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Abstract

In many domains, data are distributed among datasets that share only some vari-
ables; other recorded variables may occur in only one dataset. While there are
asymptotically correct, informative algorithms for discovering causal relation-
ships from a single dataset, even with missing values and hidden variables, there
have been no such reliable procedures for distributed data with overlapping vari-
ables. We present a novel, asymptotically correct procedure that discovers a min-
imal equivalence class of causal DAG structures using local independence infor-
mation from distributed data of this form and evaluate its performance using syn-
thetic and real-world data against causal discovery algorithms for single datasets
and applying Structural EM, a heuristic DAG structure learning procedure for data
with missing values, to the concatenated data.

1 Introduction

In many domains, researchers are interested in predicting the effects of interventions, or manipulat-
ing variables, on other observed variables. Such predictions require knowledge of causal relation-
ships between observed variables. There are existing asymptotically correct algorithms for learning
such relationships from data, possibly with missing values and hidden variables [1][2][3], but these
algorithms all assume that every variable is measured in a single study. Datasets for such studies are
not always readily available, often due to privacy, ethical, financial, and practical concerns. How-
ever, given the increasing availability of large amounts of data, it is often possible to obtain several
similar studies that individually measure subsets of the variables a researcher is interested in and
together include all such variables. For instance, models of the United States and United Kingdom
economies share some but not all variables, due to different financial recording conventions; fMRI
studies with similar stimuli may record different variables, since the images vary according to mag-
net strength, data reduction procedures, etc.; and U.S. states report some of the same educational
testing variables, but also report state-specific variables. In these cases, if each dataset hasover-
lapping variable(s)with at least one other dataset, e.g. if two datasetsD1 andD2, which measure
variablesV1 andV2, respectively, have at least one variable in common (V1 ∩ V2 6= ∅), then we
should be able to learn many of the causal relationships between the observed variables using this
set of datasets. The existing algorithms, however, cannot in general be directly applied to such cases,
since they may require joint observations for variables that are not all measured in a single dataset.

While this problem has been discussed in [4] and [5], there are no general, useful algorithms for
learning causal relationships from data of this form. A typical response is to concatenate the datasets
to form a single common dataset with missing values for the variables that are not measured in each
of the original datasets. Statistical matching [6] or multiple imputation [7] procedures may then
be used to fill in the missing values by assuming an underlying model (or small class of models),
estimating model parameters using the available data, and then using this model to interpolate the
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missing values. While the assumption of some underlying model may be unproblematic in many
standard prediction scenarios, i.e. classification, it is unreliable for causal inference; the causal re-
lationships learned using the interpolated dataset that are between variables which are never jointly
measured in single dataset will only be correct if the corresponding relationships between variables
in the assumed model happen to be causal relationships in the correct model. The Structural EM
algorithm [8] avoids this problem by iteratively updating the assumed model using the current inter-
polated dataset and then reestimating values for the missing data to form a new interpolated dataset
until the model converges. The Structural EM algorithm is only justified, however, when missing
data are missing at random (or indicator variables can be used to make them so) [8]. The pattern
of missing values in the concatenated datasets described above is highly structured. Furthermore,
Structural EM is a heuristic procedure and may converge to local maxima. While this may not be
problematic in practice when doing prediction, it is problematic when learning causal relationships.
Our experiments in section 4 show that Structural EM performs poorly in this scenario.

We present a novel, asymptotically correct algorithm—theIntegration of Overlapping Networks
(ION) algorithm—for learning causal relationships (or more properly, the complete set of possible
causal DAG structures) from data of this form. Section 2 provides the relevant background and
terminology. Section 3 discusses the algorithm. Section 4 presents experimental evaluations of the
algorithm using synthetic and real-world data. Finally, section 5 provides conclusions.

2 Formal preliminaries

We now introduce some terminology. Adirected graphG = 〈V , E〉 is a set of nodesV , which rep-
resent variables, and a set of directed edgesE connecting distinct nodes. If two nodes are connected
by an edge then the nodes areadjacent. For pairs of nodes{X, Y } ⊆ V , X is a parent (child) ofY ,
if there is a directed edge fromX to Y (Y to X) in E . A trail in G is a sequence of nodes such that
each consecutive pair of nodes in the sequence is adjacent inG and no node appears more than once
in the sequence. A trail is adirected pathif every edge between consecutive pairs of nodes points in
the same direction.X is anancestor(descendant) of Y if there is a directed path fromX to Y (Y
to X). G is adirected acyclic graph(DAG) if for every pair{X, Y } ⊆ V , X is not both an ancestor
and a descendent ofY (no directed cycles). Acollider (v-structure) is a triple of nodes〈X, Y, Z〉
such thatX andZ are parents ofY . A trail is activegivenC ⊆ V if (i) for every collider〈X, Y, Z〉
in the trail eitherY ∈ C or some descendant ofY is in C and (ii) no other node in the trail is inC.
For disjoint sets of nodesX, Y, andZ, X is d-separated (d-connected) fromY givenZ if and only if
there are no (at least one) active trails between anyX ∈ X and anyY ∈ Y givenZ.

A Bayesian networkB is a pair〈G,P〉, whereG = 〈V , E〉 is a DAG andP is a joint probability
distribution over the variables represented by the nodes inV such thatP can be decomposed as
follows:

P(V) =
∏

V ∈V

P (V |Parents(V ))

ForB = 〈G,P〉, if X is d-separated fromY givenZ in G, thenX is conditionally independent ofY
givenZ in P [9]. For disjoint sets of nodes,X, Y, andZ in V , P is faithful to G if X is d-separated
from Y givenZ in G wheneverX is conditionally independent ofY givenZ in P [1]. B is acausal
Bayesian network if an edge fromX to Y indicates thatX is a direct cause ofY relative toV .

Most algorithms forcausal discovery, or learning causal relationships from nonexperimental data,
assume that the distribution over the observed variablesP is decomposable according to a DAG
G andP is faithful to G. The goal is to learnG using the data fromP . Most causal discovery
algorithms return a set of possible DAGs which entail the same d-separations and d-connections,
e.g. theMarkov equivalence class, rather than a single DAG. The DAGs in this set have the same
adjacencies but only some of the same directed edges. The directed edges common to each DAG
represent causal relationships that are learned from the data. If we admit the possibility that there
may be unobserved (latent) common causes between observed variables, then this set of possible
DAGs is usually larger.

A partial ancestral graph(PAG) represents the set of DAGs in a particular Markov equivalence class
when latent common causes may be present. Nodes in a PAG correspond to observed variables.
Edges are of four types:−◮, ◦−◮, ◦−◦ and◭−◮, where a◦ indicates either an◮ or− orientation,
bidirected edges indicate the presence of a latent common cause, and fully directed edges (−◮)
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indicate that the directed edge is present in every DAG, e.g. acausal relationship. For{X, Y } ⊆ V ,
a possiblyactive trail betweenX andY givenZ ⊆ V/{X, Y } is a trail in a PAG betweenX andY
such that some orientation of◦’s on edges between consecutive nodes in the trail, to either− or ◮,
makes the trail active givenZ.

3 Integration of Overlapping Networks (ION) algorithm

The ION algorithm uses conditional independence information to discover the complete set of PAGs
over a set of variablesV that are consistent with a set of datasets over subsets ofV which have
overlapping variables. ION accepts as input a set of PAGs which correspond to each of such datasets.
A standard causal discovery algorithm that checks for latent common causes, such as FCI [1] or GES
[3] with latent variable postprocessing steps1, must first be applied to each of the original datasets
to learn these PAGs that will be input to ION. Expert domain knowledge can also be encoded in the
input PAGs, if available. The ION algorithm is shown as algorithm 1 and described below.

Input : PAGsGi ∈ G with nodesVi ⊆ V for i = 1, . . . , k
Output: PAGsHi ∈ H with nodesVi = V for i = 1, . . . , m

K ← the complete graph overV with ◦’s at every endpoint1

A← ∅2

Transfer nonadjacencies and endpoint orientations from eachGi ∈ G toK and propagate the3

changes inK using the rules described in [10]
PAT({X, Y}, Z)← all possiblyactive trails betweenX andY givenZ for all {X, Y} ⊆ V and4

Z ⊆ V/{X, Y} such thatX andY are d-separated givenZ in someGi ∈ G
PC← all minimal hitting setsof changes toK, such that allPATi ∈ PAT are not active5

for PCi ∈ PC do6

Ai ←K after making and propagating the changesPCi7

if Ai is consistent with everyGi ∈ G then addAi to A8

end9

forAi ∈ A do10

RemoveAi fromA11

Mark all edges inAi as ‘?’12

For each{X, Y} ⊆ V such thatX andY are adjacent inAi, if X andY are d-connected13

given∅ in someGi ∈ G, then remove ‘?’ from the edge betweenX andY in Ai

PR← every combination of removing or not removing ‘?’ marked edges fromAi14

for PRi ∈ PR do15

Hi ←Ai after making and propagating the changesPRi16

if Hi is consistent with everyGi ∈ G then addHi to H17

end18

end19

Algorithm 1: The Integration of Overlapping Networks (ION) algorithm

The algorithm begins with the complete graph overV with all ◦ endpoints and transfers nonadja-
cencies and endpoint orientations from eachGi ∈ G at line 3, e.g. ifX andY are not adjacent inGi

then remove the edge betweenX andY , if X is directed intoY in Gi then set the endpoint atY on
the edge betweenX andY to ◮. Once these orientations and edge removals are made, the changes
to the complete graph arepropagatedusing the rules in [10], which provably make every change
that is entailed by the current changes made to the graph. Lines 4-9 find every possibly active trail
for every{X, Y } ⊆ V givenZ ⊆ V/{X, Y } such thatX andY are d-separated givenZ in some
Gi ∈ G. The constructed setPC includes allminimal hitting setsof graphical changes, e.g. unique
sets of minimal changes that are not subsets of other sets of changes, which make these paths no
longer active. For each minimal hitting set, a new graph is constructed by making the changes in
the set and propagating these changes. If the graph is consistent with eachGi ∈ G, e.g. the graph
does not imply a d-separation for some{X, Y } ⊆ V givenZ ⊆ V/{X, Y } such thatX andY are
d-connected in someGi ∈ G, then this graph is added to the current set of possible graphs. Lines 10-

1We use the standard GES algorithm to learn a DAG structure from the data and then use the FCI rules to
check for possible latent common causes.
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19 attempt to discover any additional PAGs that may be consistent with eachGi ∈ G after deleting
edges from PAGs in the current set and propagating the changes. If some pair of nodes{X, Y } ⊆ V
that are adjacent in a current PAG are d-connected given∅ in someGi ∈ G, then we do not consider
sets of edge removals which remove this edge.

The ION algorithm is provablysoundin the sense that the output PAGs are consistent with every
Gi ∈ G, e.g. noHi ∈ H entails a d-separation or d-connection that contradicts a d-separation or
d-connection entailed by someGi ∈ G. This property follows from the fact that d-separation and
d-connection are mutually exclusive, exhaustive relations.

Theorem 3.1 (soundness). If X andY are d-separated (d-connected) givenZ in someGi ∈ G, then
X andY are d-separated (d-connected) givenZ in everyHi ∈ H.

Proof Sketch.Every structureAi constructed at line 7 provably entails every d-separation entailed
by someGi ∈ G. Such structures are only added toA if they do not entail a d-separation correspond-
ing to a d-connection in someGi ∈ G. The only changes made (other than changes resulting from
propagating other changes which are provably correct by [10]) in lines 10-19 are edge removals,
which can only create new d-separations. If a new d-separation is created which corresponds to a
d-connection in someGi ∈ G, then the PAG entailing this new d-separation is not added toH.

The ION algorithm is provablycompletein the sense that if there is some structureHi over the
variablesV that is consistent with everyGi ∈ G, thenHi ∈ H.

Theorem 3.2 (completeness). Let Hi be a PAG over the variablesV such that for every pair
{X, Y } ⊆ V , if X andY are d-separated (d-connected) givenZ ⊆ V/{X, Y } in someGi ∈ G, then
X andY are d-separated (d-connected) givenZ in Hi. Then,Hi ∈ H.

Proof Sketch.Every change made at line 3 is provably necessary to ensure soundness. At least
one graph added toA at line 8 provably has every adjacency (possibly more) inHi and no non-◦
endpoints on an edge found inHi that is not also present inHi. Some sequence of edge removals
will provably produceHi at line 16 and it will be added to the output set since it is consistent with
everyGi ∈ G.

Thus, by theorems 3.1 and 3.2, ION is an asymptotically correct algorithm for learning the complete
set of PAGs overV that are consistent with a set of datasets over subsets ofV with overlapping
variables, if the input PAGs are discovered using an asymtotically correct algorithm that detects the
presence of latent common causes, i.e. FCI, with each of these datasets.

Finding all minimal hitting sets is an NP-complete problem [11]. Since learning a DAG structure
from data is also an NP-complete problem [12], the ION algorithm, as given above, requires a
superexponential (inV) number of operations and is often computationally intractable even for small
sizes of|V|. In practice, however, we can break the minimal hitting set problem into a sequence
of smaller subproblems and use a branch and bound approach that is tractable in many cases and
still results in an asymptotically correct algorithm. We tested several such strategies. The method
which most effectively balanced time and space complexity tradeoffs was to first find all minimal
hitting sets which make all possibly active trails of length 2 that correspond to d-separations in some
Gi ∈ G not active, then find the structures resulting from making and propagating these changes that
are consistent with everyGi ∈ G, and iteratively do the same for each of these structures, increasing
the length of possibly active trails considered until trails of all sizes are considered.

4 Experimental results

We first used synthetic data to evaluate the performance of ION with known ground truth. In the first
experiment, we generated 100 random 4-node DAGs using the MCMC algorithm described in [13]
with random discrete parameters (conditional probability tables for the factors in the decomposition
shown in section 2). For each DAG, we then randomly chose two subsets of size 2 or 3 of the nodes
in the DAG such that the union of the subsets included all 4 nodes and at least one overlapping
variable between the two subsets was present. We used forward sampling to generate two i.i.d.
samples of sizesN = 50, N = 100, N = 500, N = 1000 andN = 2500 from the DAGs for
only the variables in each subset. We used both FCI and GES with latent variable postprocessing to
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Figure 1: (a) edge omissions, (b) edge commissions, (c) orientation errors, and (d) runtimes

generate PAGs for each of these samples which were input to ION. To evaluate the accuracy of ION,
we counted the number of edge omission, edge commision, and orientation errors (◮ instead of−)
for each PAG in the ION output set and averaged the results. These results were then averaged across
all of the 100 4-node structures. Figure 1 shows the averaged results for these methods along with
3 other methods we included for comparison.ION-FCI andION-GESrefer the the performance of
ION when the input PAGs are obtained using the FCI algorithm and the GES algorithm with latent
variable postprocessing, respectively. ForStructural EM, we took each of the datasets over subsets
of the nodes in each DAG and formed a concatenated dataset, as described in section 1, which
was input to the Structural EM algorithm.2 For FCI-baselineandGES-baseline, we used forward
sampling to generate another i.i.d. sample of sizesN = 50, N = 100, N = 500, N = 1000 and
N = 2500 for all of the variables in each DAG and used these datasets as input for the FCI and GES
with latent variable postprocessing algorithms, respectively, to obtain a measure for how well these
algorithms perform when no data is missing. The average runtimes for each method are also reported
in figure 1. Error bars show95% confidence intervals. We first note the performance of Structural
EM. Almost no edge omission errors are made, but more edge commissions errors are made than any
of the other methods and the edge commission errors do not decrease as the sample size increases.
When we looked at the results, we found that Structural EM always returned either the complete
graph or a graph that was almost complete, indicating that Structural EM is not a reliable method
for causal discovery in this scenario where there is a highly structured pattern to the missing data.
Furthermore, the runtime for Structural EM was considerably higher than any of the other methods.
For the larger sample sizes (where more missing values need to be estimated at each iteration), a
single run required several hours in some instances. Due to its significant computation time, we

2We ran Structural EM with 5 random restarts and chose the model with the highest BDeu score to avoid
converging to local maxima. Random “chains” of nodes were used as the initial models. Structural EM was
never stopped before convergence.

5



N=50 N=100 N=500 N=1000N=2500
0

1

2

3

4

5

6

7

8

Sample size

E
dg

e 
om

is
si

on
s

 

 
FCI−baseline
ION−FCI
GES−baseline
ION−GES

N=50 N=100 N=500 N=1000N=2500
0

0.1

0.2

0.3

0.4

0.5

Sample size

E
dg

e 
co

m
m

is
si

on
s

N=50 N=100 N=500 N=1000N=2500
0

1

2

3

4

5

6

Sample size

O
rie

nt
at

io
n 

er
ro

rs

(a) (b) (c)

Figure 2: (a) edge omissions, (b) edge comissions, and (c) orientation errors
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Figure 3: (a) edge omissions, (b) edge comissions, and (c) orientation errors

were unable to use Structural EM with larger DAG structures so it is excluded in the experiments
below. The FCI-baseline and GES-baseline methods performed similarly to previous simulations
of them. The ION-FCI and ION-GES methods performed similarly to the FCI-baseline and GES-
baseline methods but made slightly more errors and showed slower convergence (due to the missing
data). Very few edge commission errors were made. Slightly more edge omission errors were made,
but these errors decrease as the sample size increases. Some edge orientation errors were made even
for the larger sample sizes. This is due to the fact that each of the algorithms returns an equivalence
class of DAGs rather than a single DAG. Even if the correct equivalence class is discovered, errors
result after comparing the ground truth DAG to every DAG in the equivalence class and averaging.
We also note that there are fewer orientation errors for the GES-baseline and ION-GES methods on
the two smallest sample sizes than all of the other sample sizes. While this may seem surprising, it
is simply a result of the fact that more edge omission errors are made for these cases.

We repeated the above experiment for 3 similar cases where we used 6-node DAG structures rather
than 4-node DAG structures: (i) two i.i.d. samples were generated for random subsets of sizes 2-5
with only 1 variable that is not overlapping between the two subsets; (ii) two i.i.d. samples were
generated for random subsets of sizes 2-5 with only 2 variables that are not overlapping between
the two subsets; (iii) three i.i.d. samples were generated for random subsets of sizes 2-5 with only
1 variable that is not overlapping between any pair of subsets. Figures 2, 3, and 4 show edge
omission, edge commission, and orientation errors for each of these cases, respectively. In general,
the performance in each case is similar to the performance for the 4-node case.

We also tested the performance of ION-FCI using a real world dataset measuring IQ and various
neuroanatomical and other traits [14]. We divided the variables into two subsets with overlapping
variables based on domain grounds: (a) variables that might be included in a study on the relationship
between neuroanatomical traits and IQ; and (b) variables for a study on the relationship between IQ,
sex, and genotype, with brain volume and head circumference included as possible confounders.
Figures 5a and 5b show the FCI output PAGs when only the data for each of these subsets of the
variables is provided as input, respectively. Figure 5c shows the output PAG of ION-FCI when these
two resulting PAGs are used as input. We also ran FCI on the complete dataset to have a comparison.
Figure 5d shows this PAG.
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Figure 4: (a) edge omissions, (b) edge comissions, and (c) orientation errors
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Figure 5: (a) FCI output PAG for variables in subset a, (b) FCI output PAG for variables in subset b,
(c) ION output PAG when using the FCI ouput PAGs for variables in subset a and variables in subset
b as input, and (d) FCI output PAG for all variables

In this particular case, the output of ION-FCI consists of only a single PAG, which is identical to
the result when FCI is given the complete dataset as input. This case shows that in some instances,
ION-FCI can recover as much information about the true DAG structure as FCI even when less
information can be extracted from the ION-FCI input. We note that the graphical structure of the
complete PAG (figures 5c and 5d) is the union of the structures shown in figures 5a and 5b. While
visually this may appear to be a trivial example for ION where all of the relevant information can be
extracted in the first steps, there is in fact much processing required in later stages in the algorithm
to determine the structure around the nonoverlapping variables.

5 Conclusions

In practice, researchers are often unable to find or construct a single, complete dataset containing
every variable they may be interested in (or doing so is very costly). We thus need some way
of integrating information about causal relationships that can be discovered from a collection of
datasets with related variables [5]. Standard causal discovery algorithms cannot be used, since they
take only a single dataset as input. To address this open problem, we proposed the ION algorithm,
an asymptotically correct algorithm for discovering the complete set of causal DAG structures that
are consistent with such data.

While the results presented in section 4 indicate that ION is useful in smaller domains when the
branch and bound approach described in section 3 is used, a number of issues must be addressed
before ION or a simlar algorithm is useful for higher dimensional datasets. Probably the most sig-
nificant problem is resolving contradictory information among overlapping variables in different
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input PAGs, i.e.X is a parent ofY in one PAG and a child ofY in another PAG, resulting from
statistical errors or when the input samples are not identifically distributed. ION currently ignores
such information rather than attempting to resolve it. This increases uncertainty and thus the size of
the resulting output set of PAGs. Furthermore, simply ignoring such information does not always
avoid conflicts. In some of such cases, ION will not discover any PAGs which entail the correct
d-separations and d-connections. Thus, no output PAGs are returned. When performing condi-
tional independence tests or evaluating score functions, statistical errors occur more frequently as
the dimensionality of a dataset increases, unless the sample size also increases at an exponential
rate (resulting from the so-calledcurse of dimensionality). Thus, until reliable methods for resolv-
ing conflicting information from input PAGs are developed, ION and similar algorithms will not
in general be useful for higher dimensional datasets. Furthermore, while the branch and bound
approach described in section 3 is a significant improvement over other methods we tested for com-
puting minimal hitting sets, its memory requirements are still considerable in some instances. Other
algorithmic strategies should be explored in future research.
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