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Abstract
This paper investigates a new machine learning strategy calledtranslated learn-
ing. Unlike many previous learning tasks, we focus on how to use labeled data
from one feature space to enhance the classification of other entirely different
learning spaces. For example, we might wish to use labeled text data to help learn
a model for classifying image data, when the labeled images are difficult to ob-
tain. An important aspect of translated learning is to build a “bridge” to link one
feature space (known as the “source space”) to another space (known as the “tar-
get space”) through a translator in order to migrate the knowledge from source to
target. The translated learning solution uses a language model to link the class
labels to the features in the source spaces, which in turn istranslated to the fea-
tures in the target spaces. Finally, this chain of linkages is completed by tracing
back to the instances in the target spaces. We show that this path of linkage can
be modeled using a Markov chain and risk minimization. Through experiments
on the text-aided image classification and cross-language classification tasks, we
demonstrate that our translated learning framework can greatly outperform many
state-of-the-art baseline methods.

1 Introduction

Traditional machine learning relies on the availability of a large amount of labeled data to train a
model in the same feature space. However, labeled data are often scarce and expensive to obtain. In
order to save much labeling work, various machine learning strategies have been proposed, including
semi-supervised learning [13], transfer learning [3, 11, 10], self-taught learning [9], etc. One com-
monality among these strategies is they all require the training data and test data to be in the same
feature space. For example, if the training data are documents, then the classifiers cannot accept test
data from a video space. However, in practice, we often face the problem where the labeled data are
scarce in its own feature space, whereas there are sufficient labeled data in other feature spaces. For
example, there may be few labeled images available, but there are often plenty of labeled text docu-
ments on the Web (e.g., through the Open Directory Project, or ODP,http://www.dmoz.org/).
Another example is cross-language classification where labeled documents in English are much
more than ones in some other languages such as Bangla, which has only 21 Web pages in the ODP.
Therefore, it would be great if we could learn the knowledge across different feature spaces and to
save a substantial labeling effort.

To address the transferring of knowledge across different feature spaces, researchers have proposed
multi-view learning [2, 8, 7] in which each instance has multiple views in different feature spaces.
Different from multi-view learning, in this paper, we focus on the situation where the training data
are in asource feature space, and the test data are in a differenttarget feature space, and that there
is no correspondence between instances in these spaces. The source and target feature spaces can be
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Figure 1: An intuitive illustration to different kinds of learning strategies using classification of
image elephants and rhinos as the example. The images in orange frames are labeled data, while the
ones without frames are unlabeled data.

very different, as in the case of text and images. To solve this novel learning problem, we develop
a novel framework named astranslated learning, where training data and test data can be in totally
different feature spaces. A translator is needed to be exploited to link the different feature spaces.
Clearly, the translated learning framework is more general and difficult than traditional learning
problems. Figure 1 presents an intuitive illustration of six different learning strategies, including
supervised learning, semi-supervised learning [13], transfer learning [10], self-taught learning [9],
multi-view learning [2], and finally, translated learning.

An intuitive idea for translated learning is to somehowtranslate all the training data into a target
feature space, where learning can be done within a single feature space. This idea has already been
demonstrated successful in several applications in cross-lingual text classification [1]. However, for
the more general translated learning problem, this idea is hard to be realized, since machine trans-
lation between different feature spaces is very difficult to accomplish in many non-natural language
cases, such as translating documents to images. Furthermore, while a text corpus can be exploited
for cross-langauge translation, for translated learning, the learning of the “feature-space translator”
from available resources is a key issue.

Our solution is to make the best use of available data that have both features of the source and target
domains in order to construct a translator. While these data may not be sufficient in building a good
classifier for the target domain, as we will demonstrate in our experimental study in the paper, by
leveraging the available labeled data in the source domain, we can indeed build effective translators.
An example is to translate between the text and image feature spaces using the social tagging data
from Web sites such as Flickr (http://www.flickr.com/).

The main contribution of our work is to combine the feature translation and the nearest neighbor
learning into a unified model by making use of a language model [5]. Intuitively, our model can be
represented using a Markov chainc → y → x, wherey represents the features of the data instances
x. In translated learning, the training dataxs are represented by the featuresys in the source feature
space, while the test dataxt are represented by the featuresyt in the target feature space. We model
the learning in the source space through a Markov chainc → ys → xs, which can be connected to
another Markov chainc → yt → xt in the target space. An important contribution of our work then
is to show how to connect these two paths, so that the new chainc → ys → yt → xt, can be used
to translate the knowledge from the source space to the target one, where the mappingys → yt is
acting as a feature-level translator. In our final solution, which we callTLRisk, we exploit the risk
minimization framework in [5] to model translated learning. Our framework can accept different
distance functions to measure the relevance between two models.

2 Translated Learning Framework

2.1 Problem Formulation

We first define the translated learning problem formally. LetXs be thesource instance space. In this
space, each instancexs ∈ Xs is represented by a feature vector(y
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andYs is the source feature space. LetXt be thetarget instance space, in which each instance
xt ∈ Xt is represented by a feature vector(y
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is assumed to be small, so thatLt is not enough to train a reliable prediction model. The unlabeled
test data setU is a set ofk examples{x(i)
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be visual images.

To link the two feature spaces, a feature translatorp(yt|ys) ∝ φ(yt, ys) is constructed. However,
for ease of explanation, we first assume that the translatorφ is given, and will discuss the derivation
of φ later in this section, based on co-occurrence data. We focus on our main objective in learning,
which is to estimate a hypothesisht : Xt 7→ C to classify the instancesx(i)

u ∈ U as accurately as
possible, by making use of the labeled training dataL = Ls ∪ Lt and the translatorφ.

2.2 Risk Minimization Framework

First, we formulate our objective in terms of how to minimize an expected risk function with respect
to the labeled training dataL = Ls ∪ Lt and the translatorφ by extending the risk minimization
framework in [5].

In this work, we use the risk functionR(c, xt) to measure the the risk for classifyingxt to the
categoryc. Therefore, to predict the label for an instancext, we need only to find the class-labelc
which minimizes the risk functionR(c, xt), so that

ht(xt) = arg min
c∈C

R(c, xt). (1)

The risk functionR(c, xt) can be formulate as theexpected loss whenc andxt are relevant; formally,

R(c, xt) ≡ L(r = 1|c, xt) =

∫

ΘC

∫

ΘXt

L(θC , θXt
, r = 1)p(θC |c) p(θXt

|xt) dθXt
dθC . (2)

Here,r = 1 represents the event of “relevant”, which means (in Equation (2)) “candxt are relevant”,
or “the label ofxt is c”. θC andθXt

are the models with respect to classesC and target space instances
Xt respectively.ΘC andΘXt

are two corresponding model spaces involving all the possible models.
Note that, in Equation (2),θC only depends onc andθXt

only depends toxt. Thus, we usep(θC |c) to
replacep(θC |c, xt), and usep(θXt

|xt) to replacep(θXt
|c, xt). L(θC , θXt

, r = 1) is the loss function
with respect to the event ofθC andθXt

being relevant. We next address the estimation of the risk
function in Equation (2).

2.3 Estimation

The risk function in Equation (2) is difficult to estimate, since the sizes ofΘC andΘXt
can be

exponential in general. Therefore, we have to use approximation for estimating the risk function
for efficiency. First of all, the loss functionL(θC , θXt

, r = 1) can be formulated using distance
functions between the two modelsθC andθXt

, so thatL(θC , θXt
, r = 1) = α∆(θC , θXt

), where
∆(θC , θXt

) is the distance (or dissimilarity) function, e.g. the Kullback-Leibler divergence. Replac-
ing L(θC , θXt

, r = 1) with ∆(θC , θXt
), the risk function is reformulated as

R(c, xt) ∝
∫

ΘC

∫

ΘXt

∆(θC , θXt
)p(θC |c) p(θXt

|xt) dθXt
dθC . (3)

Since the sizes ofΘC andΘXt
are exponential in general, we cannot calculate Equation (3) straight-

forwardly. In this paper, we approximate the risk function by its value at the posterior mode:

R(c, xt) ≈ ∆(θ̂c, θ̂xt
)p(θ̂c|c)p(θ̂xt

|xt) ∝ ∆(θ̂c, θ̂xt
)p(θ̂c|c), (4)

whereθ̂c = arg maxθC
p(θC |c), andθ̂xt

= arg maxθXt
p(θXt

|xt).

In Equation (4),p(θ̂c|c) is the prior probability of̂θc with respect to the target classc. This prior can
be used to balance the influence of different classes in the class-imbalance case. When we assume
there is no prior difference among all the classes, the risk function can be rewritten into



Algorithm 1 Risk Minimization Algorithm for Translated Learning: (TLRisk)
Input: Labeled training dataL in the source space, unlabeled test dataU in the target space, a
translatorφ to link the two feature spacesYs andYt and a dissimilarity function∆(·, ·).
Output: The prediction labelht(xt) for eachxt ∈ U .

ProcedureTLRisk train
1: for eachc ∈ C do
2: Estimate the model̂θc based on Equation (6).
3: end for

ProcedureTLRisk test
1: for eachxt ∈ U do
2: Estimate the model̂θxt

based on Equation (7).
3: Predict the labelht(xt) for xt based on Equations (1) and (5).
4: end for

R(c, xt) ∝ ∆(θ̂c, θ̂xt
), (5)

where∆(θ̂c, θ̂xt
) denotes the dissimilarity between two modelsθ̂c andθ̂xt

. To achieve this objective,
as in [5], we formulate these two models in the target feature spaceYt; specifically, if we use KL
divergence as the distance function,∆(θ̂c, θ̂xt

) can be measured byKL(p(Yt|θ̂c)||p(Yt|θ̂xt
)).

Our estimation is based on the Markov chain assumption whereθ̂c → c → ys → yt → xt → θ̂xt

andθ̂c → c → yt → xt → θ̂xt
, so that

p(yt|θ̂c) =

∫

Ys

∑

c′∈C

p(yt|ys)p(ys|c′)p(c′|θ̂c) dys + λ
∑

c′∈C

p(yt|c′)p(c′|θ̂c), (6)

wherep(yt|ys) can be estimated using the translatorφ; p(ys|c′) can be estimated based on the
statistical observations in the labeled text data setLs in the source feature spaceYs; p(yt|c′) can be
estimated based onLt in the target feature spaceYt; p(c′|θ̂c) can be calculated as:p(c′|θ̂c) = 1 if
c = c′, and otherwise,p(c′|θ̂c) = 0; andλ is a trade-off parameter which controls the influence of
target space labeled dataLt.

For another modelp(Yt|θ̂xt
), it can be estimated by

p(yt|θ̂xt
) =

∫

Xt

p(yt|x′
t)p(x′

t|θ̂xt
) dx′

t, (7)

wherep(yt|x′
t) can be estimated using the feature extractor in the target feature spaceYt, and

p(x′
t|θ̂xt

) can be calculated asp(x′
t|θ̂xt

) = 1 if x′
t = xt; otherwisep(x′

t|θ̂xt
) = 0.

Integrating Equations (1), (5), (6) and (7), our translated learning framework is summarized as
algorithmTLRisk, an abbreviation forTranslated Learning via Risk Minimization, which is shown
in Algorithm 1.

Considering the computational cost of Algorithm 1, due to the Markov chain assumption, our al-
gorithmTLRisk can be implemented using dynamic programming. Therefore, in the worst case,
the time complexity ofTLRisk is O(|C||Yt| + |Yt||Ys|) in training, andO(|C||Yt|) for predicting
an instance. In practice, the data are quite sparse, and good feature mappings (or translator) should
also be sparse, otherwise it will consist of many ambiguous cases. Therefore,TLRisk can perform
much faster than the worst cases generally, and the computational cost ofTLRisk is linear in the
non-zero occurrences in feature mappings.

2.4 Translator φ

We now explain in particular how to build the translatorφ(yt, ys) ∝ p(yt|ys) to connect two dif-
ferent feature spaces. As mentioned before, to estimate the translatorp(yt|ys), we need some co-
occurrence data across the two feature spaces: source and target. Formally, we need co-occurrence
data in the form ofp(yt, ys), p(yt, xs), p(xt, ys), or p(xt, xs). In cross-language problems, dictio-
naries can be considered as data in the form ofp(yt, ys) (feature-level co-occurrence). On the Web,



DATA SET

DATA SIZE

DATA SET

DATA SIZE

DOCUMENTS IMAGES DOCUMENTS IMAGES

+ − + − + − + −

horse vs coin 1610 1345 270 123 dog vs canoe 1084 1047 102 103
kayak vs bear 1045 885 102 101 greyhound vs cd 380 362 94 102

electric-guitar vs snake 335 326 122 112 stained-glass vs microwave 331 267 99 107
cake vs binoculars 265 320 104 216 rainbow vs sheet-music 261 256 102 84
laptop vs sword 210 203 128 102 tomato vs llama 175 172 102 119
bonsai vs comet 166 164 122 120 frog vs saddle 150 148 115 110

Table 1: The description for each data set. Here,horse vs coin indicates all the positive in-
stances are abouthorse while all the negative instances are aboutcoin. “+” means positive
instance; “−” means negative instances.

social annotations on images (e.g. Flickr, images associated with keywords) and search-engine re-
sults in response to queries are examples for correlational data in the forms ofp(yt, xs) andp(xt, ys)
(feature-instance co-occurrence). Moreover, multi-view data (e.g. Web pages including both text
and pictures) is an example for data in the form ofp(xt, xs) (instance-level co-occurrence). Where
there is a pool of such co-occurrence data available, we can build the translatorφ for estimating the
Markov chains in the previous subsections.

In particular, to estimate the translatorφ, at first, the feature-instance co-occurrence data (p(yt, xs)
or p(xt, ys)) can be used to estimate the probabilities for feature-level co-occurrencep(yt, ys);
formally, p(yt, ys) =

∫

Xs

p(yt, xs)p(ys|xs) dxs andp(yt, ys) =
∫

Xt

p(xt, ys)p(yt|xt) dxt. The
instance-level co-occurrence data can also be converted to feature-level co-occurrence; formally,
p(yt, ys) =

∫

Xt

∫

Xs

p(xt, xs)p(ys|xs)p(yt|xt) dxsdxt. Here,p(ys|xs) andp(yt|xt) are two feature
extractors inYs andYt. Using the feature-level co-occurrence probabilityp(yt, ys), we can estimate
the translator asp(yt|ys) = p(yt, ys)/

∫

Yt

p(y′
t, ys)dy′

t.

3 Evaluation: Text-aided Image Classification

In this section, we apply our frameworkTLRisk to a text-aided image classification problem, which
uses binary labeled text documents as auxiliary data to enhance the image classification. This prob-
lem is derived from the application where a user or a group of users may have expressed preferences
over some text documents, and we wish to translate these preferences to images for the same group
of users. We will show the effectiveness ofTLRisk on text-aided image classification. Our ob-
jective is to demonstrate that even with a small amount of labeled image training data, we can still
build a high-quality translated learning solution for image classification by leveraging the text doc-
uments, even if the co-occurrence data themselves are not sufficient when directly used for training
a classification model in the target space.

3.1 Data Sets

The data sets of Caltech-2561 and Open Directory Project (ODP,http://www.dmoz.org/)
were used in our evaluation, as the image and text corpora. Our ODP collection was crawled during
August 2006, and involves 1,271,106 English Web pages. We generated 12 binary text-to-image
classification tasks from the above corpora. The description for each data set is presented in Table
1. The first column presents the name of each data set, e.g.horse vs coin indicates all the
positive instances are abouthorse while all the negative instances are aboutcoin. We collected
the corresponding documents from ODP for each category. However, due to space limitation, we
omit the detailed ODP directory information with respect to each data set here. In the table, we
also listed the data sizes for each task, including documents and images. Generally, the number of
documents is much larger than the number of images.

For data preprocessing, the SIFT descriptor [6] was used to find and describe the interesting points
in the images, and then clustered the extracted interest points into 800 clusters to obtain the code-
book. Based on the code-book, each image can be converted to a corresponding feature vector. For
text documents, we first extracted and stemmed all the tokens from the ODP Web pages, and then
information gain [12] was used to select the most important features for further learning process.
We collected the co-occurrence data from a commercial image search engine during April 2008.
The collected data are in the form of feature-instance co-occurrencep(ys, xt), so that we have to
convert them to feature-level co-occurrencep(ys, yt) as discussed in Section 2.4.

1http://www.vision.caltech.edu/Image Datasets/Caltech256/
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Figure 2: The average error rates over 12 data sets for text-aided image classification with different
number of labeled imagesLt.
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Figure 3: The average error rates over 12 data sets for text-aided image classification with different
trade-offλ.

3.2 Evaluation Methods

Few existing research works addressed the text-aided image classification problem, so that for the
baseline methods in our experiments, we first simply used the labeled dataLt as the training data in
the target space to train a classification model; we refer to this model asImage Only. The second
baseline is to use the category name (in this case, there are two names for binary classification
problems) to search for training images and then to train classifiers together with labeled images in
Lt; we refer to this model asSearch+Image.

Our frameworkTLRisk was evaluated under three different dissimilarity functions: (1) Kullback-
Leibler divergence (namedKL):

∫

Yt

p(yt|θC) log p(yt|θC)
p(yt|θXt

)dyt; (2) Negative of cosine function

(namedNCOS): −
∫

Yt

p(yt|θC)p(yt|θXt
)dyt

√

∫

Yt

p2(yt|θC)dyt

√

∫

Yt

p2(yt|θXt
)dyt

; (3) Negative of the Pearson’s correlation co-

efficient (namedNPCC): − cov(p(Yt|θC),p(Yt|θXt
))√

var(p(Yt|θC))var(p(Yt|θXt
))

.

We also evaluated thelower bound of the error rate with respect to each data set. To estimate the
lower bound, we conducted a 5-fold cross-validation on the test dataU . Note that this strategy, which
is referred to asLowerbound, is unavailable in our problem setting, since it uses a large amount of
labeled data in the target space. In our experiments, this lower bound is used just for reference. We
also note that on some data sets, the performance ofLowerbound may be slightly worse than that
of TLRisk, becauseLowerbound was trained based on images in Caltech-256, whileTLRisk
was based on the co-occurrence data. These models used different supervisory knowledge.

3.3 Experimental Results

The experimental results were evaluated in terms of error rates, and are shown in Figure 2. On
one hand, from the table, we can see that our frameworkTLRisk greatly outperforms the baseline
methodsImage Only andSearch+Image, no matter which dissimilarity function is applied.
On the other hand, compared withLowerbound, TLRisk also shows comparable performance.
It indicates that our frameworkTLRisk can effectively learn knowledge across different feature
spaces in the case of text-to-image classification.

Moreover, when the number of target space labeled images decreases, the performance ofImage
Only declines rapidly, while the performances ofSearch+Image andTLRisk stay very sta-



DATA SET
ENGLISH GERMAN

LOCATION SIZE LOCATION SIZE

1
Top: Sport: Ballsport 2000 Top: World: Deutsch: Sport: Ballsport 128
Top: Computers: Internet 2000 Top: World: Deutsch: Computer: Internet 126

2
Top: Arts: Architecture: Building Types 1259 Top: World: Deutsch: Kultur: Architektur: Gebäudetypen 71
Top: Home: Cooking: Recipe Collections 475 Top: World: Deutsch: Zuhause: Kochen: Rezeptesammlungen 72

3
Top: Science: Agriculture 1886 Top: World: Deutsch: Wissenschaft: Agrarwissenschaften 71
Top: Society: Crime 1843 Top: World: Deutsch: Gesellschaft: Kriminalität 69

4
Top: Sports: Skating: Roller Skating 926 Top: World: Deutsch: Sport: Rollsport 70
Top: Health: Public Health and Safety 2361 Top: World: Deutsch: Gesundheit: Public Health 71

5
Top: Recreation: Outdoors: Hunting 2919 Top: World: Deutsch: Freizeit: Outdoor: Jagd 70
Top: Society: Holidays 2258 Top: World: Deutsch: Gesellschaft: Festúnd Feiertage 72

Table 2: The description for each cross-language classification data set.

ble. This indicates thatTLRisk is not quite sensitive to the size ofLt; in other words,TLRisk
has good robustness. We also want to note that, sometimesTLRisk performs slightly better than
Lowerbound. This is not a mistake, because these two methods use different supervisory knowl-
edge:Lowerbound is based on images in the Caltech-256 corpus;TLRisk is based on the co-
occurrence data. In these experiments,Lowerbound is just for reference.

In TLRisk, a parameter to tune is the trade off parameterλ (refer to Equation (6)). Figure 3 shows
the average error rate curves on all the 12 data sets, whenλ gradually changes from2−5 to 25.
In this experiment, we fixed the number of target training images per category to one, and set the
thresholdK (which is the number of images to collect for each text keyword, when collecting the
co-occurrence data) to 40. From the figure, we can see that, on one hand, whenλ is very large, which
means the classification model mainly builds on the target space training imagesLt, the performance
is rather poor. On the other hand, whenλ is small such that the classification model relies more on
the auxiliary text training dataLs, the classification performance is relatively stable. Therefore, we
suggest to set the trade-off parameterλ to a small value, and in these experiments, all theλs are set
to 1, based on Figure 3.

4 Evaluation: Cross-language Classification
In this section, we apply our frameworkTLRisk to another scenario, the cross-language classifi-
cation. We focused on English-to-German classification, where English documents are used as the
source data to help classify German documents, which are target data.

In these experiments, we collected the documents from corresponding categories from ODP English
pages and ODP German pages, and generated five cross-language classification tasks, as shown in
Table 2. For the co-occurrence data, we used the English-German dictionary from the Internet Dic-
tionary Project2 (IDP). The dictionary data are in the form of feature-level co-occurrencep(yt, ys).
We note that while most cross-language classification works rely on machine translation [1], our
assumption is that the machine translation is unavailable and we rely on dictionary only.

We evaluatedTLRisk with the negative of cosine (namedNCOS) as the dissimilarity function. Our
frameworkTLRisk was compared to classification using only very few German labeled documents
as a baseline, calledGerman Labels Only. We also present the lower bound of error rates by
performing 5-fold cross-validation on the test dataU , which we refer to asLowerbound. The
performances of the evaluated methods are presented in Table 3. In this experiment, we have only
sixteen German labeled documents in each category. The error rates in Table 3 were evaluated
by averaging the results of 20 random repeats. From the figure, we can see thatTLRisk always
shows marked improvements compared with the baseline methodGerman Labels Only, al-
though there are still gaps betweenTLRisk and the ideal caseLowerbound. This indicates our
algorithmTLRisk is effective on the cross-language classification problem.

DATA SET 1 2 3 4 5

German Labels Only 0.246 ± 0.061 0.133 ± 0.037 0.301 ± 0.067 0.257 ± 0.053 0.277 ± 0.068
TLRisk 0.191 ± 0.045 0.122 ± 0.043 0.253 ± 0.062 0.247 ± 0.059 0.183 ± 0.072

Lowerbound 0.170 ± 0.000 0.116 ± 0.000 0.157 ± 0.000 0.176 ± 0.000 0.166 ± 0.000

Table 3: The average error rate and variance on each data set, given by all the evaluation methods,
for English-to-German cross-language classification.

We have empirically tuned the trade-off parameterλ. Similar to the results of the text-aided image
classification experiments, whenλ is small, the performance ofTLRisk is better and stable. In

2http://www.ilovelanguages.com/idp/index.html



these experiments, we setλ to 2−4. However, due to space limitation, we cannot present the curves
for λ tuning here.

5 Related Work
We review several prior works related to our work. To solve the label sparsity problem, researchers
proposed several learning strategies, e.g. semi-supervised learning [13] and transfer learning [3,
11, 10, 9, 4]. Transfer learning mainly focuses on training and testing processes being in different
scenarios, e.g. multi-task learning [3], learning with auxiliary data sources [11], learning from
irrelevant categories [10], and self-taught learning [9, 4]. Thetranslated learning proposed in this
paper can be considered as an instance of general transfer learning; that is, transfer learning from
data in different feature spaces.

Multi-view learning addresses learning across different feature spaces. Co-training [2] established
the foundation of multi-view learning, in which the classifiers in two views learn from each other
to enhance the learning process. Nigam and Ghani [8] proposed co-EM to apply EM algorithm to
each view, and interchange probabilistic labels between different views. Co-EMT [7] is an active
learning multi-view learning algorithm, and has shown more robustness empirically. However, as
discussed before, multi-view learning requires that each instance should contain two views, while in
translated learning, this requirement is relaxed. Translated learning can accept training data in one
view and test data in another view.

6 Conclusions
In this paper, we proposed a translated learning framework for classifying target data using data
from another feature space. We have shown that in translated learning, even though we have very
little labeled data in the target space, if we can find a bridge to link the two spaces through feature
translation, we can achieve good performance by leveraging the knowledge from the source data.
We formally formulated our translated learning framework using risk minimization, and presented
an approximation method for model estimation. In our experiments, we have demonstrated how this
can be done effectively through the co-occurrence data inTLRisk. The experimental results on
the text-aided image classification and the cross-language classification show that our algorithm can
greatly outperform the state-of-the-art baseline methods.
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