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Abstract

We present a novel boosting algorithm, called SoftBoost, designed for sets of bi-
nary labeled examples that are not necessarily separable by convex combinations
of base hypotheses. Our algorithm achieves robustness bycappingthe distribu-
tions on the examples. Our update of the distribution is motivated by minimizing
a relative entropy subject to the capping constraints and constraints on theedges
of the obtained base hypotheses. The capping constraints imply asoft marginin
the dual optimization problem. Our algorithm produces a convex combination of
hypotheses whose soft margin is withinδ of its maximum. We employ relative en-
tropy projection methods to prove anO( ln N

δ2 ) iteration bound for our algorithm,
whereN is number of examples.
We compare our algorithm with other approaches including LPBoost, Brown-
Boost, and SmoothBoost. We show that there exist cases where the number of iter-
ations required by LPBoost grows linearly inN instead of the logarithmic growth
for SoftBoost. In simulation studies we show that our algorithm converges about
as fast as LPBoost, faster than BrownBoost, and much faster than SmoothBoost.
In a benchmark comparison we illustrate the competitiveness of our approach.

1 Introduction

Boosting methods have been used with great success in many applications like OCR, text classifi-
cation, natural language processing, drug discovery, and computational biology [13]. For AdaBoost
[7] it was frequently observed that the generalization error of the combined hypotheses kept de-
creasing after the training error had already reached zero [19]. This sparked a series of theoretical
studies trying to understand the underlying principles that govern the behavior of ensemble methods
[19, 1]. It became apparent that some of the power of ensemble methods lies in the fact that they
tend to increase the margin of the training examples. This was consistent with the observation that
AdaBoost works well on low-noise problems, such as digit recognition tasks, but not as well on tasks
with high noise. On such tasks, better generalizaton can be achieved by not enforcing a large margin
on all training points. This experimental observation was supported by the study of [19], where the
generalization error of ensemble methods was bounded by the sum of two terms: the fraction of
training points which have a margin smaller than some valueρ plus a complexity term that depends
on the base hypothesis class andρ. While this worst-case bound can only capture part of what is
going on in practice, it nevertheless suggests that in some cases it pays to allow some points to have
small margin or be misclassified if this leads to a larger overall margin on the remaining points.

To cope with this problem, it was necessary to construct variants of AdaBoost which trade off the
fraction of examples with margin at leastρ with the size of the marginρ. This was typically done
by preventing the distribution maintained by the algorithm from concentrating too much on the
most difficult examples. This idea is implemented in many algorithms including AdaBoost with
soft margins [15], MadaBoost [5],ν-Arc [16, 14], SmoothBoost [21], LPBoost [4], and several
others (see references in [13]). For some of these algorithms, significant improvements were shown
compared to the original AdaBoost algorithm on high noise data.
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In parallel, there has been a significant interest in how the linear combination of hypotheses gener-
ated by AdaBoost is related to the maximum margin solution [1, 19, 4, 18, 17]. It was shown that
AdaBoost generates a combined hypothesis with a large margin, but not necessarily the maximum
hard margin [15, 18]. This observation motivated the development of many Boosting algorithms
that aim to maximize the margin [1, 8, 4, 17, 22, 18]. AdaBoost∗ [17] and TotalBoost [22] provable
converge to the maximum hard margin within precisionδ in 2 ln(N/δ2) iterations. The other algo-
rithms have worse or no known convergence rates. However, such margin-maximizing algorithms
are of limited interest for a practitioner working with noisy real-world data sets, as overfitting is
even more problematic for such algorithms than for the original AdaBoost algorithm [1, 8].

In this work we combine these two lines of research into a single algorithm, called SoftBoost, that
for the first time implements the soft margin idea in a practical boosting algorithm. SoftBoost
finds inO(ln(N)/δ2) iterations a linear combination of base hypotheses whose soft margin is at
least the optimum soft margin minusδ. BrownBoost [6] does not always optimize the soft margin.
SmoothBoost and MadaBoost can be related to maximizing the soft margin, but while they have
known iterations bounds in terms of other criteria, it is unknown how quickly they converge to
the maximum soft margin. From a theoretical point of view the optimization problems underlying
SoftBoost as well as LPBoost are appealing, since they directly maximize the margin of a (typically
large)subsetof the training data [16]. This quantity plays a crucial role in the generalization error
bounds [19].

Our new algorithm is most similar to LPBoost because its goal is also to optimize the soft margin.
The most important difference is that we use slightly relaxed constraints and a relative entropy to
the uniform distribution as the objective function. This leads to a distribution on the examples that
is closer to the uniform distribution. An important result of our work is to show that this strategy
may help to increase the convergence speed: We will give examples where LPBoost converges much
more slowly than our algorithm—linear versus logarithmic growth inN .

The paper is organized as follows: in Section 2 we introduce the notation and the basic optimization
problem. In Section 3 we discuss LPBoost and give a separable setting whereN/2 iterations are
needed by LPBoost to achieve a hard margin within precision.99. In Section 4 we present our new
SoftBoost algorithm and prove its iteration bound. We provide an experimental comparison of the
algorithms on real and synthetic data in Section 5, and conclude with a discussion in Section 6.

2 Preliminaries

In the boosting setting, we are given a set ofN labeled training examples(xn, yn), n = 1 . . .N ,
where the instancesxn are in some domainX and the labelsyn ∈ ±1. Boosting algorithms maintain
a distributiond on theN examples, i.e.d lies in theN dimensional probability simplexPN . Intu-
itively, the hard to classify examples receive more weight. In each iteration, the algorithm gives the
current distribution to an oracle (a.k.a. base learning algorithm), which returns a new base hypothe-
sish : X → [−1, 1]N with a certain guarantee of performance. This guarantee will be discussed at
the end of this section.

One measure of the performance of a base hypothesish with respect to distributiond is its edge,
γh =

∑N
n=1 dnynh(xn). When the range ofh is ±1 instead of the interval [-1,1], then the edge is

just an affine transformation of the weighted errorǫh of hypothesish: i.e. ǫh(d) = 1
2 − 1

2γh. A
hypothesis that predicts perfectly has edgeγ = 1, a hypothesis that always predicts incorrectly has
edgeγ = −1, and a random hypothesis has edgeγ ≈ 0. The higher the edge, the more useful is the
hypothesis for classifying the training examples. The edge of a set of hypotheses is defined as the
maximum edge of the set.

After a hypothesis is received, the algorithm must update its distributiond on the examples. Boost-
ing algorithms (for the separable case) commonly update their distribution by placing a constraint
on the edge of most recent hypothesis. Such algorithms are calledcorrective[17]. In totally cor-
rectiveupdates, one constrains the distribution to have small edge with respect toall of the previous
hypotheses [11, 22]. The update developed in this paper is an adaptation of the totally corrective
update of [22] that handles the inseparable case. The final output of the boosting algorithm is always
a convex combination of base hypothesesfw(xn) =

∑T
t=1 wth

t(xn), whereht is the hypothesis
added at iterationt andwt is its coefficient. The margin of a labeled example(xn, yn) is defined as
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ρn = ynfw(xn). The (hard) margin of a set of examples is taken to be the minimum margin of the
set.

It is convenient to define anN -dimensional vectorum that combines the base hypothesishm with
the labelsyn of theN examples:um

n := ynh
m(xn). With this notation, the edge of thet-th

hypothesis becomesd · ut and the margin of then-th example w.r.t. a convex combinationw of the
first t− 1 hypotheses is

∑t−1
m=1 u

m
n wm.

For a given set of hypotheses{h1, . . . , ht}, the following linear programming problem (1) optimizes
the minimumsoft margin. The term “soft” here refers to a relaxation of the margin constraint. We
now allow examples to lie below the margin but penalize them linearly via slack variablesψn. The
dual problem (2) minimizes the maximum edge when the distribution is capped with1/ν, where
ν ∈ {1, . . . , N}:

ρ∗t (ν) = max
w,ρ,ψ

(
ρ−

1

ν

∑N

n=1
ψn

)
(1)

s.t.
∑t

m=1
um

n wm ≥ ρ− ψn, for 1 ≤ n ≤ N,

w ∈ Pt, ψ ≥ 0.

γ∗t (ν) = min
d,γ

γ (2)

s.t. d · um ≤ γ, for 1 ≤ m ≤ t,

d ∈ PN , d ≤
1

ν
1.

By duality, ρ∗t (ν) = γ∗t (ν). Note that the relationship between capping and the hinge loss has
long been exploited by the SVM community [3, 20] and has also been used before for Boosting in
[16, 14]. In particular, it is known thatρ in (1) is chosen such thatN − ν examples have margin at
leastρ. This corresponds toν active constraints in (2). The caseν = 1 is degenerate: there are no
capping constraints in (2) and this is equivalent to the hard margin case.1

Assumption on the weak learnerWe assume that for any distributiond ≤ 1
ν
1 on the examples,

the oracle returns a hypothesish with edge at leastg, for some fixedg. This means that for the
correspondingu vector,d · u ≥ g. For binary valued features, this is equivalent to the assumption
that the base learner always returns a hypothesis with error at most1

2 − 1
2g.

Adding a new constraint can only increase the valueγ∗t (ν) of the minimization problem (2) and
thereforeγ∗t (ν) is non-decreasing int. It is natural to defineγ∗(ν) as the value of (2) w.r.t. the entire
hypothesis set from which the oracle can choose. Clearlyγ∗t (ν) approachesγ∗(ν) from below.
Also, the guaranteeg of the oracle can be at mostγ∗(ν) because for the optimal distributiond∗ that
realizesγ∗(ν), all hypotheses have edge at mostγ∗(ν). For computational reasons,g might however
be lower thanγ∗(ν) and in that case the optimum soft margin we can achieve isg.

3 LPBoost

In iterationt, the LPBoost algorithm [4] sends its current distributiond
t−1 to the oracle and receives

a hypothesisht that satisfiesdt−1 ·ut ≥ g. It then updates its distribution todt by solving the linear
programming problem (1) based on thet hypotheses received so far.

The goal of the boosting algorithms is to produce a convex combination ofT hypotheses such that
γT (ν) ≥ g − δ. The simplest way to achieve this is to break when this condition is satisfied.
Although the guaranteeg is typically not known, it is upper bounded bŷγt = min1≤m≤t d

t−1 · ut

and therefore LPBoost uses the more stringent stopping criterionγt(ν) ≥ γ̂t − δ.

To our knowledge, there is no known iteration bound for LPBoost even though it provably converges
to theδ-optimal solution of the optimization problem after it has seen all hypotheses [4, 10]. Empir-
ically, the convergence speed depends on the linear programming optimizer, e.g. simplex or interior
point solver [22]. For the first time, we are able to establish a lower bound showing that, independent
of the optimizer, LPBoost can requireΩ(N) iterations:

Theorem 1 There exists a case where LPBoost requiresN/2 iterations to achieve a hard margin
that is withinδ = .99 of the optimum hard margin.
Proof. Assume we are in the hard margin case (ν = 1). The counterexample hasN examples and
N
2 + 1 base hypothesis. AfterN2 iterations, the optimal valueγ∗t (1) for the chosen hypotheses will

1Please note that [20] have previously used the parameterν with a slightly different meaning, namelyν/N
in our notation. We use an unnormalized version ofν denoting anumberof examples instead of a fraction.
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Algorithm 1 LPBoost with accuracy param.δ and capping parameterν

1. Input: S = 〈(x1, y1), . . . , (xN , yN )〉, accuracy δ, capping parameter ν ∈ [1, N ].

2. Initialize: d
0 to the uniform distribution and γ̂0 to 1.

3. Do for t = 1, . . .

(a) Send d
t−1 to oracle and obtain hypothesis ht.

Set ut
n = ht(xn)yn and γ̂t = min{γ̂t−1,d

t−1 · ut}.
(Assume d

t−1 · ut ≥ g, where edge guarantee g is unknown.)

(b) Update the distribution to any d
t that solves the LP problem

(dt, γ∗t ) = argmin
d,γ

γ s.t. d · um ≤ γ, for 1 ≤ m ≤ t;d ∈ PN ,d ≤
1

ν
1.

(c) If γ∗t ≥ γ̂t − δ then set T = t and break.2

4. Output: fw(x) =
∑T

m=1 wmh
m(x), where the coefficients wm maximize the soft

margin over the hypothesis set {h1, . . . , hT } using the LP problem (1).
2Wheng is known, then one can break already whenγ∗

t (ν) ≥ g − δ.

still be close to−1, whereas after the last hypothesis is added, this value is at leastǫ/2. Hereǫ is a
precision parameter that is an arbitrary small number.
Figure 1 shows the case
whereN = 8 andT = 5,
but it is trivial to generalize
this example to any evenN .
There are 8 examples/rows
and the five columns are the
u

t’s of the five available base
hypotheses. The examples
are separable because if we
put half of the weight on the
first and last hypothesis, then

n \ t 1 2 3 4 5
1 +1 −1 + 5ǫ −1 + 7ǫ −1 + 9ǫ −1 + ǫ
2 +1 −1 + 5ǫ −1 + 7ǫ −1 + 9ǫ −1 + ǫ
3 +1 −1 + 5ǫ −1 + 7ǫ −1 + 9ǫ −1 + ǫ
4 +1 −1 + 5ǫ −1 + 7ǫ −1 + 9ǫ −1 + ǫ
5 −1 + 2ǫ +1 −1 + 7ǫ −1 + 9ǫ +1 − ǫ
6 −1 + 3ǫ −1 + 4ǫ +1 −1 + 9ǫ +1 − ǫ
7 −1 + 3ǫ −1 + 5ǫ −1 + 6ǫ +1 +1 − ǫ
8 −1 + 3ǫ −1 + 5ǫ −1 + 7ǫ −1 + 8ǫ +1 − ǫ

γ∗

t (1) −1 + 2ǫ −1 + 4ǫ −1 + 6ǫ −1 + 8ǫ ≥ ǫ/2

Figure 1: Theu
t vectors that are hard for LPBoost (forν = 1).

the margins of all examples are at leastǫ/2.

We assume that in each iteration the oracle will return the remaining hypothesis with maximum
edge. This will result in LPBoost choosing the hypotheses in order, and there will never be any ties.
The initial distributiond0 is uniform. At the end of iterationt (1 ≤ t ≤ N/2), the distributiondt

will focus all its weight on exampleN/2 + t, and the optimum mixture of the columns will put all
of its weight on thetth hypothesis that was just received. In other words the value will be the bolded
entries in Figure 1:−1 + 2ǫt at the end of iterationt = 1, . . . , N/2. AfterN/2 iterations the value
γ∗t (1) of the underlying LP problem will still be close to−1, becauseǫ can be made arbitrary small.
We reasoned already that the value for allN/2 + 1 hypotheses will be positive. So ifǫ is small
enough, then afterN/2 iterations LPBoost is still at least .99 away from the optimal solution.�

Although the example set used in the above proof is linearly separable, we can modify it explicitly
to argue that capping the distribution on examples will not help in the sense that “soft” LPBoost
with ν > 1 can still have linear iteration bounds. To negate the effect of capping, simply pad out
the problem by duplicating all of the rowsν times. There will now bẽN = Nν examples, and after
N
2 = Ñ

2ν
iterations, the value of the game is still close to−1. This is not a claim that capping has no

value. It remains an important technique for making an algorithm more robust to noise. However, it
is not sufficient to improve the iteration bound of LPBoost from linear growth inN to logarithmic.

Another attempt might be to modify LPBoost so that at each iteration a base hypothesis is chosen
that increases the value of the optimization problem the most. Unfortunately we found similarΩ(N)
counter examples to this heuristic (not shown). It is also easy to see that the algorithms related to
the below SoftBoost algorithm choose the last hypothesis after first and finish in just two iterations.
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Algorithm 2 SoftBoost with accuracy param.δ and capping parameterν

1. Input: S = 〈(x1, y1), . . . , (xN , yN )〉, desired accuracy δ, and capping parameter
ν ∈ [1, N ].

2. Initialize: d
0 to the uniform distribution and γ̂0 to 1.

3. Do for t = 1, . . .

(a) Send d
t−1 to the oracle and obtain hypothesis ht.

Set ut
n = ht(xn)yn and γ̂t = min{γ̂t−1,d

t−1 · ut}.
(Assume d

t−1 · ut ≥ g, where edge guarantee g is unknown.)

(b) Update3

d
t = argmin

d

∆(d,d0), s.t. d·um ≤ γ̂t−δ, for 1 ≤ m ≤ t,
∑

n

dn = 1, d ≤
1

ν
1.

(c) If above infeasible or d
t contains a zero then T = t and break.

4. Output: fw(x) =
∑T

m=1 wmh
m(x), where the coefficients wm maximize the soft

margin over the hypothesis set {h1, . . . , ht} using the LP problem (1).
3 Wheng is known, replace the upper boundbγt − δ by g − δ.

4 SoftBoost

In this section, we present the SoftBoost algorithm, which adds capping to the TotalBoost algorithm
of [22]. SoftBoost takes as input a sequence of examplesS = 〈(x1, y1), . . . , (xN , yN )〉, an accuracy
parameterδ, and a capping parameterν. The algorithm has an oracle available with unknown
guaranteeg. Its initial distributiond0 is uniform. In each iterationt, the algorithm prompts the oracle
for a new base hypothesis, incorporates it into the constraint set, and updates its distributiond

t−1 to
d

t by minimizing the relative entropy∆(d,d0) :=
∑

n dn ln dn

d0
n

subject to linear constraints:

d
t+1 = argmind ∆(d,d0)

s.t. d · um ≤ γ̂t − δ, for 1 ≤ m ≤ t (whereγ̂t = min1≤m≤t d
m−1 · um),∑

n dn = 1, d ≤ 1
ν
1.

It is easy to solve this optimization problem with vanilla sequential quadratic programming methods
(see [22] for details). Observe that removing the relative entropy term from the objective, results
in a feasibility problem for linear programming where the edges are upper bounded byγ̂t − δ. If
we remove the relative entropy and minimize the upper bound on the edges, then we arrive at the
optimization problem of LPBoost, and logarithmic growth in the number of examples is no longer
possible. The relative entropy in the objective assures that the probabilities of the examples are
always proportional to their exponentiated negative soft margins (not shown). That is, more weight
is put on the examples with low soft margin, which are the examples that are hard to classify.

4.1 Iteration bounds for SoftBoost

Our iteration bound for SoftBoost is very similar to the bound proven for TotalBoost [22], differing
only in the additional details related to capping.

Theorem 2 SoftBoost terminates after at most⌈ 2
δ2 ln(N/ν)⌉ iterations with a convex combination

that is at mostδ below the optimum valueg.

Proof. We begin by observing that if the optimization problem at iterationt is infeasible, then
γ∗t (ν) > γ̂t − δ ≥ g − δ. Also if d

t contains a zero, then since the objective function∆(d,d0) is
strictly convex ind and minimized at the interior pointd0, there is no optimal solution in the interior
of the simplex. Hence,γ∗t (ν) = γ̂t − δ ≥ g − δ.

Let Ct be the convex subset of probability vectorsd ∈ PN satisfyingd ≤ 1
ν
1 andmaxt

m=1 d ·ut ≤
γ̂t − δ. Notice thatC0 is theN dimensional probability simplex where the components are capped
to 1

ν
. The distributiondt−1 at iterationt− 1 is the projection ofd0 onto the closed convex setCt−1.

Because adding a new hypothesis in iterationt results in an additional constraint andγ̂t ≤ γ̂t−1,
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we haveCt ⊆ Ct−1. If t ≤ T − 1, then our termination condition assures that at iterationt − 1
the setCt−1 has a feasible solution in the interior of the simplex. Also,d

0 lies in the interior and
d

t ∈ Ct ⊆ Ct−1. These preconditions assure that at iterationt − 1, the projectiondt−1 of d0 onto
Ct−1, exists and the Generalized Pythagorean Theorem for Bregman divergences [2, 9] is applicable:

∆(dt,d0) − ∆(dt−1,d0) ≥ ∆(dt,dt−1). (3)

By Pinsker’s inequality,∆(dt,dt−1) ≥ (||dt−d
t−1||1)

2

2 , and by Hölder’s inequality,||dt−1−d
t||1 ≥

||dt−1 − d
t||1||u

t||∞ ≥ d
t−1 · ut − d

t · ut. Also d
t−1 · ut ≥ γ̂t by the definition of̂γt, and the

constraints on the optimization problem assure thatd
t · ut ≤ γ̂t − δ and thusdt−1 · ut − d

t · ut ≥

γ̂t−(γ̂t−δ) = δ. We conclude that∆(dt,dt−1) ≥ δ2

2 at iterations1 throughT−1. By summing (3)
over the firstT − 1 iterations, we obtain

∆(dT ,d0) − ∆(d0,d0) ≥ (T − 1)
δ2

2
.

Since the left side is at mostln(N/ν), the bound of the theorem follows. �

Whenν = 1, then capping is vacuous and the algorithm and its iteration bound coincides with the
bound for TotalBoost. Note that the upper boundln(N/ν) on the relative entropy decreases withν.
Whenν = N , then the distribution stays atd

0 and the iteration bound is zero.

5 Experiments

In a first study, we use experiments on synthetic data to illustrate the general behavior of the con-
sidered algorithms.2 We generated a synthetic data set by starting with a random matrix of 2000
rows and 100 columns, where each entry was chosen uniformly in[0, 1]. For the first 1000 rows, we
added1/2 to the first 10 columns and rescaled such that the entries in those columns were again in
[0, 1]. The rows of this matrix are our examples and the columns and their negation are the base hy-
potheses, giving us a total of 200 of them. The first 1000 examples were labeled+1 and the rest−1.
This results in a well separable dataset. To illustrate how the algorithms deal with the inseparable
case, we flipped the sign of a random10% of the data set. We then chose a random 500 examples as
our training set and the rest as our test set. In every boosting iteration we chose the base hypothesis
which has the largest edge with respect to the current distribution on the examples.

We have trained LPBoost and SoftBoost for different values ofν and recorded the generalization
error (cf. Figure 2;δ = 10−3). We should expect that for smallν (e.g.ν/N < 10%) the data is
not easily separable, even when allowingν wrong predictions. Hence the algorithm may mistakenly
concentrate on the random directions for discrimination. Ifν is large enough, most incorrectly
labeled examples are likely to be identified as margin errors (ψi > 0) and the performance should
stabilize. In Figure 2 we observe this expected behavior and also that for largeν the classification
performance decays again. The generalization performances of LPBoost and SoftBoost are very
similar, which is expected as they both attempt to maximize the soft-margin.

Using the same data set, we analysed the convergence speed of several algorithms: LPBoost, Soft-
Boost, BrownBoost, and SmoothBoost. We choseδ = 10−2 andν = 200.3 For every iteration
we record all margins and compute the soft margin objective (1) for optimally chosenρ andψ’s.
Figure 3 plots this value against the number of iterations for the four algorithms. SmoothBoost
takes dramatically longer to converge to the maximum soft margin than the other other three algo-
rithms. In our experiments it nearly converges to the maximum soft margin objective, even though
no theoretical evidence is known for this observed convergence. Among the three remaining algo-
rithms, LPBoost and SoftBoost converge in roughly the same number of iterations, but SoftBoost
has a slower start. BrownBoost terminates in fewer iterations than the other algorithms but does not
maximize the soft margin.4 This is not surprising as there is no theoretical reason to expect such a
result.

2Our code is available athttps://sourceforge.net/projects/nboost
3Smaller choices ofν lead to an even slower convergence of SmoothBoost.
4SmoothBoost has two parameters: a guaranteeg on the edge of the base learner and the target margin

θ. We choseg = γ∗(ν) (computed with LPBoost) andθ = g/2

2+g/2
as proposed in [21]. Brownboost’s one

parameter,c = 0.35, was chosen via cross-validation.
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Finally, we present a small comparison on ten benchmark data sets derived from the UCI benchmark
repository as previously used in [15]. We analyze the performance of AdaBoost, LPBoost, Soft-
Boost, BrownBoost [6] and AdaBoostReg [15] using RBF networks as base learning algorithm.5

The data comes in 100 predefined splits into training and test sets. For each of the splits we use
5-fold cross-validation to select the optimal regularization parameter for each of the algorithms.
This leads to 100 estimates of the generalization error for each method and data set. The means
and standard deviations are given in Table 1.6 As before, the generalization performances of Soft-
Boost and LPBoost are very similar. However, the soft margin algorithms outperform AdaBoost on
most data sets. The genaralization error of BrownBoost lies between that of AdaBoost and Soft-
Boost. AdaBoostReg performs as well as SoftBoost, but there are no iteration bounds known for this
algorithm.

Even though SoftBoost and LPBoost often have similar generalization error on natural datasets, the
number of iterations needed by both algorithms can be radically different (see Theorem 1). Also, in
[22] there are some artificial data sets where TotalBoost (i.e. SoftBoost withν = 1) outperformed
LPBoost i.t.o. generalization error.

AdaBoost LPBoost SoftBoost BrownBoost AdaBoost reg
Banana 13.3 ± 0.7 11.1 ± 0.6 11.1 ± 0.5 12.9 ± 0.7 11.3 ± 0.6
B.Cancer 32.1 ± 3.8 27.8 ± 4.3 28.0 ± 4.5 30.2 ± 3.9 27.3 ± 4.3
Diabetes 27.9 ± 1.5 24.4 ± 1.7 24.4 ± 1.7 27.2 ± 1.6 24.5 ± 1.7
German 26.9 ± 1.9 24.6 ± 2.1 24.7 ± 2.1 24.8 ± 1.9 25.0 ± 2.2
Heart 20.1 ± 2.7 18.4 ± 3.0 18.2 ± 2.7 20.0 ± 2.8 17.6 ± 3.0
Ringnorm 1.9 ± 0.3∗ 1.9 ± 0.2 1.8 ± 0.2 1.9 ± 0.2 1.7 ± 0.2
F.Solar 36.1 ± 1.5 35.7 ± 1.6 35.5 ± 1.4 36.1 ± 1.4 34.4 ± 1.7
Thyroid 4.4 ± 1.9∗ 4.9 ± 1.9 4.9 ± 1.9 4.6 ± 2.1 4.9 ± 2.0
Titanic 22.8 ± 1.0 22.8 ± 1.0 23.0 ± 0.8 22.8 ± 0.8 22.7 ± 1.0
Waveform 10.5 ± 0.4 10.1 ± 0.5 9.8 ± 0.5 10.4 ± 0.4 10.4 ± 0.7

Table 1: Generalization error estimates and standard deviations for ten UCI benchmark data sets. SoftBoost
and LPBoost outperform AdaBoost and BrownBoost on most data sets.

6 Conclusion

We prove by counterexample that LPBoost cannot have anO(lnN) iteration bound. This counterex-
ample may seem similar to the proof that the Simplex algorithm for LP can take exponentially more
steps than interior point methods. However this similarity is only superficial. First, our iteration
bound does not depend on the LP solver used within LPBoost. This is because in the construction,
the interim solutions are always unique and thus all LP solvers will produce the same solution. Sec-
ond, the iteration bound essentially says that column generation methods (of which LPBoost is a
canonical example) should not solve the current subproblem at iterationt optimally. Instead a good
algorithm shouldloosen the constraints and spread the weightvia a regularization such as the rela-
tive entropy. These two tricks used by the SoftBoost algorithm make it possible to obtain iteration

5The data is fromhttp://theoval.cmp.uea.ac.uk/∼gcc/matlab/index.shtml. The RBF
networks were obtained from the authors of [15], including the hyper-parameter settings for each data set.

6Note that [15] contains a similar benchmark comparison. It is based on a different model selection setup
leading to underestimates of the generalization error. Presumably due to slight differences in the RBF hyper-
parameters settings, our results for AdaBoost often deviate by 1-2%.
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bounds that grow logarithmic inN . The iteration bound for our algorithm is a straightforward ex-
tension of a bound given in [22] that is based on Bregman projection methods. By using a different
divergence in SoftBoost, such as the sum of binary relative entropies, the algorithm morphs into a
“soft” version of LogitBoost (see discussion in [22]) which has essentially the same iteration bound
as SoftBoost. We think that the use of Bregman projections illustrates the generality of the meth-
ods. Although the proofs seem trivial in hindsight, simple logarithmic iteration bounds for boosting
algorithms that maximize the soft margin have eluded many researchers (including the authors) for
a long time. Note that duality methods typically can be used in place of Bregman projections. For
example in [12], a number of iteration bounds for boosting algorithms are proven with both methods.

On a more technical level, we show that LPBoost may requireN/2 examples to get.99 close to the
maximum hard margin. We believe that similar methods can be used to show thatΩ(N/δ) examples
may be needed to getδ close. However the real challenge is to prove that LPBoost may require
Ω(N/δ2) examples to getδ close.
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[16] G. Rätsch, B. Schölkopf, A.J. Smola, S. Mika, T. Onoda, and K.-R. Müller. Robust ensemble learn-

ing. In A.J. Smola, P.L. Bartlett, B. Schölkopf, and D. Schuurmans, editors,Advances in Large Margin
Classifiers, pages 207–219. MIT Press, Cambridge, MA, 2000.
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