectively. We used the numerical valu¥s= 103, M = 102, h = 1075, n = 10,

o, = 0.05, 0y = 0.05,d = 0.1,

Itis interesting to note that in this problem, the performance is optimaffer 0.3 (which is slightly
better than fof = 0). & = 0 would correspond to the best feed-back policy if the state was perfectly
known. However, moving in an direction orthogonal to the goal helps improving localization. Here,
the optimal policy exhibits a tradeoff between greedy optimization and localization.

h=10° h=10"2 h=10"*% h=10"6
Bias / Variance NFD| 0.57/6.05 x 10~° 0.31/0.13 unreliable /25.3 | unreliable /6980
Bias / Variance CIFD 0.428 /0.022 0.00192/0.019 | 0.00247/0.02 | 0.00162/0.0188

The table above shows the (empirically measured) bias amahear of the naive FD (NFD) (using
common random numbers) method and the common indices FD (CIFD) method, for a specific value
6 = 0.5 (with N = 103, M = 500). As predicted, the variance of the NFD approach makes this
method inapplicable, whereas that of the CIFD is reasonable.
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Figure 2: Left: Estimator; Zﬁf:l JX () of J(0) and confidence intervals/Var[J) (0)] /M
Right: Estimator,; M onJY (0) of 9.J(#) and confidence intervals/Var[o), J)Y (6)] /M.

m=1
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