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Abstract

Recently, supervised dimensionality reduction has been gaining attention, owing
to the realization that data labels are often available and indicate important under-
lying structure in the data. In this paper, we present a novel convex supervised
dimensionality reduction approach based on exponential family PCA, which is
able to avoid the local optima of typical EM learning. Moreover, by introduc-
ing a sample-based approximation to exponential family models, it overcomes the
limitation of the prevailing Gaussian assumptions of standard PCA, and produces
a kernelized formulation for nonlinear supervised dimensionality reduction. A
training algorithm is then devised based on a subgradient bundle method, whose
scalability can be gained using a coordinate descent procedure. The advantage of
our global optimization approach is demonstrated by empirical results over both
synthetic and real data.

1 Introduction

Principal component analysis (PCA) has been extensively used for data analysis and processing.
It provides a closed-form solution for linear unsupervised dimensionality reduction through singu-
lar value decomposition (SVD) on the data matrix [8]. Probabilistic interpretations of PCA have
also been provided in [9, 16], which formulate PCA using a latent variable model with Gaussian
distributions. To generalize PCA to better suit non-Gaussian data, many extensions to PCA have
been proposed that relax the assumption of a Gaussian data distribution. Exponential family PCA
is the most prominent example, where the underlying dimensionality reduction principle of PCA
is extended to the general exponential family [4, 7, 13]. Previous work has shown that improved
quality of dimensionality reduction can be obtained by using exponential family models appropri-
ate for the data at hand [4, 13]. Given data from a non-Gaussian distribution these techniques are
better able than PCA to capture the intrinsic low dimensional structure. However, most existing
non-Gaussian dimensionality reduction methods rely on iterative local optimization procedures and
thus suffer from local optima, with the sole exception of [7] which shows a general convex form can
be obtained for dimensionality reduction with exponential family models.

Recently, supervised dimensionality reduction has begun to receive increased attention. As the goal
of dimensionality reduction is to identify the intrinsic structure of a data set in a low dimensional
space, there are many reasons why supervised dimensionality reduction is a meaningful topic to
study. First, data labels are almost always assigned based on some important intrinsic property of
the data. Such information should be helpful to suppress noise and capture the most useful aspects
of a compact representation of the data. Moreover, there are many high dimensional data sets with
label information available, e.g., face and digit images, and it is unwise to ignore them. A few su-
pervised dimensionality reduction methods based on exponential family models have been proposed
in the literature. For example, a supervised probabilistic PCA (SPPCA) model was proposed in
[19]. SPPCA extends probabilistic PCA by assuming that both features and labels have Gaussian



distributions and are generated independently from thetdbes dimensional space through linear
transformations. The model is learned by maximizing the marginal likelihood of the observed data
using an alternating EM procedure. A more general supervised dimensionality reduction approach
with generalized linear models (SDELM) was proposed in [12]. SDIKELM views both features

and labels as exponential family random variables and optimizes a weighted linear combination of
their conditional likelihood given latent low dimensional variables using an alternating EM-style
procedure with closed-form update rules. SIBRM is able to deal with different data types by
using different exponential family models. Similar to SOR_M, the linear supervised dimension-

ality reduction method proposed in [14] also takes advantage of exponential family models to deal
with different data types. However, it optimizes the conditional likelihood of labels given observed
features within a mixture model framework using an EM-style optimization procedure. Beyond the
PCA framework, many other supervised dimensionality reduction methods have been proposed in
the literature. Linear (fisher) discriminant analysis (LDA) is a popular alternative [5], which max-
imizes between-class variance and minimizes within-class variance. Moreover, a kernelized fisher
discriminant analysis (KDA) has been studied in [10]. Another notable nonlinear supervised dimen-
sionality reduction approach is the colored maximum variance unfolding (MVU) approach proposed
in [15], which maximizes the variance aligning with the side information (e.g., label information),
while preserving the local distance structures from the data. However, colored MVU has only been
evaluated on training data.

In this paper, we propose a novel supervised exponential family PCA model (SEPCA). In the SEPCA
model, observed data and its labely are assumed to be generated from the latent variaiés
conditional exponential family models; dimensionality reduction is conducted by optimizing the
conditional likelihood of the observatiorig, y). By exploiting convex duality of the sub-problems

and eigenvector properties, a solvable convex formulation of the problem can be derived that pre-
serves solution equivalence to the original. This convex formulation allows efficient global op-
timization algorithms to be devised. Moreover, by introducing a sample-based approximation to
exponential family models, SEPCA does not suffer from the limitations of implicit Gaussian as-
sumptions and is able to be conveniently kernelized to achieve nonlinearity. A training algorithm

is then devised based on a subgradient bundle method, whose scalability can be gained through a
coordinate descent procedure. Finally, we present a simple formulation to project new testing data
into the embedded space. This projection can be used for other supervised dimensionality reduction
approach as well. Our experimental results over both synthetic and real data suggest that a more
global, principled probabilistic approach, SEPCA, is better able to capture subtle structure in the
data, particularly when good label information is present.

The remainder of this paper is organized as follows. First, in Section 2 we present the proposed
supervised exponential family PCA model and formulate a convex nondifferentiable optimization
problem. Then, an efficient global optimization algorithm is presented in Section 3. In Section 4,
we present a simple projection method for new testing points. We then present the experimental
results in Section 5. Finally, in Section 6 we conclude the paper.

2 Supervised Exponential Family PCA

We assume we are giventax n data matrix,X, consisting oft observations of:.-dimensional
feature vectorsyX;., and a x k indicator matrix,Y", with each row to indicate the class label for each
observationX;.; thuszf=1 Y;; = 1. For simplicity, we assume features M are centered; that is,
their empirical means are zeros. We aim to recow&damensional re-representationt & d matrix

Z, of the data(d < n). This is typically viewed as discovering a latent low dimensional manifold
in the high dimensional feature space. Since the label informatigmexploited in the discovery
process, this is called supervised dimensionality reduction. For recovgriadey restriction that
one would like to enforce is that the features used for codifig,should be linearly independent;
that is, one would like to enforce the constraiht Z = I, which ensures that the codes are expressed
by orthogonal features in the low dimensional representation.

Given the above setup, in this paper, we are attempting to address the problem of supervised dimen-
sionality reduction using a probabilistic latent variable model. Our intuition is that the important
intrinsic structure (underlying feature representation) of the data should be able to accurately gener-
ate/predict the original data features and labels.



In this section, we formulate the low-dimensional principamponent discovering problem as a

conditional likelihood maximization problem based on exponential family model representations,
which can be reformulated into an equivalent nondifferentiable convex optimization problem. We
then exploit a sample-based approximation to unify exponential family models for different data

types.

2.1 Convex Formulation of Supervised Exponential Family PCA

As with the generalized exponential family PCA [4], we attempt to find low-dimensional represen-
tation by maximizing the conditional likelihood of the observation malfiandY” given the latent
matrix Z, log P(X,Y|Z) = log P(X|Z) + log P(Y|Z). Using the general exponential family
representation, a regularized version of this maximization problem can be formulated as

max  max log P(X|Z,W) - étr (WWT) +1log P(Y|Z,9,b) — p 5 (tr (QQ") +b'b)
B
=, max  max tr(ZWX') — Z (A(Zi., W) —log Py(X3.)) — St (wwT) 1)

%
+r(ZQY ") +17Yb = Y A(Zi, Q,b) - g (tr (QQ7) +b'b)
whereW is ad x n parameter matrix for conditional mod&( X | Z); Q is ad x k parameter matrix
for conditional modelP(Y'|Z) andb is ak x 1 bias vectorl denotes the vector of all 1g;(Z,., W)
andA(Z;.,Q,b) are the log normalization functions to ensure valid probability distributions:

A(Z; , W) = log/exp (Z;Wx) Py(x) dx . 2
k

A(Zi:,,b) = log ) exp(Zi01,+1/b) (3)
=1

wherel, denotes a zero vector with a singdlén the /th entry.

Note that the class variablg is discrete, thus maximizintpg P(Y|Z,Q, b) is a discriminative
classification training. In fact, the second part of the objective function in (1) is simply a multi-class
logistic regression. That is why we have incorporated an additional biasténto the model.

Theorem 1 The optimization problem (1) is equivalent to

Z (A*(UZ) +log Po(X3)) + %tr (X-U")(X-U")TM)

+ZA* UY) + —ﬁtr (Y -U¥)(Y-UY)" (M + E)) ()
whereE' is at x t matrix with aII 1s;U” is at x n matrix; UY is at x k matrix; A*(UZ) and
A*(UY) are the Fenchel conjugates df{ Z;., W) and A(Z;., 2, b) respectivelyM = ZZ " andZ
can be recovered by taking the tdgigenvectors of/; and the model parametei#’, (2, b can be
recovered by

min max
U=,UY M:I>=M>0, tr (M)=d

:lT _x :lT_y :i_yT
WﬁZ(X U)7QﬁZ(Y U),bﬁ(Y U¥)'1

Proof: The proof is simple and based on standard results. Due to space limitation, we only provide
a summarization of the key steps here. There are three steps. The first step is to derive the Fenchel
conjugate dual for each log partition functiof(Z, .), following [18, Section 3.3.3]; which can be

used to yield

: * T 1 T x\ T T
max  min : (A (U-)+logP0(Xi:))+%tr((X—U (X-U""'ZZ")

+ZA* UY) + —Btr((Y—U’/)(Y—Uy)T(ZZT +E)) (5)



that is equivalent to the original problem (1). The secong stebased on exploiting the strong
min-max property [2] and the relationships between different constraint sets

{M:M=2Z" forsomeZ suchthatZ ' Z =1} C{M : I = M = 0,tr(M) = d},

which allows one to further show the optimization (4) is an upper bound relaxation of (5). The final
equivalence proof is based on the result of [11], which suggests the substitufigh'ofvith matrix
M does not produce relaxation ggp.

Note that (4) is a min-max optimization problem. Moreover,dach fixed)/, the outer minimiza-

tion problem is obviously convex, since the Fenchel conjugatéd/*) and A*(U;), are convex
functions ofU* andU¥ respectively [2]; that is, the objective function for the outer minimization is a
pointwise supremum over an infinite set of convex functions. Thus the overall min-max optimization
is convex [3], but apparently not necessarily differentiable. We will address the nondifferentiable
training issue in Section 3.

2.2 Sample-based Approximation

In the previous section, we have formulated our supervised exponential family PCA as a convex
optimization problem (4). However, before attempting to devise a training algorithm to solve it, we
have to provide some concrete forms for the Fenchel conjugate funeticig®) and A*(UY). For
different exponentlal family models, the Fenchel conjugate functitrare different; see [18, Table

2]. For example, since thevariable in our model is a discrete class variable, it takes a multinomial
distribution. Thus the Fenchel conjugate functiéh(U}) is given by

ANUY) = A*(OY) = tr (@;{ 1og@~;.{T) , where ©% >0, O¥1 = 1 6)

The specific exponential family model is determined by the data type and distribution. PCA and
SPPCA use Gaussian models, thus their performances might be degraded when the data distribution
is non-Gaussian. However, it is tedious and sometimes hard to choose the most appropriate expo-
nential family model to use for each specific application problem. Moreover, the log normalization
function A and its Fenchel conjugat&* might not be easily computable. For these reasons, we pro-
pose to use a sample-based approximation to the integral (2) and achieve an empirical approximation
to the true underlying exponential family model as follows. If one replaces the integral definition (2)
with an empirical definitionA(Z;., W) = log 3~ exp (Z:W X ) /t, then the conjugate function

can be given by

A*(UE) = A*(©F) = tr (0% 1logO%L") —log(1/t), where ©° >0, 671 =1 (7)
With this sample-based approximation, problem (4) can be expressed as

1
i tr (0% log ©%) + —tr (I—O*)K(I-07)" M 8
o Ou M:IEN[I;l(?:)%r(M):d (07 1og &%) + 203 ( K ) M) ®)

+ 1r (0¥ log ©Y) + %tr (Y -0 (Y-eY)T (M + E))
subjectto ©*>0,0"1=1;60Y>0,0%1=1 9)

One benefit of working with this sample-based approximation is that it is automatically kernelized,
K = XX, to enable non-linearity to be conveniently introduced.

3 Efficient Global Optimization

The optimization (8) we derived in the previous section is a convex-concave min-max optimization
problem. The inner maximization of (8) is a well known problem with a closed-form solution [11]:
M* =Z*Z*T andZ* = Q%,,, (I-0")K(I-6%)T + (Y —6v)(Y —6¥)T), whereQ?, .. (D)
denotes the matrix formed by the tdgigenvectors o). However, the overall outer minimization
problem is nondifferentiable with respect & and©¥. Thus the standard first-order or second-
order optimization techniques that rely on the standard gradients can not be applied here. In this

section, we deploy a bundle method to solve this nondifferentiable min-max optimization.



3.1 Bundle Method for Min-Max Optimization

The bundle method is an efficient subgradient method for nondifferentiable convex optimization; it
relies on the computation of subgradient terms of the objective function. A ye@@subgradient

of function f at pointx, if f(y) > f(x)+g' (y —x), Vy. To adapt standard bundle methods to our
specific min-max problem, we need to first address the critical issue of subgradient computation.

Proposition 1 Consider a joint functiorh(x, y) defined ovex € X andy € Y, satisfying: (1)
h(-,y) is convex for ally € Y; (2) h(x,) is concave for allk € X. Let f(x) = maxy h(x,y),
andq(xo) = argmaxy h(xo,y). Assume thag is a gradient ofh(-, ¢(x¢)) atx = xo, theng is a
subgradient off (x) atx = x.

Proof: f(x) = m;xxh(x,y) > h(x,q(x0))

\%

> h(xo,q(x0)) +g'(x —x0) (sinceh(-,y) is convex for ally € ))
= f(xo0)+g' (x—x0) (bythe definitions off (x) andg(xo))
Thusg is a subgradient of (x) atx = x, according to the definition of subgradiejt.

According to Proposition 1, the subgradients of our outerimizzation objective functiory in (8)
over©® and®Y can be given by

do=f 2 (log®” +1 — %M*(I —O")K), douvf > (log®¥ +1 — %M*(Y —-0Y)  (10)

whereM* is the optimal inner maximization solution at the current p¢@it, ©¥].

Algorithm 1 illustrates the bundle method we developed to solve the infinite min-max optimiza-
tion (8), where the linear constraints (9) o¥ef and®©¥ can be conveniently incorporated into the
guadratic bound optimization. One important issue in this algorithm is how to manage the size of the
linear lower bound constraints formed from the activeBétlefined in Algorithm 1), as it incremen-

tally increases with new points being explored. To solve this problem, we noticed the Lagrangian
dual parametera for the lower bound constraints obtained by the quadratic optimization in step 1
is a sparse vector, indicating that many lower bound constraints can be turned off. Moreover, any
constraint that is turned off will mostly stay off in the later steps. Therefore, for the bundle method
we developed, whenever the sizeldfs larger than a given constantwe will keep the active points

of B that correspond to the firstlargesta values, and drop the remaining ones.

3.2 Coordinate Descent Procedure

An important factor affecting the running efficiency is the size of the problem. The convex opti-
mization (8) works in the dual parameter space, where the size of the parafeterfO”, ©¥},

t x (t + k), depends only on the number of training sampleapt on the feature size, For high
dimensional small data sets (& t), our dual optimization is certainly a good option. However,
with the increase of, our problem size will increase in an order@f+?). It might soon become too
large to handle for the quadratic optimization step of the bundle method.

On the other hand, the optimization problem (8) possesses a nice semi-decomposable structure:
one equality constraint in (9) involves only one row of tBethat is, the® can be separated into

rows without affecting the equality constraints. Based on this observation, we develop a coordinate
descent procedure to obtain scalability of the bundle method over large data sets. Specifically, we
put an outer loop above the bundle method. Within each of this outer loop iteration, we randomly
separate th&® parameters inton groups, with each group containing a subset row®opfand

we then use bundle method to sequentially optimize each subproblem defined on one group of
© parameters while keeping the remaining rowsfixed. Although coordinate descent with a
nondifferentiable convex objective is not guaranteed to converge to a minimum in general [17], we
have found that this procedure performs quite well in practice, as shown in the experimental results.

4 Projection for Testing Data

One important issue for supervised dimensionality reduction is to map new testing data into the
dimensionality-reduced principal dimensions. We deploy a simple procedure for this purpose. After



Algorithm 1 Bundle Method for Min-Max Optimization in (8)
Input: § >0,m € (0,1),be IN,p€ IR
Initial: Find an initial pointg* satlsfymg the linear constramts in (9); compyt@™).
Letl =1,0° = 6%, computeg € Ope f by (10) et = f(0%) — f(6°) —g'T (6% — 0°).
LetB—{( teghté=Inf,g=00=(+
repeat
1. Solve quadratic minimization for solutigh and Lagrangian dual parametesw.r.t. the
lower bound linear constraints 1 [1]:

0 = arg mein Pe(0) + %HH — 6*||?, subject to the linear constraints in (9)

where ¢,(0) = f(0") + max{ —é+g" (0 — 0*), max {—e" +g"" (0 —6%)}}
(et,g")EB

2. Defined, = f(0%) — [1e(B) + L1160 — 0*||* > 0. If &, < 4, return.
3. Conduct line search to minimiz&6*) with 6/ = ~6* 4 (1 — )6, for0 < v < 1.
4. Computeg’ € 9y f by (10);e’ = f(0*)— f(0°) —g'T (6" —6%); updateB = BU{ (e, g%)}.
5.1f £(6*) — £(0°) > md,, then take a serious step:
(1) updatee® = e’ + f(0°) — f(0%) + g (6% — 6°);
(2) update the aggregatiog:= Y, cug’, € = Y, avie’;
(3) update the stored solutioé* = 6°, f(0*) = f(0°).
6. If |B| > b, reduceB set according tex.
7.0=10+1.
until maximum iteration number is reached

training, we obtain a low-dimensional representatibfior X, whereZ can be viewed as a linear
projection of X in some transformed spaag X) through a parameter matrix U; such thét=
PY(X)U = (X)(X) T K*+(X)U, whereK+ denotes the pseudo inverself= (X ) (X) .
Then a new testing sampi& can be projected by

2 = P(x )X TKTp(X)U = k(x*, X)KtZ (11)

5 Experimental Results

In order to evaluate the performance of the proposed supervised exponential family PCA (SEPCA)
approach, we conducted experiments over both synthetic and real data, and compared to supervised
dimensionality reduction with generalized linear models (SBIRV), supervised probabilistic PCA
(SPPCA), linear discriminant analysis (LDA), and colored maximum variance unfolding (MVU).
The projection procedure (11) is used for colored MVU as well. In all the experiments, we used
= 1 for Algorithm 1, and used = 0.0001 for SDR.GLM as suggested in [12].

5.1 Experiments on Synthetic Data

Two synthetic experiments were conducted to compare the five approaches under controlled con-
ditions. The first synthetic data set is formed by first generating four Gaussian clusters in a two-
dimensional space, with each corresponding to one class, and then adding the third dimension to
each point by uniformly sampling from a fixed interval. This experiment attempts to compare the
performance of the five approaches in the situation where the data distribution does not satisfy the
Gaussian assumption. Figure 1 shows the projection results for each approach in a two dimensional
space for 120 testing points after being trained on a set with 80 points. In this case, SEPCA and
LDA outperform all the other three approaches.

The second synthetic experiment is designed to test the capability of performing nonlinear dimen-
sionality reduction. The synthetic data is formed by first generating two circles in a two dimensional
space (one circle is located inside the other one), with each circle corresponding to one class, and
then the third dimension sampled uniformly from a fixed interval. As SBIBM does not provide
anonlinear form, we conducted the experiment with only the remaining four approaches. For LDA,
we used its kernel variant, KDA. A Gaussian kernel with= 1 was used for SEPCA, SPPCA and
KDA. Figure 2 shows the projection results for each approach in a two dimensional space for 120
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Figure 1: Projection results on test data for synthetic érpent 1. Each color indicates one class.
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Figure 2: Projection results on test data for synthetic érpent 2. Each color indicates one class.

testing points after being trained on a set with 95 points. Again, SEPCA and KDA achieve good
class separations and outperform the other two approaches.

5.2 Experiments on Real Data

To better characterize the performance of dimensionality reduction in a supervised manner, we con-
ducted some experiments on a few high dimensional multi-class real world data sets. The left side
of Table 1 provides the information about these data sets. Our experiments were conducted in the
following way. We randomly selectecc® examples from each class to form the training set and
used the remaining examples as the test set. For each approach, we first learned the dimensionality
reduction model on the training set. Moreover, we also trained a logistic regression classifier us-
ing the projected training set in the reduced low dimensional space. (Note, for SEPCA, a classifier
was trained simultaneously during the process of dimensionality reduction optimization.) Then the
test data were projected into the low dimensional space according to each dimensionality reduction
model. Finally, the projected test set for each approach were classified using each corresponding
logistic regression classifier. The right side of Table 1 shows the classification accuracies on the test
set for each approach. To better understand the quality of the classification using projected data, we
also included the standard classification results, indicated as 'FULL’, using the original high dimen-
sional data. (Note, we are not able to obtain any result for $E2M on the newsgroup data as it is
inefficient for very high dimensional data.) The results reported here are averages over 20 repeated
runs, and the projection dimensidn= 10. Still the proposed SEPCA presents the best performance
among the compared approaches. But different from the synthetic experiments, LDA does not work
well on these real data sets.

The results on both synthetic and real data show that SEPCA outperforms the other four approaches.
This might be attributed to its adaptive exponential family model approximation and its global opti-
mization, while SDRGLM and SPPCA apparently suffer from local optima.

6 Conclusions

In this paper, we propose a supervised exponential family PCA (SEPCA) approach, which can
be solved efficiently to find global solutions. Moreover, SEPCA overcomes the limitation of the
Gaussian assumption of PCA and SPPCA by using a data adaptive approximation for exponential
family models. A simple, straightforward projection method for new testing data has also been
constructed. Empirical study suggests that this SEPCA outperforms other supervised dimensionality
reduction approaches, such as SBRM, SPPCA, LDA and colored MVU.



Table 1: Data set statistics and test accuracy results (%)

SDR. colored
Dataset #Data #Dim #ClassFULL SEPCA GLM SPPCA LDA MVU
Yale 165 4096 15| 65.3 64.4 58.8 51.6 31.0 211
YaleB 2414 1024 38| 47.0 205 19.0 9.8 6.2 2.8
11 Tumor 174 12533 11 77.6 88.9 635 63.0 23.7 40.2
Usps3456 120 256 4 821 79.7 779 785 743 75.8
Newsgroup 19928 25284 20 321 16.9 - 6.9 10.0 10.4
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