
A neural network implementing optimal state
estimation based on dynamic spike train decoding

Omer Bobrowski1, Ron Meir1, Shy Shoham2 and Yonina C. Eldar1

Department of Electrical Engineering1 and Biomedical Engineering2

Technion, Haifa 32000, Israel
{bober@tx},{rmeir@ee},{sshoham@bm},{yonina@ee}.technion.ac.il

Abstract

It is becoming increasingly evident that organisms acting in uncertain dynamical
environments often employ exact or approximate Bayesian statistical calculations
in order to continuously estimate the environmental state, integrate information
from multiple sensory modalities, form predictions and choose actions. What is
less clear is how these putative computations are implemented by cortical neural
networks. An additional level of complexity is introduced because these networks
observe the world through spike trains received from primary sensory afferents,
rather than directly. A recent line of research has described mechanisms by which
such computations can be implemented using a network of neurons whose activ-
ity directly represents a probability distribution across the possible “world states”.
Much of this work, however, uses various approximations, which severely re-
strict the domain of applicability of these implementations. Here we make use of
rigorous mathematical results from the theory of continuous time point process
filtering, and show how optimal real-time state estimation and prediction may be
implemented in a general setting using linear neural networks. We demonstrate
the applicability of the approach with several examples, and relate the required
network properties to the statistical nature of the environment, thereby quantify-
ing the compatibility of a given network with its environment.

1 Introduction

A key requirement of biological or artificial agents acting in a random dynamical environment is
estimating the state of the environment based on noisy observations. While it is becoming clear that
organisms employ some form of Bayesian inference, it is not yet clear how the required computa-
tions may be implemented in networks of biological neurons. We consider the problem of a system,
receiving multiple state-dependent observations (possibly arising from different sensory modalities)
in the form of spike trains, and construct a neural network which, based on these noisy observations,
is able to optimally estimate the probability distribution of the hidden world state.

The present work continues a line of research attempting to provide a probabilistic Bayesian frame-
work for optimal dynamical state estimation by biological neural networks. In this framework, first
formulated by Rao (e.g., [8, 9]), the time-varying probability distributions are represented in the
neurons’ activity patterns, while the network’s connectivity structure and intrinsic dynamics are
responsible for performing the required computation. Rao’s networks use linear dynamics and dis-
crete time to approximately compute the log-posterior distributions from noisy continuous inputs
(rather than actual spike trains). More recently, Beck and Pouget [1] introduced networks in which
the neurons directly represent and compute the posterior probabilities (rather than their logarithms)
from discrete-time approximate firing rate inputs, using non-linear mechanisms such as multiplica-
tive interactions and divisive normalization. Another relevant line of work, is that of Brown and
colleagues as well as others (e.g., [4, 11, 13]) where approximations of optimal dynamical estima-
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tors from spike-train based inputs are calculated, however,without addressing the question of neural
implementation.

Our approach is formulated within a continuous time point process framework, circumventing many
of the difficulties encountered in previous work based on discrete time approximations and input
smoothing. Moreover, using tools from the theory of continuous time point process filtering (e.g.,
[3]), we are able to show that a linear system suffices to yield theexactposterior distribution for
the state. The key element in the approach is switching from posterior distributions to a new set
of functions which are simply non-normalized forms of the posterior distribution. While posterior
distributions generally obey non-linear differential equations, these non-normalized functions obey
a linear set of equations, known as the Zakai equations [15]. Intriguingly, these linear equations
contain the full information required to reconstruct the optimal posterior distribution! The linearity
of the exact solution provides many advantages of interpretation and analysis, not least of which is
an exact solution, which illustrates the clear distinction between observation-dependent and inde-
pendent contributions. Such a separation leads to a characterization of the system performance in
terms of prior knowledge and real-time observations. Since the input observations appear directly
as spike trains, no temporal information is lost. The present formulation allows us to consider in-
puts arising from several sensory modalities, and to determine the contribution of each modality to
the posterior estimate, thereby extending to the temporal domain previous work on optimal multi-
modal integration, which was mostly restricted to the static case. Inherent differences between the
modalities, related to temporal delays and different shapes of tuning curves can be incorporated and
quantified within the formalism.

In a historical context we note that a mathematically rigorous approach to point process based fil-
tering was developed during the early 1970s following the seminal work of Wonham [14] for finite
state Markov processes observed in Gaussian noise, and of Kushner [7] and Zakai [15] for diffusion
processes. One of the first papers presenting a mathematically rigorous approach to nonlinear fil-
tering in continuous time based on point process observations was [12], where the exact nonlinear
differential equations for the posterior distributions are derived. The presentation in Section 4 sum-
marizes the main mathematical results initiated by the latter line of research, adapted mainly from
[3], and serves as a convenient starting point for many possible extensions.

2 A neural network as an optimal filter

Consider a dynamic environment characterized at timet by a stateXt, belonging to a set ofN
states, namelyXt ∈ {s1, s2, . . . , sN}. We assume the state dynamics is Markovian with genera-
tor matrix Q. The matrixQ, [Q]ij = qij , is defined [5] by requiring that for small values ofh,
Pr[Xt+h = si|Xt = si] = 1 + qiih + o(h) andPr[Xt+h = sj |Xt = si] = qijh + o(h) for j 6= i.
The normalization requirement is that

∑

j qij = 0. This matrix controls the process’ infinitesimal
progress according tȯπ(t) = π(t)Q, whereπi(t) = Pr[Xt = si].

The stateXt is not directly observable, but is only sensed through a set ofM random state-dependent
observation point processes{N (k)

t }M
k=1. We take each point processN

(k)
t to represent the spiking

activity of thek-th sensory cell, and assume these processes to be doubly stochastic Poisson counting
processes1 with state-dependent ratesλk(Xt). These processes are assumed to be independent,
giventhe current stateXt. The objective of state estimation (a.k.a. nonlinear filtering) is to obtain a
differential equation for the posterior probabilities

pi(t)
4
= Pr

[

Xt = si

∣

∣

∣
N

(1)
[0,t], . . . , N

(M)
[0,t]

]

, (1)

whereN
(k)
[0,t] = {N

(k)
s }0≤s≤t. In the sequel we denoteY t

0
4
=

{

N
(1)
[0,t], . . . , N

(M)
[0,t]

}

, and refer the

reader to Section 4 for precise mathematical definitions.

We interpret the rateλk as providing the tuning curve for thek-th sensory input. In other words,
thek-th sensory cell responds with strengthλk(si) when the input state isXt = si. The required
differential equations forpi(t) are considerably simplified, with no loss of information [3], by con-
sidering a set of non-normalized ‘probability functions’ρi(t), such thatpi(t) = ρi(t)/

∑N

j=1 ρj(t).

1Implying that the rate function itself is a random process.
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Based on the theory presented in Section 4 we obtain

ρ̇i(t) =

N
∑

j=1

Qjiρj(t) +

M
∑

k=1

(λk(si) − 1)

[

∑

n

δ(t − tkn) − 1

]

ρi(t), (2)

where{tkn} denote the spiking times of thek-th sensory cell. This equation can be written in vector
form by defining

Λk = diag(λk(s1) − 1, λk(s2) − 1, . . . λk(sN ) − 1) ; Λ =
M
∑

k=1

Λk, (3)

andρ = (ρ1, . . . , ρN ), leading to

ρ̇(t) = (Q − Λ)>ρ(t) +

M
∑

k=1

Λk

∑

n

δ(t − tkn)ρ(t). (4)

Equations (2) and (4) can be interpreted as the activity of a linear neural network, whereρi(t)
represents the firing rate of neuroni at time t, and the matrix(Q − Λ)> represents the synaptic
weights (including self-weights); see Figure 1 for a graphical display of the network. Assuming
that the tuning functionsλk are unimodal, decreasing in all directions from some maximal value
(e.g., Gaussian or truncated cosine functions), we observe from (2) that the impact of an input spike
at time t is strongest on celli for which λk(si) is maximal, and decreases significantly for cells
j for which sj is ‘far’ from si. This effect can be modelled using excitatory/inhibitory connec-
tions, where neurons representing similar states excite each other, while neurons corresponding to
very different states inhibit each other (e.g., [2]). This issue will be elaborated on in future work.

Figure 1: A graphical depiction of
the network implementing optimal
filtering of M spike train inputs.

Several observations are in place regarding (4). (i) The so-
lution of (4) provides the optimal posterior state estimator
given the spike train observations, i.e., no approximation is in-
volved. (ii) The equations are linear even though the equations
obeyed by the posterior probabilitiespi(t) are nonlinear. (iii)
The temporal evolution breaks up neatly into an observation-
independent term, which can be conceived of as implementing
a Bayesian dynamic prior, and an observation-dependent term,
which contributes each time a spike occurs. Note that a simi-
lar structure was observed recently in [1]. (iv) The observation
process affects the posterior estimate through two terms. First,
input processes with strong spiking activity, affect the activity
more strongly. Second, thek-th input affects most strongly the
components ofρ(t) corresponding to states with large values
of the tuning curveλk(si). (v) At this point we assume that the
matrix Q is known. In a more general setting, one can expect
Q to be learnedon a slower time scale, through interaction
with the environment. We leave this as a topic for future work.

Multi-modal inputs A multi-modal scenario may be envisaged as one in which a subset of the sen-
sory inputs arises from one modality (e.g., visual) while the remaining inputs arise from a different
sensory modality (e.g., auditory). These modalities may differ in the shapes of their receptive fields,
their response latencies, etc. The framework developed above is sufficiently general to deal with
any number of modalities, but consider for simplicity just two modalities, denoted byV andA. It is
straightforward to extend the derivation of (4), leading to

ρ̇(t) = (Q − Λv − Λa)>ρ(t) +

{

Mv
∑

k=1

Λv
k

∑

n

δ(t − tv,k
n ) +

Ma
∑

k=1

Λa
k

∑

n

δ(t − ta,k
n )

}

ρ(t). (5)

Prediction The framework can easily be extended to prediction, defined as the problem of calcu-
lating the future posterior distributionph

i (t) = Pr[Xt+h = si|Y
t
0 ]. It is easy to show that the
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non-normalized probabilitiesρh(t) can be calculated using the vector differential equation

ρ̇
h(t) = (Q − Λ̃)>ρ

h(t) +

M
∑

k=1

Λ̃k

∑

n

δ(t − tkn)ρh(t), (6)

with the initial conditionρ
h(0) = ehQ>

ρ(0), and wherẽΛk = ehQ>

Λke−hQ>

. Interestingly, the
equations obtained are identical to (4), except that the system parameters are modified.

Simplified equation When the tuning curves of the sensory cells are uniformly distributed Gaus-
sians (e.g., spatial receptive fields), namelyλk(x) = λmaxexp(−(x−k∆x)2/2σ2), it can be shown
[13] that for small enough∆x, and a large number of sensory cells,

∑M

k=1 λk(x) ≈ β for all x, im-
plying thatΛ =

∑

k Λk ≈ (β − M)I. Therefore the matrixΛ has no effect on the solution of (4),
except for an exponential attenuation that is applied to all the cells simultaneously. Therefore, in
cases where the number of sensory cells is large,Λ can be omitted from (4). This means that be-
tween spike arrivals, the system behaves solely according to the a-priori knowledge about the world,
and when a spike arrives, this information is reshaped according to the firing cell’s tuning curve.

3 Theoretical Implications and Applications

Viewing (4) we note that between spike arrivals, the input has no effect on the system. Therefore,
the inter-arrival dynamics is simplẏρ(t) = (Q − Λ)>ρ(t). Definingtn as then-th arrival time of a
spike from any one of the sensors, the solution in the interval(tn, tn+1) is

ρ(t) = e(t−tn)(Q−Λ)>
ρ(tn).

When a new spike arrives from thek-th sensory neuron at timetn the system is modified within an
infinitesimal window of time as

ρi(t
+
n ) = ρi(t

−
n ) + ρi(t

−
n )(λk(si) − 1) = ρi(t

−
n )λk(si). (7)

Thus, at the exact time of a spike arrival from thek-th sensory cell, the vectorρ is reshaped according
to the tuning curve of the input cell that fired this spike. Assumingn spikes occurred before timet,
we can derive anexplicit solution to (4), given by

ρ(t) = e(t−tn)(Q−Λ)>
n

∏

i=1

(I + Λk(ti))e
(ti−ti−1)(Q−Λ)>

ρ(0), (8)

wherek(ti) is the index of the cell that fired atti, I is the identity matrix, and we assumed initial
conditionsρ(0) at t0 = 0.

3.1 Demonstrations

We demonstrate the operation of the system on several synthetic examples. First consider a small
object moving back and forth on a line, jumping between a set of discrete states, and being ob-
served by a retina withM sensory cells. Each world statesi describes the particle’s position,
and each sensory cellk generates a Poisson spike train with rateλk(Xt), taken to be a Gaussian
λmaxexp (−(x − xk)2/2σ2). Figure 2(a) displays the motion of the particle for a specific choice of
matrixQ, and 2(b) presents the spiking activity of10 position sensitive sensory cells. Finally, Figure
2(c) demonstrates the tracking ability of the system, where the width of the gray trace corresponds
to the prediction confidence. Note that the system is able to distinguish between25 different states
rather well with only10 sensory cells.

In order to enrich the systems’s estimation capabilities, we can include additional parameters within
the state of the world. Considering the previous example, we create a larger set of states:s̃ij =
(si, dj), wheredj denotes the current movement direction (in this cased1=up,d2=down). We add
a population of sensory cells that respond differently to different movement directions. This lends
further robustness to the state estimation. As can be seen in Figure 2(d)-(f), when for some reason the
input of the sensory cells is blocked (and the sensory cells fire spontaneously) the system estimates
a movement that continues in the same direction. When the blockade is removed, the system is re-
synchronized with the input. It can be seen that even during periods where sensory input is absent,
the general trend is well predicted, even though the estimated uncertainty is increased.
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By expanding the state space it is also possible for the systemto track multiple objects simultane-
ously. In figure 2(g)-(i) we present tracking of two simultaneously moving objects. This is done
simply by creating a new state space,sij = (s1

i , s
2
j ), wheresk

i denotes the state (location) of the
k-th object.
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Figure 2: Tracking the motion of an object in 1D. (a) The object’s trajectory. (b) Spiking activity
of 10 sensory cells. (c) Decoded position estimation with confidence interval. Each of the10
sensory cells has a Gaussian tuning curve of widthσ = 2 and maximal firing rateλmax = 25.(d)-(f)
Tracking based on position and direction information. The red bar marks the time when the input
was blocked, and the green bar marks the time when the blockade was removed. Here we used10
place-cells and4 direction-cells (marked in red). (g)-(i) Tracking of two objets simultaneously. The
network activity in (i) representsPr

[

X1
t = si ∨ X2

t = si|Y
t
0

]

.

3.2 Behavior Characterization

The solution of the filtering equations (4) depends on two processes, namely the recurrent dynamics
due to the first term, and the sensory input arising from the second term. Recall that the connectivity
matrixQ is essentially the generator matrix of the state transition process, and as such, incorporates
prior knowledge about the world dynamics. The second term, consisting of the sensory input, con-
tributes to the state estimator update every time a spike occurs. Thus, a major question relates to
the interplay between the a-priori knowledge embedded in the network throughQ and the incom-
ing sensory input. In particular, an important question relates to tailoring the system parameters
(e.g., the tuning curvesλk), to the properties of the external world. As a simple characterization
of the generator matrixQ, we consider the diagonal and non-diagonal terms. The diagonal term
qii is related to the average time spent in statei throughE[Ti] = −1/qii [5], and thus we define
τ(Q) = −

(

q−1
11 + · · · + q−1

NN

)

/N , as a measure of the transition frequency of the process, where
small values ofτ correspond to a rapidly changing process. A second relevant measure relates to
the regularity in the transition between the states. To quantify this consider a statei, and define a
probability vectorqi consisting of theN − 1 elements{Qij}, j 6= i, normalized so that the sum
of the elements is1. The entropy ofqi is a measure for the state transition irregularity from statei,
and we defineH(Q) as the average of this entropy over all states. In summary, we lump the main
properties ofQ into τ(Q), related to the rapidity of the process, andH(Q), measuring the transition
regularity. Clearly, these variables are but one heuristic choice for characterizing the Markov pro-
cess dynamics, but they will enable us to relate the ‘world dynamics’ to the system behavior. The
sensory input influence on the system is controlled by the tuning curves. To simplify the analysis we
assume uniformly placed Gaussian tuning curves,λk(x) = λmaxexp (−(x − k∆x)2/2σ2), which
can be characterized by two parameters - the maximum valueλmax and the widthσ. Note, however
that our model does not require any special constraints on the tuning curves.

Figure 3 examines the system performance under different world setups. We measure the perfor-
mance using theL1 error of the maximum aposteriori (MAP) estimator built from the posterior
distribution generated by the system. The MAP estimator is obtained by selecting the cell with the
highest firing activityρi(t), is optimal under the present setting (leading to the minimal probability
of error), and can be easily implemented in a neural network by a Winner-Take-All circuit. The
choice of theL1 error is justified in this case since the states{si} represent locations on a line,
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thereby endowing the state space with a distance measure. In figure 3(a) we can see that asτ(Q)
increases, the error diminishes, an expected result, since slower world dynamics are easier to ana-
lyze. The effect ofH(Q) is opposite - lower entropy implies higher confidence in the next state.
Therefore we can see that the error increases withH(Q) (fig. 3(b)). The last issue we examine
relates to the behavior of the system when an incorrectQ matrix is used (i.e., the world model is
incorrect). It is clear from figure 3(c) that for low values ofM (the number of sensory cells), using
the wrongQ matrix increases the error level significantly. However as the value ofM increases, the
differences are reduced. This phenomenon is expected, since the more observations are available
about the world, the less weight need be assigned to the a-priori knowledge.
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Figure 3: State estimation error for different world dynamics and model misspecification. For (a)
and (b)M = 17, N = 17, σ = 3, λmax = 50, and for (c)N = 25, σ = 3, λmax = 50.

In figure 4 we examine the effect of the tuning curve parameters on the system’s performance. Given
a fixed number of input cells, if the tuning curves are too narrow (fig. 4(a) top), they will not cover
the entire state space. On the other hand, if the tuning curves are too wide (fig. 4(a) bottom) the cell’s
response is very similar for all states. Therefore we get an error function that has a local minimum
(fig. 4(b)). It remains for future work to determine what is the optimal value ofσ for a given model.
The effect of different values ofλmax is obvious - higher values ofλmax lead to more spikes per
sensory cell which increases the system’s accuracy. Clearly, under physiological conditions, where
high firing rates are energetically costly, we would expect a tradeoff between accuracy and energy
expenditure.
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Figure 4: The effect of the tuning curves parameters on performance.

4 Mathematical Framework and Derivations

We summarize the main mathematical results related to point process filtering, adapted mainly from
[3]. Consider a finite-state continuous-time Markov processXt ∈ {s1, s2, . . . , sN} with a gener-
ator matrixQ that is being observed via a set of (doubly stochastic) Poisson processes with state-
dependent rate functionsλk(Xt), k = 1, . . . ,M .

Consider first a single point process observationN t
0 = {Ns}0≤s≤t. We denote the joint probability

law for the state and observation process byP1. The objective is to derive a differential equation for
the posterior probabilities (1). This is the classicnonlinear filteringproblem from systems theory
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(e.g. [6]). More generally, the problem can be phrased as computing E1[f(Xt)|N
t
0], where, in the

case of (1),f is a vector function, with componentsfi(x) = [x = si].

We outline the derivation required to obtain such an equation, using a method referred to as
change of measure(e.g., [3]). The basic idea is to replace the computationally hard evaluation
of E1[f(Xt)|N

t
0], by a tractable computation based on a simple probability law. Consider two

probability spaces(Ω,F ,P′) and (Ω,F ,P∞) that differ only in their probability measures.P1

is said to beabsolutely continuouswith respect toP0 (denoted byP1 � P0), if for all A ∈ F ,
P0(A) = 0 ⇒ P1(A) = 0. AssumingP1 � P0, it can be proved that there exists a random variable
L(ω), ω ∈ Ω, such that for allA ∈ F ,

P1(A) = E0[1AL] =

∫

A

L(ω)dP0(ω), (9)

whereE0 denotes the expectation with regard toP0. The random variableL is called theRadon-
Nykodim derivativeof P1 with respect toP0, and is denoted byL(ω) = dP1(ω)/dP0(ω).

Consider two continuous-time random processes -Xt,Nt, that have different interpretation under
the different probability measures -P0, P1:

P0 :

{

Xt is a finite-state Markov process, Xt ∈ {s1, s2, . . . , sN}.
Nt is a Poisson process with a constant rate of 1, independent ofXt

, (10)

P1 :

{

Xt is a finite-state Markov process, Xt ∈ {s1, s2, . . . , sN}.
Nt is a doubly-stochastic Poisson process with rate function:λ(Xt)

. (11)

The following avatar of Bayes’ formula (eq. 3.5 in chap. 6 of [3]), supplies a way to calculate the
conditional expectationE1[f(Xt)|N

t
0] based onP1 in terms of an expectation w.r.t.P0,

E1[f(Xt)|N
t
0] =

E0[Ltf(Xt)|N
t
0]

E0[Lt|N t
0]

, (12)

whereLt = dP1,t/dP0,t, andP0,t andP1,t are the restrictions ofP0 andP1, respectively, to the
sigma-algebra generated by{N t

0, X
∞
0 }. We refer the reader to [3] for precise definitions.

Using (1) and (12) we have

pi(t) = E1[fi(Xt)|N
t
0] =

E0[Ltfi(Xt)|N
t
0]

E0[Lt|N t
0]

. (13)

Since the denominator is independent ofi, it can be regarded as a normalization factor. Thus,

definingρi(t)
4
= E0[Ltfi(Xt)|N

t
0], it follows thatpi(t) = ρi(t)/

∑N

j=1 ρj(t).

Based on the above derivation, one can show ([3], chap. 6.4) that{ρi(t)} obey the stochastic differ-
ential equation (SDE)

dρi(t) =
N

∑

j=1

Qjiρj(t)dt + (λ(si) − 1)ρi(t)(dNt − dt). (14)

A SDE of the formdρ(t) = a(t)dt + b(t)dNt should be interpreted as follows. If at timet, no
jump occurred in the counting processNt, thenρ(t + dt) − ρ(t) ≈ a(t)dt, wheredt denotes an
infinitesimal time interval. If a jump occurred at timet thenρ(t + dt)− ρ(t) ≈ a(t)dt + b(t). Since
the jump locations are random,ρ(t) is a stochastic process, hence the term SDE.

Now, this derivation can be generalized to the case where there areM observation processes
N

(1)
t , N

(2)
t , . . . , N

(M)
t with different rate functionsλ1(Xt), λ2(Xt), . . . , λM (Xt). In this case the

differential equations for the non-normalized posterior probabilities is

dρi(t) =

N
∑

j=1

Qjiρj(t)dt +

M
∑

k=1

(λk(si) − 1)ρi(t)(dN
(k)
t − dt) (15)

Recalling thatN (k)
t is a counting process, namelydN

(k)
t /dt =

∑

n δ(t − tkn), we obtain (2), where
tkn is the arrival time of then-th event in thek-th observation process.
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5 Discussion

In this work we have introduced a linear recurrent neural network model capable of exactly imple-
menting Bayesian state estimation and prediction from input spike trains in real time. The framework
is mathematically rigorous and requires few assumptions, is naturally formulated in continuous time,
and is based directly on spike train inputs, thereby sacrificing no temporal resolution. The setup is
ideally suited to the integration of several sensory modalities, and retains its optimality in this setting
as well. The linearity of the system renders an analytic solution possible, and a full characterization
in terms of a-priori knowledge and online sensory input. This framework sets the stage for many
possible extensions and applications, of which we mention several examples. (i) It is important
to find a natural mapping between the current abstract neural model and more standard biologi-
cal neural network models. One possible approach was mentioned in Section 2, but other options
are possible and should be pursued. Additionally, the implementation of the estimation network
(namely, the variablesρi(t)) using realistic spiking neurons is still open. (ii) At this point the matrix
Q in (4) is assumed to be known. Combining approaches to learningQ and adapting the tuning
curvesλk in real time will lend further plausibility and robustness to the system. (iii) The present
framework, based on doubly stochastic Poisson processes, can be extended to more general point
processes, using the filtering framework described in [10]. (iv) Currently, each world state is repre-
sented by a single neuron (a grandmother cell). This is clearly a non-robust representation, and it
would be worthwhile to develop more distributed and robust representations. Finally, the problem
of experimental verification of the framework is a crucial step in future work.

AcknowledgmentsThe authors are grateful to Rami Atar his helpful advice on nonlinear filtering.
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