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Abstract

A method is proposed for semiparametric estimation where parametric and non-
parametric criteria are exploited in density estimation and unsupervised learning.
This is accomplished by making sampling assumptions on a dataset that smoothly
interpolate between the extreme of independently distributetiY@ample data

(as in nonparametric kernel density estimators) to the extreme of independent
identically distributed (oriid) sample data. This article makes indepenchémi-

larly distributed (otisd) sampling assumptions and interpolates between these two
using a scalar parameter. The parameter controls a Bhattacharyya affinity penalty
between pairs of distributions on samples. Surprisinglyigtienethod maintains
certain consistency and unimodality properties akin to maximum likelihood esti-
mation. The proposeidd scheme is an alternative for handling nonstationarity in
data without making drastic hidden variable assumptions which often make esti-
mation difficult and laden with local optima. Experiments in density estimation
on a variety of datasets confirm the valuasafoveriid estimationjd estimation

and mixture modeling.

1 Introduction

Density estimation is a popular unsupervised learning technique for recovering distributions from
data. Most approaches can be split into two categories: parametric methods where the functional
form of the distribution is known a priori (often from the exponential family (Collins et al., 2002;
Efron & Tibshirani, 1996)) and non-parametric approaches which explore a wider range of distri-
butions with less constrained forms (Devroye & Gyorfi, 1985). Parametric approaches can underfit
or may be mismatched to real-world data if they are built on incorrect a priori assumptions. A
popular non-parametric approach is kernel density estimation or the Parzen windows method (Sil-
verman, 1986). However, these may over-fit thus requiring smoothing, bandwidth estimation and
adaptation (Wand & Jones, 1995; Devroye & Gyorfi, 1985; Bengio et al., 2005). Semiparametric
efforts (Olking & Spiegelman, 1987) combine the complementary advantages of both schools. For
instance, mixture models in their infinite-component setting (Rasmussen, 1999) as well as statistical
processes (Teh et al., 2004) make only partial parametric assumptions. Alternatively, one may seed
non-parametric distributions with parametric assumptions (Hjort & Glad, 1995) or augment para-
metric models with nonparametric factors (Naito, 2004). This article instead proposes a continuous
interpolation betweeiid parametric density estimation afdlkernel density estimation. It makes
independensimilarly distributed {sd) sampling assumptions on the dataidd a scalar parameter

A trades off parametric and non-parametric properties to produce an overall better density estimate.
The method avoids sampling or approximate inference computations and only recycles well known
parametric update rules for estimation. It remains computationally efficient, unimodal and consistent
for a wide range of models.



This paper is organized as follows. Section 2 shows teandiid sampling setups can be smoothly
interpolated using a novéd posterior which maintains log-concavity for many popular models.
Section 3 gives analytic formulae for the exponential family case as well as slight modifications
to familiar maximum likelihood updates for recovering parameters uisdesissumptions. Some
consistency properties of tligd posterior are provided. Section 4 then extends the method to hidden
variable models or mixtures and provides simple update rules. Section 5 provides experiments
comparingsdwith id andiid as well as mixture modeling. We conclude with a brief discussion.

2 A Continuum between id and iid

Assume we are given a datasetdf— 1 inputsxy, ..., xy_1 from some sample spaée Given

a new query inpuk also in the same sample space, density estimation aims at recovering a
density functiorp(x1,...,xy—1,Xn5) Of p(xn]|X1,...,XN_1) USINg & Bayesian or frequentist ap-
proach. Therefore, a general density estimation task is, given a datasek,, ..., xy, recover
p(x1,...,xn). A common subsequent assumption is that the data pointsl areindependently
sampled which leads to the following simplification:

N
px) = [ et

The joint likelihood factorizes into a product of independent singleton margings,) each of
which can be different. A stricter assumption is that all samples shasathesingleton marginal:

N
piid(')() = H p(xn).

which is the populaiid sampling situation. In maximum likelihood estimation, either of the above
likelihood scoresi*® or p*?) is maximized by exploring different settings of the marginals. The

id setup gives rise to what is commonly referred to as kernel density or Parzen estimation. Mean-
while, theiid setup gives rise to traditionatl parametric maximum likelihood (ML) or maximum

a posteriori (MAP) estimation. Both methods have complementary advantages and disadvantages.
Theiid assumption may be too aggressive for many real world problems. For instance, data may
be generated by some slowly time-varying nonstationary distribution or (more distressingly) from

a distribution that does not match our parametric assumptions. Similarlig 8etup may be too
flexible and might over-fit when the marginal(x) is myopically recovered from a singig, .

Consider the parametric ML and MAP setting where parame®ets {6,,...,0y} are used to
define the marginals. We will usgx|6,,) = p,(x) interchangeably. The MARI parametric
setting involves maximizing the following posterior (likelihood times a prior) over the models:

N
pid(Xae) = Hp(xn|9n)p(9n)
n=1

To mimic ML, simply setp(6,,) to uniform. For simplicity assume that these singleton priors are
always kept uniform. Parametegsare then estimated by maximizipéf. To obtain theid setup,

we can maximizep*® subject to constraints that force all marginals to be equal, in other words
0 = 0, forallm,n € {1,...,N}.

Instead of applyingV(N — 1)/2 hard pairwise constraints in &did setup, consider imposing
penalty functions across pairs of marginals. These penalty functions reduce the posterior score when
marginals disagree and encourage satickinesdetween models (Teh et al., 2004). We measure

the level of agreement between two margingalgx) andp,, (x) using the following Bhattacharyya
affinity metric (Bhattacharyya, 1943) between two distributions:

Bompn) = Bp(x|0m), p(xl6,)) = / D7 (%100 )0 (x[6, ).

This is a symmetric non-negative quantity in both distributippsand p,,. The natural choice
for the setting ofg is 1/2 and in this case, it is easy to verify the affinity is maximal and equals
one if and only ifp,,,(x) = p.(x). A large family of alternative information divergences exist



to relate pairs of distributions (Topsoe, 1999) and are dised in the Appendix. In this article,

the Bhattacharyya affinity is preferred since it has some useful computational, analytic, and log-
concavity properties. In addition, it leads to straightforward variants of the estimation algorithms as
in theid andiid situations for many choices of parametric densities. Furthermore, (unlike Kullback
Leibler divergence) it is possible to compute the Bhattacharyya affinity analytically and efficiently
for a wide range of probability models including hidden Markov models (Jebara et al., 2004).

We next define (up to a constant scaling) the posterior score for indepesidelarly distributed
(isd) data:

Pr(X,0) o [[p0enltn)p(6n) T] B (0(x16m), p(x16,)). (1)
n m#n

Here, a scalar powey/N is applied to each affinity. The parameteadjusts the importance of the
similarity between pairs of marginals. Clearlyif— 0, then the affinity is always unity and the
marginals are completely unconstrained as initheetup. Meanwhile, a8 — oo, the affinity is
zero unless the marginals are exactly identical. This producewitbetup. We will refer to thésd
posterior as Equation 1 and whe(¥,,) is set to uniform, we will call it theésd likelihood. One can
also view the additional term iisd asid estimation with anodifiedprior 5(©) as follows:

#(©) o [[p@n) [T BMN (0(x[6m), p(x[60))-

m#n

This prior is a Markov random field tying all parameters in a pairwise manner in addition to the
standard singleton potentials in tllescenario. However, this perspective is less appealing since it
disguises the fact that the samples are not qdite iid.

One of the appealing propertiesiaf andid maximum likelihood estimation is its unimodality for
log-concave distributions. Thsd posterior also benefits from a unique optimum and log-concavity.
However, the conditional distributiongx|6,,) are required to bmintly log-concave in both param-
etersd,, and datax. This set of distributions includes the Gaussian distribution (with fixed variance)
and many exponential family distributions such as the Poisson, multinomial and exponential distri-
bution. We next show that thied posterior score for log-concave distributions is log-concav@.in

This produces a unigue estimate for the parameters as was the cabarfdiid setups.

Theorem 1 Theisd posterior is log-concave for jointly log-concave density distributions and for
log-concave prior distributions.

Proof 1 Theisdlog-posterior is the sum of thd log-likelihoods, the singleton log-priors and pair-
wise log-Bhattacharyya affinities:

A
logpx(X,0) = const+ Y logp(xn[0) + Y _ logp(6,) + N >0 108 B(pm, pn)-

n m#n

Theid log-likelihood is the sum of the log-probabilities of distributions that are log-concave in the
parameters and is therefore concave. Adding the log-priors maintains concavity since these are log-
concave in the parameters. The Bhattacharyya affinities are log-concave by the following key result
(Prekopa, 1973). The Bhattacharyya affinity for log-concave distributions is given by the integral
over the sample space of the product of two distributions. Since the term in the integral is a product
of jointly log-concave distributions (by assumption), the integrand is a jointly log-concave function.
Integrating a log-concave function over some of its arguments produces a log-concave function in
the remaining arguments (Prekopa, 1973). Therefore, the Bhattacharyya affinity is log-concave in
the parameters of jointly log-concave distributions. Finally, sinceiskdog-posterior is the sum of
concave terms and concave log-Bhattacharyya affinities, it must be concave.

This log-concavity permits iterative and greedy maximization methods to reliably converge in prac-
tice. Furthermore, thisd setup will produce convenient update rules that build ugbestimation
algorithms. There are additional propertiessaf which are detailed in the following sections. We
first explore the3 = 1/2 setting and subsequently discuss the 1 setting.



3 Exponential Family Distributionsand 5 = 1/2

We first specialize the above derivations to the case where the singleton marginals o&gyathe
nential familyform as follows:

p(x]0,) = exp (H(x) + QIT(X) — A(b‘n)) .
An exponential family distribution is specified by providiff the Lebesgue-Stieltjes integratéy,
the vector of natural parametefs, the sufficient statistic, and the normalization factor (which
is also known as the cumulant-generating function or the log-partition function). Tables of these
values are shown in (Jebara et al., 2004). The functiés obtained by normalization (a Legendre
transform) and is convex by construction. Therefore, exponential family distributions are always

log-concave in the parametets. For the exponential family, the Bhattacharyya affinity is com-
putable in closed form as follows:

B(pm,pn) = exp(A(m/2+0n/2) — A(0in)/2 — A(0n)/2) .
Assuming uniform priors on the exponential family parameters, it is now straightforward to write
an iterative algorithm to maximize thed posterior. We find settings @, . . ., 0 that maximize
the isd posterior orlog p) (X, ©) using a simple greedy method. Assume a current set of param-
eters is availabld,, ..., 0y. We then update a singtg, to increase the posterior while all other
parameters (denote@l/n) remain fixed at their previous settings. It suffices to consider only terms
in log p» (X, ©) that are variable witif,,:

CNHAN -1

log pA(X,0,,0,) = const+ 05T (xy,) N

A(6,) + ?V—A > A0 /24 0,/2).
m#n

If the exponential family igointly log-concave in parameters and data (as is the case for Gaussians),
this term is log-concave if,. Therefore, we can take a partial derivative of it with respeét,tand
set to zero to maximize:

A6, = $ T(xn)+%7§1A’(9~m/2+9n/2) . @)

For the Gaussian mean case (i.e. a white Gaussian with covariance locked at identity), we have
A(#) = 676. Then a closed-form formula is easy to recover from the abodMewever, a simpler
iterative update rule fo#,, is also possible as follows. Sinc#6) is a convex function, we can
compute a linear variational lower bound on eat{#,, /2 + 6,,/2) term for the current setting of

0,:

logpA(X. 00, 05) > const + 01T (k) — =D g
A - - - . -
+5 > 24(0m/2+ 00 /2) + A' (O )2+ 00/2) (0 — 0n).

m#n
This gives an iterative update rule of the form of Equation 2 wher@then the right hand side is
kept fixed at its previous setting (i.e. replace the right hand &ideith 6,,) while the equation is
iterated multiple times until the value 6f, converges. Since we have a variational lower bound,
each iterative update éf, monotonically increases tligd posterior. We can also work with a robust
(yet not log-concave) version of tled score which has the form:

A A
log pA(X,0) = const+ Y logp(xnlf) + Y _ logp(6s) + N > log | Y B(pm,pa)

m#n
and leads to the general update rule (whete 0 reproducessd and larger increases robustness):
N A (N = DB (p(x[0m), p(x]6n))

NA+XN-1) Tom)+ N n%:n > isn Be(p(x|6;), p(x|0,)) A Om /24 60/2)

Al(on) =

We next examine marginal consistency, another important property afdipesterior.

'The update for the Gaussian mean with covariafide=9.,, = m(an + A2 s O:m).



3.1 Marginal Consistency in the Gaussian Mean Case

For marginal consistency, if a datum and model parameter are hidden and integrated over, this should
not change our estimate. It is possible to show thatstiposterior is marginally consistent at least

in the Gaussian mean case (one element of the exponential family). In other words, marginalizing
over an observation and its associated marginal’'s parameter (which can be takemtahdo v

without loss of generality) still produces a similad posterior on the remaining observatiokigy

and parameter® . Thus, we need:

//pk(X,G)dXNdHN 0.8 p)\(X/N,@/N).

We then would recover the posterior formed using the formula in Equation 1 with fgny 1
observations an&/ — 1 models.

Theorem 2 Theisd posterior withG = 1/2 is marginally consistent for Gaussian distributions.

Proof 2 Start by integrating ovek y:

N-1

N N
[osx.eaxy [T o) [[o0) ] 52 )

1=1 m=n-+1

Assume the singleton prigf6y) is uniform and integrate ovety to obtain:

N—-1 N-1 N-1 N—1
//P/\(X,@)dxzvdezv x HP(Xi|9i) H H BQA/N(PmPn)/ H BN (pp, p)dfy
1=1 n=1 m=n+1 m=1
Consider only the right hand integral and impute the formula for the Bhattacharyya affinity:
N-1 N-1
2\ Om 0 A(b,)  A(ON)
2)\/N _ i m N} v, _ VN
/nHlB (Pm, PN )dON /exp <N mz_lA( 5 + 5 ) 5 5 dfn

In the (white) Gaussian casé(f) = 679 which simplifies the above into:

N-1 gy V-1 9 0
2\/N - _z24 2: Jm _IN
/ II B (Pm,pN)dON = /exp( N 2 A( 5 5 )) dfn

m=1

N—-1 N-1 .
< II II B¥ 7 @mpn)
n=1 m=n+1

Reinserting the integral changes the exponent of the pairs of Bhattacharyya affinities between the
(N — 1) models raising it to the appropriate powgy (N — 1):

N—-1 N—-1 N-1
//pA(X,@)dXNdGN < JIeilo) [T TI BN V®m.pn) = pa(X)n,0)n).
=1 n=1 m=n+1

Therefore, we get the sanel score that we would have obtained had we started with @¥ily- 1)

data points. We conjecture that it is possible to generalize the marginal consistency argument to
other distributions beyond the Gaussian. @ukestimator thus has useful properties and still agrees
with id when\ = 0 andiid when\ = co. Next, the estimator is generalized to handle distributions
beyond the exponential family where latent variables are implicated (as is the case for mixtures of
Gaussians, hidden Markov models, latent graphical models and so on).



4 Hidden VariableModelsand 5 =1

One important limitation of most divergences between distributions is that they become awkward
when dealing with hidden variables or mixture models. This is because they may involve intractable
integrals. The Bhattacharyya affinity with the settjfig= 1, also known as the probability product
kernel, is an exception to this since it only involves integrating the product of two distributions.
In fact, it is known that this affinity is efficient to compute for mixtures of Gaussians, multino-
mials and even hidden Markov models (Jebara et al., 2004). This permits the affinity metric to
efficiently pull together parametefis, andd,,. However, for mixture models, there is the presence

of hidden variables in addition to observed variables. Therefore, we replace all the marginals
p(x]0,) = >, p(x,h|6,). The affinity is still straightforward to compute for any pair of latent
variable models (mixture models, hidden Markov models and so on). Thus, evaluatiag pies-

terior is straightforward for such models whgn= 1. We next provide a variational method that
makes it possible to maximize a lower bound onifftgposterior in these cases.

Assume a current set of parameters is availéble 91, ... ,9~N; We will find a new setting fo#,,
that increases the posterior while all other parameters (debtgdremain fixed at their previous
settings. It suffices to consider only termdag p, (X, ©) that depend o#,,. This yields:

1ogpA(X,9n,é/n) = const + log p(xn|0n)p +— Zlog/ (|0, )p(x6,, ) dx
m;ﬁn
> const + log p(x,|0n)p Z/ (x]0,m ) log p(x|6,, ) dx
m;én

The application of Jensen’s inequality above produces an auxiliary fun@tﬁ@mé/n) which is a
lower-bound on the log-posterior. Note that each density function has hidden varjglleld,,) =

> nP(xn,h|0,). Applying Jensen’s inequality again (as in the Expectation-Maximization or EM
algorithm) replaces the log-incomplete likelihoods okiewith expectations over the complete pos-
teriors given the previous parametéfs This gives'sd the following auxiliary functiorQ(enK:) =

5 e, ) log s, D) + 05 23 [ pxid ) plbix ) ol i ix

m;ﬁn

This is a variational lower bound which can be iteratively maximized instead of the origthal
posterior. While it is possible to directly solve for the maximum@(,,|©) in some mixture
models, in practice, a further simplification is to replace the integralovéth synthesized samples
drawn fromp(x|§m). This leads to the following approximate auxiliary function (based on the law
of large numbers) which is merely the update rule for EMdpmwith s = 1, ..., .S virtual samples
X5 Obtained from then’th modelp(x|d,, ) for each of the otheN — 1 models,0(6,,|0) =

Zp h|x,,,0,) log p(x,, h|0,,) + log p(6, Z ZZ]) h|xp, s, 0n) log p(xm. s, h|0).

m;ﬁn s

We now have an efficient update rule for latent variable models (mixtures, hidden Markov models,
etc.) which maximizes a lower bound pr(X, ©). Unfortunately, as with most EM implementa-
tions, the arguments for log-concavity no longer hold.

5 Experiments

A preliminary way to evaluate the usefulness of thaframework is to explore density estimation

over real-world datasets under varying If we set) large, we have the standaiid setup and

only fit a single parametric model to the dataset. For smallve obtain the kernel density or
Parzen estimator. In between, an iterative algorithm is available to maximizsdipesterior to

obtain potentially superior modely, ..., 0% . Figure 1 shows thésd estimator with Gaussian
models on a ring-shaped 2D dataset. The new estimator recovers the shape of the distribution more
accurately. To evaluate performance on real data, we aggregasel tearned models into a single
density estimate as is done with Parzen estimators and compuitd thelihood of held out test
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Figure 1: Estimation withsd for Gaussian models (mean and covariance) on synthetic data.

Dataset id iid-1 iid-2 iid-3 iid-4 iid-5 | iid-co |isda =0]isda = %
SPIRAL [-5.61e3-1.36e3-1.36e3-1.19e3-7.98e72 -6.48e2 -4.86e2 -2.26e2| -1.19e2
MIT-CBCL [-9.82e2-1.39e3-1.19e3-1.00e3-1.01e3-1.10e3-3.14e3 -9.79e2 | -9.79e2
HEART |[-1.94e3-2.02e4-3.23e4-2.50e4-1.68e4-3.15e4-4.02e2| -4.51e2| -4.47e2
DIABETES |-6.25e3-2.12eH -2.85eH -4.48eH -2.03e5 -3.40e5 -8.22e2 -8.28e2| -8.09e2
CANCER [-5.80e3-7.22e6-2.94e6-3.92eq -4.08eq -3.96eq -1.22e2| -5.54e2| -5.54e2
LIVER -3.41e3-2.53e4-1.88e4 -2.79e4 -2.62e4 -3.23e4 -456e2| -4.74e2| -4.69e2

Table 1: Gaussian test log-likelihoods usidgiid, EM, co GMM andisd estimation.

data via)__ log (- >, p(x-]6})) . A larger score implies a bettp(x) density estimate. Table 1
summarizes experiments with the Gaussian (mean and covariance) models. On 6 standard datasets,
we show the average test log-likelihood of Gaussian estimation while varying the settings of
compared to a singléd Gaussian, aid Parzen RBF estimator and a mixture of 2 to 5 Gaussians
using EM. Comparisons with (Rasmussen, 1999) are also shown. Cross-validation was used to
choose ther, A or EM local minimum (from ten initializations), for thie, isd and EM algorithms
respectively. Train, cross-validation and test split sizes where 80%, 10% and 10% respectively. The
test log-likelihoods show thasd outperformedid, id and EM estimation and was comparable to
infinite Gaussian mixture{d — oc) models (Rasmussen, 1999) (which is a far more computationally
demanding method). In another synthetic experiment with hidden Markov models, 40 sequences
of 8 binary symbols were generated using 2 state HMMs with 2 discrete emissions. However, the
parameters generating the HMMs were allowed to slowly drift during sampling (i.€idiofThe

data was split into 20 training and 20 testing examples. Table 2 shows thiadtestimator for

certain values of produced higher test log-likelihoods thahandiid.

6 Discussion

This article has provided ard scheme to smoothly interpolate betwadrandiid assumptions in

density estimation. This is done by penalizing divergence between pairs of models using a Bhat-
tacharyya affinity. The method maintains simple update rules for recovering parameters for exponen-
tial families as well as mixture models. In addition, ikd posterior maintains useful log-concavity

and marginal consistency properties. Experiments show its advantages in real-world datasets where
id or iid assumptions may be too extreme. Future work involves extending the approach into other
aspects of unsupervised learning such as clustering. We are also considering compigihgdhe

A=0{A=1 [ A=2 [ A=3 ]| A=4 ]| A=5|A=10|A2=20A=30| A=
-5.7153 -5.5875 -5.5692 -5.5648 | -5.5757 -5.5825 -5.5849 -5.5856-5.6152 -5.5721

Table 2: HMM test log-likelihoods usinigl, iid andisd estimation.



terior with a normalizing constant which depends’oand thus permits a direct estimate oy
maximization instead of cross-validatfon

7 Appendix: Alternative Information Divergences

There is a large family of information divergences (Topsoe, 1999) between pairs of distributions
(Renyi measure, variational distangé,divergence, etc.) that can be used to pull mogglandyp,,

towards each other. The Bhattacharya, though, is computationally easier to evaluate and minimize
over a wide range of probability models (exponential families, mixtures and hidden Markov models).
An alternative is the Kullback-Leibler divergent¥p,y, ||p,) = [ pm(x)(log pm (x) —log p, (x))dx

and its symmetrized varia?(p.||p»)/2 + D(px[lpm)/2. The Bhattacharyya affinity is related to

the symmetrized variant of KL. Consider a variational distributjdhat lies between the input,,

andp,,. The log Bhattacharyya affinity with = 1/2 can be written as follows:

P (X)Pn X
log B(pm,pn) = 10g/61(><)$dx = —D(qllpm)/2 — D(qllpn)/2-
Thus,B(pm, pn) > exp(—D(qllpm)/2 — D(q|lpn)/2). The choice of; that maximizes the lower
bound on the Bhattacharyyai$x) = +\/pm (x)pn(x). Here,Z = B(py, p,) normalizes(x)
and is therefore equal to the Bhattacharyya affinity. Thus we have the following property:
-2 logB(pm,pn) = HgnD(q||pm) + D(QHPn)

It is interesting to note that the Jensen-Shannon divergence (another symmetrized variant of KL)
emerges by placing the variationatlistribution as the second argument in the divergences:

2JS(pmspn) = D@mllpm/2 +n/2) + D(pullpm/2 + pn/2) = mgnD(meIQ)+D(pnIIQ)-

Simple manipulations then sho®/.S(p,,, pn) < min(D(pw||pn), D(prllpm)).- Thus, there are

close ties between Bhattacharyya, Jensen-Shannon and symmetrized KL divergences.
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