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Abstract

We consider the learning task consisting in predicting as well as the best function
in a finite reference setG up to the smallest possible additive term. IfR(g) denotes
the generalization error of a prediction functiong, under reasonable assumptions
on the loss function (typically satisfied by the least square loss when the output is
bounded), it is known that the progressive mixture ruleĝ satisfies

ER(ĝ) ≤ ming∈G R(g) + Cst log |G|
n , (1)

wheren denotes the size of the training set, andE denotes the expectation w.r.t.
the training set distribution.This work shows that, surprisingly, for appropriate
reference setsG, the deviation convergence rate of the progressive mixture rule is
no better than Cst/

√
n: it fails to achieve the expected Cst/n. We also provide

an algorithm which does not suffer from this drawback, and which is optimal in
both deviation and expectation convergence rates.

1 Introduction

Why are we concerned by deviations?The efficiency of an algorithm can be summarized by its
expected risk, but this does not precise the fluctuations of its risk. In several application fields of
learning algorithms, these fluctuations play a key role: in finance for instance, the bigger the losses
can be, the more money the bank needs to freeze in order to alleviate these possible losses. In this
case, a “good” algorithm is an algorithm having not only low expected risk but also small deviations.

Why are we interested in the learning task of doing as well as the best prediction function of a given
finite set?First, one way of doing model selection among a finite family of submodels is to cut the
training set into two parts, use the first part to learn the best prediction function of each submodel
and use the second part to learn a prediction function which performs as well as the best of the
prediction functions learned on the first part of the training set. This scheme is very powerful since
it leads to theoretical results, which, in most situations, would be very hard to prove without it. Our
work here is related to the second step of this scheme.

Secondly, assume we want to predict the value of a continuous variable, and that we have many
candidates for explaining it. An input point can then be seen as the vector containing the prediction
of each candidate. The problem is what to do when the dimensionalityd of the input data (equiva-
lently the number of prediction functions) is much higher than the number of training pointsn. In
this setting, one cannot use linear regression and its variants in order to predict as well as the best
candidate up to a small additive term. Besides, (penalized) empirical risk minimization is doomed
to be suboptimal (see the second part of Theorem 2 and also [1]).

As far as the expected risk is concerned, the only known correct way of predicting as well as the
best prediction function is to use the progressive mixture rule or its variants. These algorithms are
introduced in Section 2 and their main good property is given in Theorem 1. In this work we prove
that they do not work well as far as risk deviations are concerned (see the second part of Theorem
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3). We also provide a new algorithm for this ’predict as well asthe best’ problem (see the end of
Section 4).

2 The progressive mixture rule and its variants

We assume that we observen pairs of input-output denotedZ1 = (X1, Y1), . . . , Zn = (Xn, Yn)
and that each pair has been independently drawn from the same unknown distribution denotedP .
The input and output spaces are denoted respectivelyX andY, so thatP is a probability distribution
on the product spaceZ , X ×Y. The quality of a (prediction) functiong : X → Y is measured by
therisk (or generalization error):

R(g) = E(X,Y )∼P `[Y, g(X)],

where`[Y, g(X)] denotes the loss (possibly infinite) incurred by predictingg(X) when the true
output isY . We work under the following assumptions for the data space and the loss function
` : Y × Y → R ∪ {+∞}.

Main assumptions. The input space is assumed to be infinite:|X | = +∞. The output space is
a non-trivial (i.e. infinite) interval ofR symmetrical w.r.t. somea ∈ R: for any y ∈ Y, we have
2a − y ∈ Y. The loss function is

• uniformly exp-concave:there existsλ > 0 such that for anyy ∈ Y, the set
{

y′ ∈ R :

`(y, y′) < +∞
}

is an interval containinga on which the functiony′ 7→ e−λ`(y,y′) is
concave.

• symmetrical:for anyy1, y2 ∈ Y, `(y1, y2) = `(2a − y1, 2a − y2),

• admissible:for anyy, y′ ∈ Y∩]a; +∞[, `(y, 2a − y′) > `(y, y′),

• well behaved at center:for anyy ∈ Y∩]a; +∞[, the function`y : y′ 7→ `(y, y′) is twice
continuously differentiable on a neighborhood ofa and`′y(a) < 0.

These assumptions imply that

• Y has necessarily one of the following form:] −∞; +∞[, [a − ζ; a + ζ] or ]a − ζ; a + ζ[
for someζ > 0.

• for any y ∈ Y, from the exp-concavity assumption, the function`y : y′ 7→ `(y, y′) is
convex on the interval on which it is finite1. As a consequence, the riskR is also a convex
function (on the convex set of prediction functions for which it is finite).

The assumptions were motivated by the fact that they are satisfied in the following settings:

• least square loss with bounded outputs:Y = [ymin; ymax] and`(y1, y2) = (y1−y2)
2. Then

we havea = (ymin + ymax)/2 and may takeλ = 1/[2(ymax − ymin)2].

• entropy loss:Y = [0; 1] and`(y1, y2) = y1 log
(

y1

y2

)

+ (1 − y1) log
(

1−y1

1−y2

)

. Note that
`(0, 1) = `(1, 0) = +∞. Then we havea = 1/2 and may takeλ = 1.

• exponential (or AdaBoost) loss:Y = [−ymax; ymax] and`(y1, y2) = e−y1y2 . Then we
havea = 0 and may takeλ = e−y2

max .

• logit loss:Y = [−ymax; ymax] and`(y1, y2) = log(1 + e−y1y2). Then we havea = 0 and
may takeλ = e−y2

max .

Progressive indirect mixture rule. LetG be a finite reference set of prediction functions. Under the
previous assumptions, the only known algorithms satisfying (1) are the progressive indirect mixture
rules defined below.

For anyi ∈ {0, . . . , n}, thecumulative losssuffered by the prediction functiong on the firsti pairs
of input-output is

Σi(g) ,
∑i

j=1 `[Yj , g(Xj)],

1Indeed, if ξ denotes the functione−λ`y , from Jensen’s inequality, for any probability distribution,
E`y(Y ) = E

(

−
1

λ
log ξ(Y )

)

≥ −
1

λ
log Eξ(Y ) ≥ −

1

λ
log ξ(EY ) = `y(EY ).
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where by convention we takeΣ0 ≡ 0. Let π denote the uniform distribution onG. We define the
probability distribution̂πi onG as

π̂i ∝ e−λΣi · π
equivalently for anyg ∈ G, π̂i(g) = e−λΣi(g)/(

∑

g′∈G e−λΣi(g
′)). This distribution concentrates

on functions having low cumulative loss up to timei. For anyi ∈ {0, . . . , n}, let ĥi be a prediction
function such that

∀ (x, y) ∈ Z `[y, ĥi(x)] ≤ − 1
λ log Eg∼π̂i

e−λ`[y,g(x)]. (2)

Theprogressive indirect mixture ruleproduces the prediction function

ĝpim = 1
n+1

∑n
i=0 ĥi.

From the uniform exp-concavity assumption and Jensen’s inequality,ĥi does exist since one may
take ĥi = Eg∼π̂i

g. This particular choice leads to theprogressive mixture rule, for which the
predicted output for anyx ∈ X is

ĝpm(x) =
∑

g∈G

(

1
n+1

∑n
i=0

e−λΣi(g)

∑

g′∈G
e−λΣi(g′)

)

g(x).

Consequently, any result that holds for any progressive indirect mixture rule in particular holds for
the progressive mixture rule.

The idea of a progressive mean of estimators has been introduced by Barron ([2]) in the context
of density estimation with Kullback-Leibler loss. The form̂gpm is due to Catoni ([3]). It was also
independently proposed in [4]. The study of this procedure was made in density estimation and least
square regression in [5, 6, 7, 8]. Results for general losses can be found in [9, 10]. Finally, the
progressive indirect mixture rule is inspired by the work of Vovk, Haussler, Kivinen and Warmuth
[11, 12, 13] on sequential prediction and was studied in the “batch” setting in [10]. Finally, in the
upper bounds we state, e.g. Inequality (1), one should notice that there is no constant larger than1
in front of ming∈G R(g), as opposed to some existing upper bounds (e.g. [14]). This work really
studies the behaviour of the excess risk, that is the random variableR(ĝ) − ming∈G R(g).

The largest integer smaller or equal to the logarithm in base 2 ofx is denoted byblog2 xc .

3 Expectation convergence rate

The following theorem, whose proof is omitted, shows that the expectation convergence rate of any
progressive indirect mixture rule is (i) at least(log |G|)/n and (ii) cannot be uniformly improved,
even when we consider only probability distributions onZ for which the output has almost surely
two symmetrical values (e.g.{-1;+1}classication with exponential or logit losses).

Theorem 1 Any progressive indirect mixture rule satisfies

ER(ĝpim) ≤ min
g∈G

R(g) + log |G|
λ(n+1) .

Lety1 ∈ Y−{a} andd be a positive integer. There exists a setG of d prediction functions such that:
for any learning algorithm, there exists a probability distribution generating the data for which

• the output marginal is supported by2a − y1 andy1: P (Y ∈ {2a − y1; y1}) = 1,

• ER(ĝ) ≥ min
g∈G

R(g) + e−1κ
(

1 ∧ blog2 |G|c
n+1

)

, with κ , sup
y∈Y

[`(y1, a) − `(y1, y)] > 0.

The second part of Theorem 1 has the same(log |G|)/n rate as the lower bounds obtained in sequen-
tial prediction ([12]). From the link between sequential predictions and our “batch” setting with i.i.d.
data (see e.g. [10, Lemma 3]), upper bounds for sequential prediction lead to upper bounds for i.i.d.
data, and lower bounds for i.i.d. data leads to lower bounds for sequential prediction. The converse
of this last assertion is not true, so that the second part of Theorem 1 is not a consequence of the
lower bounds of [12].
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The following theorem, whose proof is also omitted, shows that for appropriate setG: (i) the em-
pirical risk minimizer has a

√

(log |G|)/n expectation convergence rate, and (ii) any empirical risk
minimizer and any of its penalized variants are really poor algorithms in our learning task since their
expectation convergence rate cannot be faster than

√

(log |G|)/n (see [5, p.14] and [1] for results of
the same spirit). This last point explains the interest we have in progressive mixture rules.

Theorem 2 If B , supy,y′,y′′∈Y [`(y, y′) − `(y, y′′)] < +∞, then any empirical risk minimizer,
which produces a prediction function̂germ in argming∈G Σn, satisfies:

ER(ĝerm) ≤ min
g∈G

R(g) + B
√

2 log |G|
n .

Let y1, ỹ1 ∈ Y∩]a; +∞[ andd be a positive integer. There exists a setG of d prediction functions
such that: for any learning algorithm producing a prediction function inG (e.g. ĝerm) there exists a
probability distribution generating the data for which

• the output marginal is supported by2a − y1 andy1: P (Y ∈ {2a − y1; y1}) = 1,

• ER(ĝ) ≥ min
g∈G

R(g) + δ
8

(

√

blog2 |G|c
n ∧ 2

)

, with δ , `(y1, 2a − ỹ1) − `(y1, ỹ1) > 0.

The lower bound of Theorem 2 also says that one should not use cross-validation. This holds for the
loss functions considered in this work, and not for, e.g., the classification loss:`(y, y′) = 1y 6=y′ .

4 Deviation convergence rate

The following theorem shows that the deviation convergence rate of any progressive indirect mix-
ture rule is (i) at least1/

√
n and (ii) cannot be uniformly improved, even when we consider only

probability distributions onZ for which the output has almost surely two symmetrical values (e.g.
{-1;+1}classication with exponential or logit losses).

Theorem 3 If B , supy,y′,y′′∈Y [`(y, y′) − `(y, y′′)] < +∞, then any progressive indirect mixture
rule satisfies: for anyε > 0, with probability at least1 − ε w.r.t. the training set distribution, we
have

R(ĝpim) ≤ min
g∈G

R(g) + B
√

2 log(2ε−1)
n+1 + log |G|

λ(n+1)

Let y1 and ỹ1 in Y∩]a; +∞[ such that`y1
is twice continuously differentiable on[a; ỹ1] and

`′y1
(ỹ1) ≤ 0 and `′′y1

(ỹ1) > 0. Consider the prediction functionsg1 ≡ ỹ1 and g2 ≡ 2a − ỹ1.
For any training set sizen large enough, there existε > 0 and a distribution generating the data
such that

• the output marginal is supported byy1 and2a − y1

• with probability larger thanε, we have

R(ĝpim) − min
g∈{g1,g2}

R(g) ≥ c
√

log(eε−1)
n

wherec is a positive constant depending only on the loss function, the symmetry parameter
a and the output valuesy1 and ỹ1.

Proof 1 See Section 5.

This result is quite surprising since it gives an example of an algorithm which is optimal in terms of
expectation convergence rate and for which the deviation convergence rate is (significantly) worse
than the expectation convergence rate.

In fact, despite their popularity based on their unique expectation convergence rate, the progressive
mixture rules are not good algorithms since a long argument essentially based on convexity shows
that the following algorithm has both expectation and deviation convergence rate of order1/n. Let
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ĝerm be the minimizer of the empirical risk among functions inG. Let g̃ be the minimizer of the
empirical risk in the star̂G = ∪g∈G [g; ĝerm]. The algorithm producing̃g satisfies for someC > 0,
for anyε > 0, with probability at least1 − ε w.r.t. the training set distribution, we have

R(g̃) ≤ min
g∈G

R(g) + C log(ε−1|G|)
n .

This algorithm has also the benefit of being parameter-free. On the contrary, in practice, one will
have recourse to cross-validation to tune the parameterλ of the progressive mixture rule.

To summarize, to predict as well as the best prediction function in a given setG, one should not
restrain the algorithm to produce its prediction function among the setG. The progressive mix-
ture rules satisfy this principle since they produce a prediction function in the convex hull ofG.
This allows to achieve(log |G|)/n convergence rates in expectation. The proof of the lower bound
of Theorem 3 shows that the progressive mixtures overfit the data: the deviations of their excess
risk are not PAC bounded byC log(ε−1|G|)/n while an appropriate algorithm producing prediction
functions on the edges of the convex hull achieves thelog(ε−1|G|)/n deviation convergence rate.
Future work might look at whether one can transpose this algorithm to the sequential prediction
setting, in which, up to now, the algorithms to predict as well as the best expert were dominated by
algorithms producing a mixture expert inside the convex hull of the set of experts.

5 Proof of Theorem 3

5.1 Proof of the upper bound

Let Zn+1 = (Xn+1, Yn+1) be an input-output pair independent from the training setZ1, . . . , Zn

and with the same distributionP . From the convexity ofy′ 7→ `(y, y′), we have

R(ĝpim) ≤ 1
n+1

∑n
i=0 R(ĥi). (3)

Now from [15, Theorem 1] (see also [16, Proposition 1]), for anyε > 0, with probability at least
1 − ε, we have

1
n+1

∑n
i=0 R(ĥi) ≤ 1

n+1

∑n
i=0 `

(

Yi+1, ĥ(Xi+1)
)

+ B
√

log(ε−1)
2(n+1)

(4)

Using [12, Theorem 3.8] and the exp-concavity assumption, we have
∑n

i=0 `
(

Yi+1, ĥ(Xi+1)
)

≤ min
g∈G

∑n
i=0 `

(

Yi+1, g(Xi+1)
)

+ log |G|
λ (5)

Let g̃ ∈ argminG R. By Hoeffding’s inequality, with probability at least1 − ε, we have

1
n+1

∑n
i=0 `

(

Yi+1, g̃(Xi+1)
)

≤ R(g̃) + B
√

log(ε−1)
2(n+1)

(6)

Merging (3), (4), (5) and (6), with probability at least1 − 2ε, we get

R(ĝpim) ≤ 1
n+1

∑n
i=0 `

(

Yi+1, g̃(Xi+1)
)

+ log |G|
λ(n+1) + B

√

log(ε−1)
2(n+1)

≤ R(g̃) + B
√

2 log(ε−1)
n+1 + log |G|

λ(n+1) .

5.2 Sketch of the proof of the lower bound

We cannot use standard tools like Assouad’s argument (see e.g. [17, Theorem 14.6]) because if it
were possible, it would mean that the lower bound would hold for any algorithm and in particular
for g̃, and this is false. To prove that any progressive indirect mixture rule have no fast exponential
deviation inequalities, we will show that on some event with not too small probability, for most of
thei in {0, . . . , n}, π−λΣi

concentrates on the wrong function.

The proof is organized as follows. First we define the probability distribution for which we will
prove that the progressive indirect mixture rules cannot have fast deviation convergence rates. Then
we define the event on which the progressive indirect mixture rules do not perform well. We lower
bound the probability of this excursion event. Finally we conclude by lower boundingR(ĝpim) on
the excursion event.

Before starting the proof, note that from the “well behaved at center” and exp-concavity assump-
tions, for anyy ∈ Y∩]a; +∞[, on a neighborhood ofa, we have:̀ ′′

y ≥ λ(`′y)2 and sincè ′
y(a) < 0,

y1 andỹ1 exist. Due to limited space, some technical computations have been removed.
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5.2.1 Probability distribution generating the data and first consequences.

Let γ ∈]0; 1] be a parameter to be tuned later. We consider a distribution generating the data such
that the output distribution satisfies for anyx ∈ X

P (Y = y1|X = x) = (1 + γ)/2 = 1 − P (Y = y2|X = x),

wherey2 = 2a− y1. Let ỹ2 = 2a− ỹ1. From the symmetry and admissibility assumptions, we have
`(y2, ỹ2) = `(y1, ỹ1) < `(y1, ỹ2) = `(y2, ỹ1). Introduce

δ , `(y1, ỹ2) − `(y1, ỹ1) > 0. (7)

We have

R(g2) − R(g1) = 1+γ
2 [`(y1, ỹ2) − `(y1, ỹ1)] + 1−γ

2 [`(y2, ỹ2) − `(y2, ỹ1)] = γδ. (8)

Thereforeg1 is the best prediction function in{g1, g2} for the distribution we have chosen. Introduce
Wj , 1Yj=y1

− 1Yj=y2
andSi ,

∑i
j=1 Wj . For anyi ∈ {1, . . . , n}, we have

Σi(g2) − Σi(g1) =
∑i

j=1[`(Yj , ỹ2) − `(Yj , ỹ1)] =
∑i

j=1 Wjδ = δ Si

The weight given by the Gibbs distributionπ−λΣi
to the functiong1 is

π−λΣi
(g1) = e−λΣi(g1)

e−λΣi(g1)+e−λΣi(g2) = 1
1+eλ[Σi(g1)−Σi(g2)] = 1

1+e−λδSi
. (9)

5.2.2 An excursion event on which the progressive indirect mixture rules will not perform
well.

Equality (9) leads us to consider the event:

Eτ =
{

∀i ∈ {τ, . . . , n}, Si ≤ −τ
}

,

with τ the smallest integer larger than(log n)/(λδ) such thatn − τ is even (for convenience). We
have

log n
λδ ≤ τ ≤ log n

λδ + 2. (10)

The eventEτ can be seen as an excursion event of the random walk defined through the random
variablesWj = 1Yj=y1

−1Yj=y2
, j ∈ {1, . . . , n}, which are equal to+1 with probability(1+γ)/2

and−1 with probability(1 − γ)/2.

From (9), on the eventEτ , for anyi ∈ {τ, . . . , n}, we have

π−λΣi
(g1) ≤ 1

n+1 . (11)

This means thatπ−λΣi
concentrates on the wrong function, i.e. the functiong2 having larger risk

(see (8)).

5.2.3 Lower bound of the probability of the excursion event.

This requires to look at the probability that a slightly shifted random walk in the integer space has a
very long excursion above a certain threshold. To lower bound this probability, we will first look at
the non-shifted random walk. Then we will see that for small enough shift parameter, probabilities
of shifted random walk events are close to the ones associated to the non-shifted random walk.

Let N be a positive integer. Letσ1, . . . , σN be N independent Rademacher variables:P(σi =

+1) = P(σi = −1) = 1/2. Let si ,
∑i

j=1 σi be the sum of the firsti Rademacher variables. We
start with the following lemma for sums of Rademacher variables (proof omitted).

Lemma 1 Letm andt be positive integers. We have

P
(

max
1≤k≤N

sk ≥ t; sN 6= t;
∣

∣sN − t
∣

∣ ≤ m
)

= 2P
(

t < sN ≤ t + m
)

(12)

Let σ′
1, . . . , σ

′
N beN independent shifted Rademacher variables to the extent thatP(σ′

i = +1) =
(1 + γ)/2 = 1 − P(σ′

i = −1). These random variables satisfy the following key lemma (proof
omitted)
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Lemma 2 For any setA ⊂
{

(ε1, . . . , εN ) ∈ {−1, 1}n :
∣

∣

∑N
i=1 εi

∣

∣ ≤ M
}

whereM is a positive
integer, we have

P
{

(σ′
1, . . . , σ

′
N ) ∈ A

}

≥
(

1−γ
1+γ

)M/2
(

1 − γ2
)N/2

P
{

(σ1, . . . , σN ) ∈ A
}

(13)

We may now lower bound the probability of the excursion eventEτ . LetM be an integer larger than
τ . We still useWj , 1Yj=y1

− 1Yj=y2
for j ∈ {1, . . . , n}. By using Lemma 2 withN = n − 2τ ,

we obtain

P(Eτ ) ≥ P
(

W1 = −1, . . . ,W2τ = −1; ∀ 2τ < i ≤ n,
∑i

j=2τ+1 Wj ≤ τ
)

=
(

1−γ
2

)2τ
P
(

∀ i ∈ {1, . . . , N}
∑i

j=1 σ′
j ≤ τ

)

≥
(

1−γ
2

)2τ(

1−γ
1+γ

)M/2(
1 − γ2

)
N
2

P
(

|sN | ≤ M ;∀ i ∈ {1, . . . , N} si ≤ τ
)

By using Lemma 1, sinceτ ≤ M , the r.h.s. probability can be lower bounded, and after some
computations, we obtain

P(Eτ ) ≥ τ
(

1−γ
2

)2τ(

1−γ
1+γ

)M/2(
1 − γ2

)
N
2 [P(sN = τ) − P(sN = M)] (14)

where we recall thatτ have the order oflog n, N = n − 2τ has the order ofn and thatγ > 0 and
M ≥ τ have to be appropriately chosen.

To control the probabilities of the r.h.s., we use Stirling’s formula

nne−n
√

2πn e1/(12n+1) < n! < nne−n
√

2πn e1/(12n), (15)

and get for anys ∈ [0;N ] such thatN − s even,

P(sN = s) ≥
√

2
πN

(

1 − s2

N2

)−N
2
(

1− s
N

1+ s
N

)
s
2

e−
1

6(N+s)
− 1

6(N−s) (16)

and similarly

P(sN = s) ≤
√

2
πN

(

1 − s2

N2

)−N
2
(

1− s
N

1+ s
N

)
s
2

e
1

12N+1 . (17)

These computations and (14) leads us to takeM as the smallest integer larger than
√

n such that
n − M is even. Indeed, from (10), (16) and (17), we obtainlimn→+∞

√
n[P(sN = τ) − P(sN =

M)] = c, wherec =
√

2/π
(

1 − e−1/2
)

> 0. Therefore forn large enough we have

P(Eτ ) ≥ cτ
2
√

n

(

1−γ
2

)2τ(

1−γ
1+γ

)M/2(
1 − γ2

)
N
2 (18)

The last two terms of the r.h.s. of (18) leads us to takeγ of order1/
√

n up to possibly a logarithmic
term. We obtain the following lower bound on the excursion probability

Lemma 3 If γ =
√

C0(log n)/n with C0 a positive constant, then for any large enoughn,

P(Eτ ) ≥ 1
nC0

.

5.2.4 Behavior of the progressive indirect mixture rule on the excursion event.

From now on, we work on the eventEτ . We haveĝpim = (
∑n

i=0 ĥi)/(n + 1). We still useδ ,

`(y1, ỹ2)−`(y1, ỹ1) = `(y2, ỹ1)−`(y2, ỹ2). On the eventEτ , for anyx ∈ X and anyi ∈ {τ, . . . , n},
by definition ofĥi, we have

`[y2, ĥi(x)] − `(y2, ỹ2) ≤ − 1
λ log Eg∼π−λΣi

e−λ{`[y2,g(x)]−`(y2,ỹ2)}

= − 1
λ log

{

e−λδ + (1 − e−λδ)π−λΣi
(g2)

}

≤ − 1
λ log

{

1 − (1 − e−λδ) 1
n+1

}

In particular, for anyn large enough, we havè[y2, ĥi(x)] − `(y2, ỹ2) ≤ Cn−1, with C > 0
independent fromγ. From the convexity of the functiony 7→ `(y2, y) and by Jensen’s inequality,
we obtain

`[y2, ĝpim(x)] − `(y2, ỹ2) ≤ 1
n+1

∑n
i=0 `[y2, ĥi(x)] − `(y2, ỹ2) ≤ τδ

n+1 + Cn−1 < C1
log n

n
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for some constantC1 > 0 independent fromγ. Let us now prove that forn large enough, we have

ỹ2 ≤ ĝpim(x) ≤ ỹ2 + C
√

log n
n ≤ ỹ1, (19)

with C > 0 independent fromγ.

From (19), we obtain

R(ĝpim) − R(g1) = 1+γ
2

[

`(y1, ĝpim) − `(y1, ỹ1)
]

+ 1−γ
2

[

`(y2, ĝpim) − `(y2, ỹ1)
]

= 1+γ
2

[

`y1
(ĝpim) − `y1

(ỹ1)
]

+ 1−γ
2

[

`y1
(2a − ĝpim) − `y1

(ỹ2)
]

= 1+γ
2

[

δ + `y1
(ĝpim) − `y1

(ỹ2)
]

+ 1−γ
2

[

− δ + `y1
(2a − ĝpim) − `y1

(ỹ1)
]

≥ γδ − (ĝpim − ỹ2)|`′y1
(ỹ2)|

≥ γδ − C2

√

log n
n ,

(20)
with C2 independent fromγ. We may takeγ = 2C2

δ

√

(log n)/n and obtain: forn large enough,
on the eventEτ , we haveR(ĝpim) − R(g1) ≥ C

√

log n/n. From Lemma 3, this inequality holds
with probability at least1/nC4 for someC4 > 0. To conclude, for anyn large enough, there exists

ε > 0 s.t. with probability at leastε, R(ĝpim)−R(g1) ≥ c
√

log(eε−1)
n . wherec is a positive constant

depending only on the loss function, the symmetry parametera and the output valuesy1 andỹ1.
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