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Abstract

We provide a new analysis of an efficient margin-based algorithm for selective
sampling in classification problems. Using the so-called Tsybakov low noise con-
dition to parametrize the instance distribution, we show bounds on the conver-
gence rate to the Bayes risk of both the fully supervised and the selective sampling
versions of the basic algorithm. Our analysis reveals that, excluding logarithmic
factors, the average risk of the selective sampler converges to the Bayes risk at
rateN−(1+α)(2+α)/2(3+α) whereN denotes the number of queried labels, and
α > 0 is the exponent in the low noise condition. For allα >

√
3− 1 ≈ 0.73 this

convergence rate is asymptotically faster than the rateN−(1+α)/(2+α) achieved
by the fully supervised version of the same classifier, which queries all labels, and
for α→ ∞ the two rates exhibit an exponential gap. Experiments on textual data
reveal that simple variants of the proposed selective sampler perform much better
than popular and similarly efficient competitors.

1 Introduction
In the standard online learning protocol for binary classification the learner receives a sequence of
instances generated by an unknown source. Each time a new instance is received the learner predicts
its binary label, and is then given the true label of the current instance before the next instance is
observed. This protocol is natural in many applications, for instance weather forecasting or stock
market prediction, because Nature (or the market) is spontaneously disclosing the true label after
each learner’s guess. On the other hand, in many other applications obtaining labels may be an
expensive process. In order to address this problem, a variant of online learning that has been
proposed is selective sampling. In this modified protocol the true label of the current instance is
never revealed unless the learner decides to issue an explicit query. The learner’s performance is then
measured with respect to both the number of mistakes (made on the entire sequence of instances)
and the number of queries. A natural sampling strategy is one that tries to identify labels which are
likely to be useful to the algorithm, and then queries those ones only. This strategy somehow needs
to combine a measure of utility of examples with a measure of confidence. In the case of learning
with linear functions, a statistic that has often been used to quantify both utility and confidence is
the margin. In [10] this approach was employed to define a selective sampling rule that queries a
new label whenever the margin of the current instance, with respect to the current linear hypothesis,
is smaller (in magnitude) than an adaptively adjusted threshold. Margins were computed using
a linear learning algorithm based on an incremental version of Regularized linear Least-Squares
(RLS) for classification. Although this selective sampling algorithm is efficient, and has simple
variants working quite well in practice, the rate of convergence to the Bayes risk was never assessed
in terms of natural distributional parameters, thus preventing a full understanding of the properties
of this algorithm.



We improve on those results in several ways making three main contributions: (i) By coupling the
Tsybakov low noise condition, used to parametrize the instance distribution, with the linear model
of [10], defining the conditional distribution of labels, we prove that the fully supervised RLS (all
labels are queried) converges to the Bayes risk at rateÕ

(
n−(1+α)/(2+α)

)
whereα ≥ 0 is the noise

exponent in the low noise condition. (ii) Under the same low noise condition, we prove that the
RLS-based selective sampling rule of [10] converges to the Bayes risk at rateÕ

(
n−(1+α)/(3+α)

)
,

with labels being queried at ratẽO
(
n−α/(2+α)

)
. Moreover, we show that similar results can be

established for a mistake-driven (i.e., space and time efficient) variant. (iii) We perform experiments
on a real-world medium-size dataset showing that variants of our mistake-driven sampler compare
favorably with other selective samplers proposed in the literature, like the ones in [11, 16, 20].

Related work. Selective sampling, originally introduced by Cohn, Atlas and Ladner in [13, 14],
differs from the active learning framework as in the latter the learner has more freedom in selecting
which instances to query. For example, in Angluin’s adversarial learning with queries (see [1] for a
survey), the goal is to identify an unknown boolean functionf from a given class, and the learner
can query the labels (i.e., values off ) of arbitrary boolean instances. Castro and Nowak [9] study a
framework in which the learner also queries arbitrary domain points. However, in their case labels
are stochastically related to instances (which are real vectors). They prove risk bounds in terms
of nonparametric characterizations of both the regularity of the Bayes decision boundary and the
behavior of the noise rate in its proximity. In fact, a large statistical literature on adaptive sampling
and sequential hypothesis testing exists (see for instance the detailed description in [9]) which is
concerned with problems that share similarities with active learning. The idea of querying small
margin instances when learning linear classifiers has been explored several times in different active
learning contexts. Campbell, Cristianini and Smola [8], and also Tong and Koller [23], study a pool-
based model of active learning, where the algorithm is allowed to interactively choose which labels
to obtain from an i.i.d. pool of unlabeled instances. A landmark result in the selective sampling
protocol is the query-by-committee algorithm of Freund, Seung, Shamir and Tishby [17]. In the
realizable (noise-free) case, and under strong distributional assumptions, this algorithm is shown to
require exponentially fewer labels than instances when learning linear classifiers (see also [18] for
a more practical implementation). An exponential advantage in the realizable case is also obtained
with a simple variant of the Perceptron algorithm by Dasgupta, Kalai and Monteleoni [16], under
the sole assumption that instances are drawn from the uniform distribution over the unit ball inR

d.
In the general statistical learning case, under no assumptions on the joint distribution of label and
instances, selective sampling bears no such exponential advantage. For instance, Kääriäinen shows
that, in order to approach the risk of the best linear classifierf∗ within errorε, at leastΩ((η/ε)2)
labels are needed, whereη is the risk off∗. A much more general nonparametric lower bound for
active learning is obtained by Castro and Nowak [9]. General selective sampling strategies for the
nonrealizable case have been proposed in [3, 4, 15]. However, none of these learning algorithms
seems to be computationally efficient when learning linear classifiers in the general agnostic case.

2 Learning protocol and data model
We consider the following online selective sampling protocol. At each stept = 1, 2, . . . the sam-
pling algorithm (orselective sampler) receives an instancext ∈ R

d and outputs a binary prediction
for the associated labelyt ∈ {−1,+1}. After each prediction, the algorithm has the option of “sam-
pling” (issuing a query) in order to receive the labelyt. We call the pair(xt, yt) an example. After
seeing the labelyt, the algorithm can choose whether or not to update its internal state using the new
information encoded by(xt, yt).

We assume instancesxt are realizations of i.i.d. random variablesXt drawn from an unknown
distribution on the surface of the unit Euclidean sphere inR

d, so that‖Xt‖ = 1 for all t ≥ 1.
Following [10], we assume that labelsyt are generated according to the following simple linear
noise model: there exists a fixed and unknown vectoru ∈ R

d, with Euclidean norm‖u‖ = 1,
such thatE

[
Yt

∣∣ Xt = xt

]
= u⊤xt for all t ≥ 1. HenceXt = xt has label1 with probability

(1 + u⊤xt)/2 ∈ [0, 1]. Note thatSGN(f∗), for f∗(x) = u⊤x, is the Bayes optimal classifier
for this noise model. In the following, all probabilitiesP and expectationsE are understood with
respect to the joint distribution of the i.i.d. data process{(X1, Y1), (X2, Y2), . . . }. We usePt

to denote conditioning on(X1, Y1), . . . , (Xt, Yt). Let f : R
d → R be an arbitrary measurable

function. Theinstantaneous regretR(f) is the excess risk ofSGN(f) w.r.t. the Bayes risk, i.e.,
R(f) = P(Y1 f(X1) < 0) − P(Y1 f

∗(X1) < 0). Let f1, f2, . . . be a sequence of real functions



where eachft is measurable w.r.t. theσ-algebra generated by(X1, Y1), . . . , (Xt−1, Yt−1),Xt.
When (X1, Y1), . . . , (Xt−1, Yt−1) is understood from the context, we writeft as a function of
Xt only. LetRt−1(ft) be the instantaneous conditional regretRt−1(ft) = Pt−1(Yt ft(Xt) <
0) − Pt−1(Yt f

∗(Xt) < 0). Our goal is to bound the expected cumulative regretE
[
R0(f1) +

R1(f2) + · · ·+Rn−1(fn)
]
, as a function ofn, and other relevant quantities. Observe that, although

the learner’s predictions can only depend on the queried examples, the regret is computed overall
time steps, including the ones when the selective sampler did not issue a query. In order to model
the distribution of the instances around the hyperplaneu⊤x = 0, we use Mammen-Tsybakovlow
noise condition[24]:

There existc > 0 andα ≥ 0 such that P
(
|f∗(X1)| < ε

)
≤ c εα for all ε > 0. (1)

When the noise exponentα is 0 the low noise condition becomes vacuous. In order to study
the caseα → ∞, one can use the following equivalent formulation of (1) —see, e.g., [5],
P
(
f∗(X1)f(X1) < 0

)
≤ cR(f)α/(1+α) for all measurablef : R

d → R. With this formula-
tion, one can show thatα→ ∞ implies thehard margin condition|f∗(X1)| ≥ 1/(2c) w.p. 1.

3 Algorithms and theoretical analysis
We consider linear classifiers predicting the value ofYt throughSGN(w⊤

t Xt), wherewt ∈ R
d is

a dynamically updated weight vector which might be intended as the current estimate foru. Our
wt is an RLS estimator defined over the set of previously queried examples. More precisely, letNt

be the number of queried examples during the firstt time steps,St−1 =
[
x′

1, . . . ,x
′
Nt−1

]
be the

matrix of the queried instances up to timet− 1, andyt−1 =
[
y′1, . . . , y

′
Nt−1

]⊤
be the vector of the

corresponding labels. Then the RLS estimator is defined by

wt =
(
I + St−1 S

⊤
t−1 + xtx

⊤
t

)−1
St−1 yt−1 , (2)

whereI is thed × d identity matrix. Note thatwt depends on the current instancext. The RLS
estimator in this particular form has been first considered by Vovk [25] and by Azoury and War-
muth [2]. Compared to standard RLS, herext acts by futher reducing the variance ofwt. We
use∆̂t to denote the marginw⊤

t Xt wheneverwt is understood from the context. Thuŝ∆t is
the current approximation to∆t. Note that∆̂t is measurable w.r.t. theσ-algebra generated by
(X1, Y1), . . . , (Xt−1, Yt−1),Xt. We also use∆t to denote the Bayes marginf∗(Xt) = u⊤Xt.

The RLS estimator (2) can be stored in spaceΘ(d2), which we need for the inverse ofI +
St−1 S

⊤
t−1 + xtx

⊤
t . Moreover, using a standard formula for small-rank adjustments of inverse

matrices, we can compute updates and predictions in timeΘ(d2). The algorithm in (2) can also
be expressed in dual variable form. This is needed, for instance, when we want to use the feature
expansion facility provided by kernel functions. In this case, at timet the RLS estimator (2) can be
represented inO(N2

t−1) space. The update time is also quadratic inNt−1.

Our first result establishes a regret bound for the fully supervised algorithm, i.e., the algorithm that
predicts using RLS as in (2), queries the label ofeveryinstance, and stores all examples. This result
is the baseline against which we measure the performance of our selective sampling algorithm. The
regret bound is expressed i.t.o. the whole spectrum of the process covariance matrixE[X1X

⊤

1 ].

Theorem 1 Assume the low noise condition (1) holds with exponentα ≥ 0 and constantc > 0.
Then the expected cumulative regret aftern steps of the fully supervised algorithm based on (2) is

bounded byE

[(
4c(1 + ln |I + SnS

⊤
n |)

) 1+α

2+α

]
n

1
2+α . This, in turn, is bounded from above by

(
4c

(
1 +

∑d
i=1 ln(1 + nλi)

)) 1+α

2+α

n
1

2+α = O
((
d lnn

) 1+α

2+αn
1

2+α

)
. Here | · | denotes the determi-

nant of a matrix,Sn =
[
X1,X2, . . . ,Xn

]
, andλi is thei-th eigenvalue ofE[X1X

⊤

1 ].

Whenα = 0 (corresponding to a vacuous noise condition) the bound of Theorem 1 reduces to
O

(√
dn lnn

)
. Whenα → ∞ (corresponding to a hard margin condition) the bound gives the

logarithmic behaviorO
(
d lnn

)
. Notice that

∑d
i=1 ln(1 + nλi) is substantially smaller thand lnn

whenever the spectrum ofE[X1X
⊤

1 ] is rapidly decreasing. In fact, the second bound is clearly
meaningful even whend = ∞, while the third one only applies to the finite dimensional case.



Parameters:λ > 0, ρt > 0 for eacht ≥ 1.
Initialization: weight vectorw = (0, . . . , 0)⊤; storage counterN = 0.

At each timet = 1, 2, . . . do the following:

1. Observe instancext ∈ R
d : ||xt|| = 1;

2. Predict the labelyt ∈ {−1, 1} with SGN(w⊤
t xt), wherewt is as in (2).

3. If N ≤ ρt then query labelyt and store(xt, yt);

4. Else if∆̂2
t ≤ 128 ln t

λ N then schedule the query ofyt+1;

5. If (xt, yt) is scheduled to be stored, then incrementN and updatewt using(xt+1, yt+1).

Figure 1: The selective sampling algorithm.

Fast rates of convergence have typically been proven for batch-style algorithms, such as empirical
risk minimizers and SVM (see, e.g., [24, 22]), rather than for online algorithms. A reference closer
to our paper is Ying and Zhou [26], where the authors prove bounds for online linear classification
using the low noise condition (1), though under different distributional assumptions.
Our second result establishes a new regret bound, under low noise conditions, for the selective
sampler introduced in [10]. This variant, described in Figure 1, queries all labels (and stores all
examples) during an initial stage of length at least(16d)/λ2, whereλ denotes the smallest nonzero
eigenvalue of the process covariance matrixE[X1X

⊤

1 ]. When this transient regime is over, the
sampler issues a query at timet based on both the query counterNt−1 and the margin̂∆t. Specif-
ically, if evidence is collected that the numberNt−1 of stored examples is smaller than our current
estimate of1/∆2

t , that is if∆̂2
t ≤ (128 ln t)/(λNt−1), then we query (and store) the label of thenext

instancext+1. Note that the margin threshold explicitly depends, throughλ, on additional informa-
tion about the data-generating process. This additional information is needed because, unlike the
fully supervised classifier of Theorem 1, the selective sampler queries labels at random steps. This
prevents us from bounding the sum of conditional variances of the involved RLS estimator through
ln

∣∣I + Sn S
⊤
n

∣∣, as we can do when proving Theorem 1 (see below). Instead, we have to individu-
ally bound each conditional variance term via the smallest empirical eigenvalue of the correlation
matrix. The transient regime in Figure 1 is exactly needed to ensure that this smallest empirical
eigenvalue gets close enough toλ. Compared to the analysis contained in [10], we are able to better
capture the two main aspects of the selective sampling protocol: First, we control the probability
of making a mistake when we do not query labels; second, the algorithm is able to adaptively op-
timize the sampling rate by exploiting the additional information provided by the examples having
small margin. The appropriate sampling rate clearly depends on the (unknown) amount of noiseα
which the algorithm implicitly learns on the fly. In this respect, our algorithm is more properly an
adaptivesampler, rather than a selective sampler. Finally, we stress that it is fairly straightforward
to add to the algorithm in Figure 1 a mistake-driven rule for storing examples. Such a rule provides
that, when a small margin is detected, a query be issued (and the next example be stored) only if
SGN(∆̂t) 6= yt (i.e., only if the current prediction is mistaken). This turns out to be highly advanta-
geous from a computational standpoint, because of the sparsity of the computed solution. It is easy
to adapt our analysis to obtain even for this algorithm the same regret bound as the one established
in Theorem 2. However, in this case we can only give guarantees on the expected number of stored
examples (which can indeed be much smaller than the actual number of queried labels).

Theorem 2 Assume the low noise condition (1) holds with unknown exponentα ≥ 0 and assume
the selective sampler of Figure 1 is run withρt = 16

λ2 max{d, ln t}. Then, aftern steps, the expected

cumulative regret is bounded byO

(
d+ lnn

λ2
+

( lnn

λ

) 1+α

3+α

n
2

3+α

)
whereas the expected number

of queried labels (including the stored ones) is bounded byO

(
d+ lnn

λ2
+

( lnn

λ

) α

2+α

n
2

2+α

)
.

The proof, sketched below, hinges on showing that∆̂t is an almost unbiased estimate of the true
margin∆t, and relies on known concentration properties of i.i.d. processes. In particular, we show
that our selective sampler is able to adaptively estimate the number of queries needed to ensure a
1/t increase of the regret when a query is not issued at timet.



As expected, when we compare our semi-supervised selective sampler (Theorem 2) to the fully
supervised “yardstick” (Theorem 1), we see that the per-step regret of the former vanishes at a sig-
nificantly slower rate than the latter, i.e.,n−

1+α

3+α vs.n−
1+α

2+α . Note, however, that the per-step regret
of the semi-supervised algorithm vanishes faster than its fully-supervised counterpart when both re-
grets are expressed in terms of the numberN of issued queries. To see this consider first the case
α → ∞ (the hard margin case, essentially analyzed in [10]). Then both algorithms have a per-step
regret of order(lnn)/n. However, since the semi-supervised algorithm makes onlyN = O(lnn)
queries, we have that, as a function ofN , the per-step regret of the semi-supervised algorithm is of
orderN/eN where the fully supervised has only(lnN)/N . We have thus recovered the exponen-
tial advantage observed in previous works [16, 17]. Whenα = 0 (vacuous noise conditions), the
per-step regret rates in terms ofN become (excluding logarithmic factors) of orderN−1/3 in the
semi-supervised case and of orderN−1/2 in the fully supervised case. Hence, there is a critical value
of αwhere the semi-supervised bound becomes better. In order to find this critical value we write the

rates of the per-step regret for0 ≤ α <∞ obtainingN−
(1+α)(2+α)

2(3+α) (semi-supervised algorithm) and
N−

1+α

2+α (fully supervised algorithm). By comparing the two exponents we find that, asymptotically,
the semi-supervised rate is better than the fully supervised one for all values ofα >

√
3 − 1. This

indicates that selective sampling is advantageous when the noise level (as modeled by the Mammen-
Tsybakov condition) is not too high. Finally, observe that the way it is stated now, the bound of
Theorem 2 only applies to the finite-dimensional (d <∞) case. It turns out this is a fixable artifact
of our analysis, rather than an intrinsic limitation of the selective sampling scheme in Figure 1. See
Remark 3 below.

Proof of Theorem 1. The proof proceeds by relating the classification regret to the square loss re-
gret via a comparison theorem. The square loss regret is then controlled by applying a known point-
wise bound. For all measurablef : R

d → R, letRφ(f) = E[
(
1−Y1 f(X1)

)2−
(
1−Y1 f

∗(X1)
2
)
]

be the square loss regret, andRt−1,φ its conditional version. We apply the comparison theo-
rem from [5] with theψ-transform functionψ(z) = z2 associated with the square loss. Under

the low noise condition (1) this yieldsR(f) ≤
(
4cRφ(f)

) 1+α

2+α for all measurablef . We thus

have E
[∑n

t=1Rt−1(ft)
]
≤ E

[∑n
t=1

(
4cRφ,t−1(ft)

) 1+α

2+α

]
≤ E

[
n
(

4c
n

∑n
t=1Rφ,t−1(ft)

) 1+α

2+α

]
,

the last term following from Jensen’s inequality. Further, we observe that in our probabilistic model
f∗(x) = u⊤x is Bayes optimal for the square loss. In fact, for any unit normx ∈ R

d, we have

f∗(x) = arginfz∈R

(
(1 − z)2 1+u

⊤
x

2 + (1 + z)2 1−u
⊤

x

2

)
= u⊤x . Hence

∑n
t=1Rφ,t−1(ft) =

∑n
t=1

(
(Yt − w⊤

t Xt)
2 − (Yt − u⊤Xt)

2
)

which, in turn, can be bounded pointwise (see, e.g., [12,
Theorem 11.8]) by1 + ln

∣∣I + Sn S
⊤
n

∣∣. Putting together gives the first bound. Next, we take the

bound just obtained and apply Jensen’s inequality twice, first to the concave function(·) 1+α

2+α of a real
argument, and then to the concave functionln | · | of a (positive definite) matrix argument. Observing
thatESnS

⊤
n = E[

∑n
t=1 XtX

⊤

t ] = nEX1X
⊤

1 yields the second bound. The third bound derives
from the second one just by usingλi ≤ 1. �

Proof sketch of Theorem 2. We aim at bounding from above the cumulative regret∑n
t=1

(
P(Yt ∆̂t < 0) − P(Yt ∆t < 0)

)
which, according to our probabilistic model, can be shown

to be at mostc n ε1+α +
∑n

t=1 P(∆t ∆̂t ≤ 0, |∆t| ≥ ε) . The last sum is upper bounded by
n∑

t=1

P (Nt−1 ≤ ρt)

︸ ︷︷ ︸
(I)

+

n∑

t=1

P

(
∆̂2

t ≤ 128 ln t

λNt−1
, Nt−1 > ρt, |∆t| ≥ ε

)

︸ ︷︷ ︸
(II)

+
n∑

t=1

P

(
∆t ∆̂t ≤ 0, ∆̂2

t >
128 ln t

λNt−1
, Nt−1 > ρt

)

︸ ︷︷ ︸
(III)

.

where: (I) are the initial time steps; (II) are the time steps on which we trigger the query of the next
label (becausê∆2

t is smaller than the threshold at timet); (III) are the steps that do not trigger any
queries at all.



Note that (III) bounds the regret over non-sampled examples.In what follows, we sketch the way
we bound each of the three terms separately. A bound on (I) is easily obtained as (I)≤ ρn =
O(d+ln n

λ2 ) just becauseρn ≥ ρt for all t ≤ n. To bound (II) and (III) we need to exploit the fact that
the subsequence of stored instances and labels is a sequence of i.i.d. random variables distributed
as (X1, Y1), see [10]. This allows us to carry out a (somewhat involved) bias-variance analysis
showing that for any fixed numberNt−1 = s of stored examples,̂∆t is an almost unbiased estimator
of ∆t, whose bias and variance tend to vanish as1/s whens is sufficiently large. In particular, if
|∆t| ≥ ε then∆̂t ≈ ∆t as long asNt−1 is of the order ofln n

λ ε2 . The variance of̂∆t is controlled
by known results (the one we used is [21, Theorem 4.2]) on the concentration of eigenvalues of
an empirical correlation matrix1s

∑
i XiX

⊤

i to the eigenvalues of the process covariance matrix
E[X1X

⊤

1 ]. For such a result to apply, we have to impose thatNt−1 ≥ ρt. By suitably combining
these concentration results we can bound term (II) byO(d+ln n

λ2 + ln n
λε2 ) and term (III) byO(lnn).

Putting together and choosingε of the order of
(

ln n
λ n

) 1+α

3+α gives the desired regret bound. The bound
on the number of queried labels is obtained in a similar way. �

Remark 3 The linear dependence ond in Theorem 2 derives from a direct application of the con-
centration results in [21]. In fact, it is possible to take into account in a fairly precise manner
the way the process spectrum decreases (e.g., [6, 7]), thereby extending the above analysis to the
infinite-dimensional case. In this paper, however, we decided to stick to the simpler analysis leading
to Theorem 2, since the resulting bounds would be harder to read, and would somehow obscure
understanding of regret and sampling rate behavior as a function ofn.

4 Experimental analysis
In evaluating the empirical performance of our selective sampling algorithm, we consider two addi-
tional variants obtained by slightly modifying Step 4 in Figure 1. The first variant (which we just
call SS, Selective Sampler) queries the current label instead of the next one. The rationale here is that
we want to leverage the more informative content of small margin instances. The second variant is
a mistake-driven version (referred to asSSMD, Selective Sampling Mistake Driven) that queries the
current label (and stores the corresponding example) only if the label gets mispredicted. For clarity,
the algorithm in Figure 1 will then be calledSSNL (Selective Sampling Next Label) since it queries
the next label whenever a small margin is observed. For all three algorithms we dropped the intial
transient regime (Step 3 in Figure 1).
We run our experiments on the first, in chronological order,40,000 newswire stories from the
Reuters Corpus Volume 1 dataset (RCV1). Every example in this dataset is encoded as a vector
of real attributes computed through a standardTF-IDF bag-of-words processing of the original news
stories, and is tagged with zero or more labels from a set of 102 classes. The online categorization
of excerpts from a newswire feed is a realistic learning problem for selective sampling algorithms
since a newswire feed consists of a large amount of uncategorized data with a high labeling cost. The
classification performance is measured using a macroaveragedF -measure2RP/(R+P ), whereP
is the precision (fraction of correctly classified documents among all documents that were classified
positive for the given topic) andR is the recall (fraction of correctly classified documents among all
documents that are labelled with the given topic). All algorithms presented here are evaluated using
dual variable implementations and linear kernels.
The results are summarized in Figures 2 and 3. The former only refers to (an average over) the 50
most frequent categories, while the latter includes them all. In Figure 2 (left) we show howSSMD
compares toSSNL, and to its most immediate counterpart,SS. In Figure 2 (right) we compareSSMD
to other algorithms that are known to have good empirical performance, including the second-order
version of the label efficient classifier (SOLE), as described in [11], and theDKMPERC variant of
the DKM algorithm (see, e.g., [16, 20]).DKMPERC differs from DKM since it adopts a standard
perceptron update rule. The perceptron algorithm (PERC) and its second-order counterpart (SOP)
are reported here as a reference, since they are designed to query all labels. In particular,SOP is
a mistake-driven variant of the algorithm analyzed in Theorem 1. It is reasonable to assume that
in a selective sampling setup we are interested in the performance achieved when the fraction of
queried labels stays below some threshold, say10%. In this range of sampling rate,SSMD has the
steepest increase in the achievedF -measure, and surpasses any other algorithm. Unsurprisingly, as
the number of queried labels gets larger,SSMD, SOLE andSOPexhibit similar behaviors. Moreover,
the less than ideal plot ofSSNL seems to confirm the intuition that querying small margin instances
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Figure 2: AverageF -measure obtained by different algorithms after40,000 examples, as a function
of the number of queried labels. The average only refers to the 50 most frequent categories. Points
are obtained by repeatedly running each algorithm with different values of parameters (in Figure
1, the relevant parameter isλ). Trend lines are computed as approximate cubic splines connecting
consecutive points.
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Figure 3: Left: Correlation between the fraction of stored examples and the difficulty of each binary
task, as measured by the separation margin. Right:F -measure achieved on the different binary
classification tasks compared to the number of positive examples in each topic, and to the fraction of
queried labels (including the stored ones). In both plots, topics are sorted by decreasing frequency
of positive examples. The two plots are produced bySSMD with a specific value of theλ parameter.
Varyingλ does not significantly alter the reported trend.

provides a significant advantage. Under our test conditionsDKMPERC proved ineffective, probably
because most tasks in the RCV1 dataset are not linearly separable. A similar behavior was observed
in [20]. It is fair to remark thatDKMPERC is a perceptron-like linear-threshold classifier while the
other algorithms considered here are based on the more computationally intensive ridge regression-
like procedure.
In our selective sampling framework it is important to investigate how harder problems influence
the sampling rate of an algorithm and, for each binary problem, to assess the impact of the number
of positive examples on F-measure performance. Coarsely speaking, we would expect that the hard
topics are the infrequent ones. Here we focus onSSMD since it is reasonably the best candidate,
among our selective samplers, as applied to real-world problems. In Figure 3 (left) we report the
fraction of examples stored bySSMDon each of the 102 binary learning tasks (i.e., on each individual
topic, including the infrequent ones), and the corresponding levels ofF -measure and queried labels
(right). Note that in both plots topics are sorted by frequency with the most frequent categories
appearing on the left. We represent the difficulty of a learning task by the norm of the weight vector
obtained by running theC-SVM algorithm on that task1. Figure 3 (left) clearly shows thatSSMD
rises the storage rate on difficult problems. In particular, even if two different tasks have largely
different numbers of positive examples, the storage rate achieved bySSMD on those tasks may be

1The actual values were computed usingSVM-LIGHT [19] with default parameters. Since the examples in
the Reuters Corpus Volume 1 are cosine normalized, the choice of default parameters amounts to indirectly
setting the parameterC to approximately1.0.



similar when the norm of the weight vectors computed byC-SVM is nearly the same. On the other
hand, the right plot shows (to our surprise) that the achieved F-measure is fairly independent of the
number of positive examples, but this independence is obtained at the cost of querying more and
more labels. In other words,SSMD seems to realize the difficulty of learning infrequent topics and,
in order to achieve a good F-measure performance, it compensates by querying many more labels.
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