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Abstract

This paper1 explores the use of a Maximal Average Margin (MAM) optimality
principle for the design of learning algorithms. It is shown that the application
of this risk minimization principle results in a class of (computationally) simple
learning machines similar to the classical Parzen window classifier. A direct rela-
tion with the Rademacher complexities is established, as such facilitating analysis
and providing a notion of certainty of prediction. This analysis is related to Sup-
port Vector Machines by means of a margin transformation. The power of the
MAM principle is illustrated further by application to ordinal regression tasks,
resulting in anO(n) algorithm able to process large datasets in reasonable time.

1 Introduction

The quest for efficient machine learning techniques which (a) have favorable generalization capac-
ities, (b) are flexible for adaptation to a specific task, and (c) are cheap to implement is a pervasive
theme in literature, see e.g. [14] and references therein. This paper introduces a novel concept for
designing a learning algorithm, namely the Maximal Average Margin (MAM) principle. It closely
resembles the classical notion of maximal margin as lying on the basis of perceptrons, Support Vec-
tor Machines (SVMs) and boosting algorithms, see a.o. [14, 11]. It however optimizes the average
margin of points to the (hypothesis) hyperplane, instead of the worst case margin as traditional. The
full margin distribution was studied earlier in e.g. [13], and theoretical results were extended and
incorporated in a learning algorithm in [5].

The contribution of this paper is twofold. On a methodological level, we relate (i) results in structural
risk minimization, (ii) data-dependent (but dimension-independent) Rademacher complexities [8, 1,
14] and a new concept of ’certainty of prediction’, (iii) the notion of margin (as central is most
state-of-the-art learning machines), and (iv) statistical estimators as Parzen windows and Nadaraya-
Watson kernel estimators. In [10], the principle was already shown to underlie the approach of
mincuts for transductive inference over a weighted undirected graph. Further, consider the model-
class consisting of all models with bounded average margin (or classes with a fixed Rademacher
complexity as we will indicate lateron). The set of such classes is clearly nested, enabling structural
risk minimization [8].

On a practical level, we show how the optimality principle can be used for designing a computation-
ally fast approach to (large-scale) classification and ordinal regression tasks, much along the same
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lines as Parzen classifiers and Nadaraya-Watson estimators.It becomes clear that this result enables
researchers on Parzen windows to benefit directly from recent advances in kernel machines, two
fields which have evolved mostly separately. It must be emphasized that the resulting learning rules
were already studied in different forms and motivated by asymptotic and geometric arguments, as
e.g. the Parzen window classifier [4], the ’simple classifier’ as in [12] chap. 1, probabilistic neural
networks [15], while in this paper we show how an (empirical) risk based optimality criterion un-
derlies this approach. A number of experiments confirm the use of the resulting cheap learning rules
for providing a reasonable (baseline) performance in a small time-window.

The following notational conventions are used throughout the paper. Let the random vector
(X,Y ) ∈ R

d × {−1, 1} obey a (fixed but unknown) joint distributionPXY from a probability
space(Rd×{−1, 1},P). LetDn = {(Xi, Yi)}n

i=1 be sampled i.i.d. according toPXY . Lety ∈ R
n

be defined asy = (Y1, . . . , Yn)T ∈ {−1, 1}n andX = (X1, . . . , Xn)T ∈ R
n×d. This paper

is organized as follows. The next section illustrates the principle of maximal average margin for
classification problems. Section 3 investigates the close relationship with Rademacher complexi-
ties, Section 4 develops the maximal average margin principle for ordinal regression, and Section
5 reports experimental results of application of the MAM to classification and ordinal regression
tasks.

2 Maximal Average Margin for Classifiers

2.1 The Linear Case

Let the class of hypotheses be defined as

H =
{

f(·) : R
d → R, w ∈ R

d
∣

∣

∣∀x ∈ R
d : f(x) = wT x, ‖w‖2 = 1

}

. (1)

Consequently, the signed distance of a sample(X,Y ) to the hyper-planewT x = 0, or the margin
M(w) ∈ R, can be defined as

M(w) =
Y (wT X)

‖w‖2
. (2)

SVMs maximize the worst-case margin. We instead focus on the first moment of the margin distri-
bution. Maximizing the expected (average) margin follows from solving

M∗ = max
w

E

[

Y (wT X)

‖w‖2

]

= max
f∈H

E [Y f(X)] . (3)

Remark that the non-separable case does not require the need for slack-variables. The empirical
counterpart becomes

M̂ = max
w

1

n

n
∑

i=1

Yi(w
T Xi)

‖w‖2
, (4)

which can be written as a constrained convex problem asminw − 1
n

∑n
i=1 Yi(w

T Xi) s.t. ‖w‖2 ≤
1. The Lagrangian with multiplierλ ≥ 0 becomesL(w, λ) = − 1

n

∑n
i=1 Yi(w

T Xi)+ λ
2 (wT w− 1).

By switching the minimax problem to a maximin problem (application of Slater’s condition), the
first order condition for optimality∂L(w,λ)

∂w
= 0 gives

wn =
1

λn

n
∑

i=1

YiXi =
1

λn
XT y, (5)

wherewn ∈ R
d denotes the optimum to (4). The corresponding parameterλ can be found by

substituting (5) in the constraintwT w = 1, or λ = 1
n
‖∑n

i=1 YiXi‖2 = 1
n

√

yT XXT y since the
optimum is obviously taking place whenwT w = 1. It becomes clear that the above derivations
remain valid asn → ∞, resulting in the following theorem.

Theorem 1 (Explicit Actual Optimum for the MAMC) The functionf(x) = wT x in H maxi-
mizing the expected margin satisfies

arg max
w

E

[

Y (wT X)

‖w‖2

]

=
1

λ
E[XY ] , w∗, (6)

whereλ is a normalization constant such that‖w∗‖2 = 1.
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2.2 Kernel-based Classifier and Parzen Window

It becomes straightforward to recast the resulting classifier as a kernel classifier by mapping the
input data-samplesX in a feature spaceϕ : R

d → R
dϕ wheredϕ is possibly infinite. In particular,

we do not have to resort to Lagrange duality in a context of convex optimization (see e.g. [14, 9] for
an overview) or functional analysis in a Reproducing Kernel Hilbert Space. Specifically,

wT
n ϕ(X) =

1

λn

n
∑

i=1

YiK(Xi, X), (7)

whereK : R
d × R

d → R is defined as the inner product such thatϕ(X)T ϕ(X ′) = K(X,X ′)
for any X,X ′. Conversely, any functionK corresponds with the inner product of a valid mapϕ

if the functionK is positive definite. As previously, the termλ becomesλ = 1
n

√

yT Ωy with
kernel matrixΩ ∈ R

n×n whereΩij = K(Xi, Xj) for all i, j = 1, . . . , n. Now the class of
positive definite Mercer kernels can be used as they induce a proper mappingϕ. A classical choice
is the use of a linear kernel (orK(X,X ′) = XT X ′), a polynomial kernel of degreep ∈ N0 (or
K(X,X ′) = (XT X ′+b)p), an RBF kernel (orK(X,X ′) = exp(−‖X−X ′‖2

2/σ)), or a dedicated
kernel for a specific application (e.g. a string kernel, a Fisher kernel, see e.g. [14] and references
therein). Figure 1.a depicts an example of a nonlinear classifier based on the well-known Ripley
dataset, and the contourlines score the ’certainty of prediction’ as explained in the next section.

The expression (7) is similar (proportional) to the classical Parzen window for classification, but
differs in the use of a positive definite (Mercer) kernelK instead of the pdfκ(X−·

h
) with bandwidth

h > 0, and in the form of the denominator. The classical motivation of statistical kernel estimators is
based on asymptotic theory in low dimensions (i.ed = O(1)), see e.g. [4], chap. 10 and references.
The functional form of the optimal rule (7) is similar to the ’simple classifier’ described in [12],
chap. 1. Thirdly, this estimator was also termed and empirically validated as a probabilistic neural
network by [15]. The novel element from above result is the derivation of a clear (both theoretical
and empirical) optimality principle of the rule, as opposed to the asymptotic results of [4] and the
geometric motivations in [12, 15]. As a direct byproduct, it becomes straightforward to extend
the Parzen window classifier easily with an additional intercept term or other parametric parts, or
towards additive (structured) models as in [9].

3 Analysis and Rademacher Complexities

The quantity of interest in the analysis of the generalization performance is the probability of pre-
dicting a mistake (the riskR(w;PXY )), or

R(w;PXY ) = PXY

(

Y (wT ϕ(X)) ≤ 0
)

= E
[

I(Y (wT ϕ(X)) ≤ 0)
]

, (8)

whereI(z) equals one ifz is true, and zero otherwise.

3.1 Rademacher Complexity

Let {σi}n
i=1 taken from the set{−1, 1}n be Bernoulli random variables withP (σ = 1) = P (σ =

−1) = 1
2 . The empirical Rademacher complexity is then defined [8, 1] as

R̂n(H) , Eσ

[

sup
f∈H

2

n

∣

∣

∣

∣

∣

n
∑

i=1

σif(Xi)

∣

∣

∣

∣

∣

∣

∣

∣X1, . . . , Xn

]

, (9)

where the expectation is taken over the choice of the binary vectorσ = (σ1, . . . , σn)T ∈ {−1, 1}n.
It is observed that the empirical Rademacher complexity defines a natural complexity measure to
study the maximal average margin classifier, as both the definitions of the empirical Rademacher
complexity and the maximal average margin resemble closely (see also [8]). The following result
was given in [1], Lemma 22, but we give an alternative proof by exploiting the structure of the
optimal estimate explicitly.

Lemma 1 (Trace bound for the Empirical Rademacher Complexity forH) Let Ω ∈ R
n×n be

defined asΩij = K(Xi, Xj) for all i, j = 1, . . . , n, then

R̂n(H) ≤ 2

n

√

tr(Ω). (10)
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Proof: The proof goes along the same lines as the classical bound on the empirical Rademacher
complexity for kernel machines outlined in [1], Lemma 22. Specifically, once a vectorσ ∈ {−1, 1}n

is fixed, it is immediately seen that themaxf∈H
1
n

∑n
i=1 σif(Xi) equals the solution as in (7) or

maxw

∑n
i=1 σi(w

T ϕ(Xi)) = σT Ωσ√
σT Ωσ

=
√

σT Ωσ. Now, application of the expectation operatorE

over the choice of the Rademacher variables gives

R̂n(H) = E

[

2

n

√
σT Ωσ

]

≤ 2

n

(

E
[

σT Ωσ
])

1

2 =
2

n





∑

i,j

E [σiσj ]K(Xi, Xj)





1

2

=
2

n

(

n
∑

i=1

K(Xi, Xi)

)
1

2

=
2

n

√

tr(Ω), (11)

where the inequality is based on application of Jensen’s inequality. This proves the Lemma.�

Remark that in the case of a kernel with constant trace (as e.g. in the case of the RBF kernel
where

√

tr(Ω) =
√

n), it follows from this result that also the (expected) Rademacher complexity
E[R̂n(H)] ≤

√

tr(Ω). In general, one has thatE[K(X,X)] equals the trace of the integral operator
TK defined onL2(PX) defined asTK(f) =

∫

K(X,Y )f(X)dPX(X) as in [1]. Application of
McDiarmid’s inequality on the variableZ = supf∈H

(

E[Y (wT ϕ(X))] − 1
n

∑n
i=1 Yi(w

T ϕ(Xi))
)

gives as in [8, 1].

Lemma 2 (Deviation Inequality) Let 0 < Bϕ < ∞ be a fixed constant such thatsupz ‖ϕ(z)‖2

= supz

√

K(z, z) ≤ Bϕ such that|wT ϕ(z)| ≤ Bφ, and letδ ∈ R
+
0 be fixed. Then with probability

exceeding1 − δ, one has for anyw ∈ R
d that

E[Y (wT ϕ(X))] ≥ 1

n

n
∑

i=1

Yi(w
T ϕ(Xi)) − R̂n(H) − 3Bϕ

√

2 ln
(

2
δ

)

n
. (12)

Therefore it follows that one maximizes the expected margin by maximizing the empirical average
margin, while controlling the empirical Rademacher complexity by choice of the model class (ker-
nel). In the case of RBF kernels,Bϕ = 1, resulting in a reasonable tight bound. It is now illustrated
how one can obtain a practical upper-bound to the ’certainty of prediction’ usingf(x) = wT

n x.

Theorem 2 (Occurrence of Mistakes)Given an i.i.d. sampleDn = {(Xi, Yi)}n
i=1, a constant

B ∈ R such thatsupz

√

K(z, z) ≤ Bϕ, and a fixedδ ∈ R
+
0 . Then, with probability exceeding

1 − δ, one has for allw ∈ R
d that

P
(

Y (wT ϕ(X)) ≤ 0
)

≤ Bϕ − E[Y (wT ϕ(X))]

Bϕ

≤ 1 −





√

yT Ωy

nBϕ

+
R̂n(H)

Bϕ

+ 3

√

2 ln
(

2
δ

)

n



 .

(13)

Proof: The proof follows directly from application of Markov’s inequality on the positive random
variableBϕ − Y (wT ϕ(X)), with expectationBϕ − E[Y (wT ϕ(X))], estimated accurately by the
sample average as in the previous theorem.�

More generally, one obtains that with probability exceeding1 − δ that for anyw ∈ R
d and for any

ρ such that−Bϕ < ρ < Bϕ that

P
(

Y (wT ϕ(X)) ≤ −ρ
)

≤ Bϕ

Bϕ + ρ
−





√

yT Ωy

n(Bϕ + ρ)
+

R̂n(H)

Bϕ + ρ
+

3Bϕ

Bϕ + ρ

√

2 ln
(

2
δ

)

n



 , (14)

with probability exceeding1 − δ < 1. This results in a practical assessment of the ’certainty’ of a
prediction as follows. At first, note that the random variableY (wT

n ϕ(x)) for a fixedX = x can take
two values: either−|wT

n ϕ(x)| or |wT
n ϕ(x)|. ThereforeP (Y (wT

n ϕ(x)) ≤ 0) = P (Y (wT
n ϕ(x)) =

4
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Figure 1: Example of (a) the MAM classifier and (b) the SVM on the Ripley dataset. The contourlines
represent the estimate of certainty of prediction (’scores’) as derived in Theorem 2 for the MAM classifier for
(a), and as in Corollary 1 for the case of SVMs withg(z) = min(1, max(−1, z)) where|z| < 1 corresponds
with the inner part of the margin of the SVM (b). While the contours in (a) give an overall score of the
predictions, the scores given in (b) focus towards the margin of the SVM.

−|wT
n ϕ(x)|) ≤ P (Y (wT

n ϕ(x)) ≤ −|wT
n ϕ(x)|) asY can only take the two values−1 or 1. Thus

the event ’Y 6= sign(wT x∗)’ for samplesX = x∗ occurs with probability lower than the rhs. of
(13) with ρ = |wT x∗|. When asserting this for a numbernv ∈ N of samplesX ∼ PX with
nv → ∞, a misprediction would occur less thanδnv times. In this sense, one can use the latent
variablewT ϕ(x∗) as an indication of how ’certain’ the prediction is. Figure 1.a gives an example
of the MAM classifier, together with the level plots indicating the certainty of prediction. Remark
however that the described ’certainty of prediction’ statement differs from a conditional statement
of the risk given asP (Y (wT ϕ(X)) < 0 | X = x∗). The essential difference with the probabilistic
estimates based on the density estimates resulting from the Parzen window estimator is that results
become independent of the data dimension, as one avoids estimating the joint distribution.

3.2 Transforming the Margin Distribution

Consider the case where the assumption of a reasonable constantB such thatP (‖X‖2 < B) = 1 is
unrealistic. Then, a transformation of the random variableY (wT X) can be fruitful using amonotone
increasingfunctiong : R → R with a constantB′

ϕ ≪ B such that|g(z)| ≤ B′
ϕ, andg(0) = 0. In

the choice of a proper transformation, two counteracting effects should be traded properly. At first,
a small choice ofB improves the bound as e.g. described in Lemma 2. On the other hand, such a
transformation would make the expected valueE[g(Y (wT ϕ(X)))] smaller thanE[Y (wT ϕ(X))].
Modifying Theorem 2 gives

Corollary 1 (Occurrence of Mistakes, bis) Given i.i.d. samplesDn = {(Xi, Yi)}n
i=1, and a fixed

δ ∈ R
+
0 . Letg : R → R be a monotonically increasing function with Lipschitz constant0 < Lg <

∞, let B′
ϕ ∈ R such that|g(z)| ≤ B′

ϕ for all z, andg(0) = 0. Then with probability exceeding
1 − δ, one has for anyρ such that−B′

ϕ ≤ ρ ≤ B′
ϕ andw ∈ R

d that

P
(

g(Y (wT
n ϕ(X))) ≤ −ρ

)

≤ B′
ϕ

B′
ϕ + ρ

−
1
n

∑n
i=1 g(Yi(w

T
n ϕ(Xi))) − LgR̂n(H) − 3B′

ϕ

√

2 log( 2

δ )
n

B′
ϕ + ρ

.

(15)

This result follows straightforwardly from Theorem 2 using the property thatR̂n(g ◦ H) ≤
LgR̂n(H), see e.g. [1]. Whenρ = 0, one hasP

(

g(Y (wT
n ϕ(X))) ≤ 0

)

≤ 1−E[Y g(wT ϕ(X))]
1 .

Similar as in the previous section, corollary 1 can be used to score the certainty of prediction by
considering for eachX = x∗ the value ofg(wT x∗) andg(−wT x∗). Figure 1.b gives an example by
considering the clipping transformationg(z) = min(1,max(−1, z)) ∈ [−1, 1] such thatB′

ϕ = 1.
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Note that this a-priori choice of the functiong is not dependent on the (empirical) optimality criterion
at hand.

3.3 Soft-margin SVMs and MAM classifiers

Except the margin-based mechanisms, the MAM classifier shares other properties with the soft-
margin maximal margin classifier (SVM) as well. Consider the following saturation functiong(z) =
(1 − z)+, where(·)+ is defined as(z)+ = z if z ≥ 0, and zero otherwise (g(0) = 0). Application
of this function to the MAM formulation of (4), one obtains for aC > 0

max
w

−
n
∑

i=1

(

1 − Yi(w
T ϕ(Xi))

)

+
s.t. wT w = C, (16)

which is similar to the support vector machine (see e.g. [14]). To make this equivalence more
explicit, consider the following formulation of (16)

min
w,ξ

n
∑

i=1

ξi s.t. wT w ≤ C and Yi(w
T ϕ(Xi)) ≥ 1 − ξi, ξi ≥ 0 ∀i = 1, . . . , n, (17)

which is similar to the SVM. Consider the following modification

min
w,ξ

n
∑

i=1

ξi s.t. wT w ≤ C and Yi(w
T ϕ(Xi)) ≥ 1 − ξi ∀i = 1, . . . , n, (18)

which is equivalent to (4) as in the optimum,Yi(w
T ϕ(Xi)) = (1 − ξi) for all i. Thus, omission of

the slack constraintsξi ≥ 0 in the SVM formulation results in the Parzen window classifier.

4 Maximal Average Margin for Ordinal Regression

Along the same lines as [6], the maximal average margin principle can be applied to ordinal re-
gression tasks. Let(X,Y ) ∈ R

d × {1, . . . ,m} with distributionPXY . Thew ∈ R
d maximizing

P (I(wT (ϕ(X) − ϕ(X)′)(Y − Y ′) > 0)) can be found by solving for the maximal average margin
between pairs as follows

M∗ = max
w

E

[

sign(Y − Y ′)wT (ϕ(X) − ϕ(X)′)

‖w‖2

]

. (19)

Givenn i.i.d. samples{(Xi, Yi)}n
i=1, empirical risk minimization is obtained by solving

min
w

− 1

n

n
∑

i,j=1

sign(Yj − Yi)w
T (ϕ(Xj) − ϕ(Xi)) s.t. ‖w‖2 ≤ 1. (20)

The Lagrangian with multiplierλ ≥ 0 becomesL(w, λ) = − 1
n

∑

i,j wT sign(Yj − Yi)(ϕ(Xj) −
ϕ(Xi))+

λ
2 (wT w−1). Let there ben′ couples(i, j). LetDy ∈ {−1, 0, 1}n′×n such thatDy,ki = 1

andDy,kj = −1 if the kth couple equals(i, j). Then, by switching the minimax problem to a

maximin problem, the first order condition for optimality∂L(w,λ)
∂w

= 0 gives the expression.wn =
1

λ′n

∑

Yi<Yj
(ϕ(Xj) − ϕ(Xi)) = 1

λn
XDy1n′ . Now the parameterλ can be found by substituting

(5) in the constraintwT w = 1, or λ = 1
n

√

1T
n′DT

y
XT X Dy1n′ . Now the key element is the

computation ofdy = Dy1n′ . Note that

dy(i) =

n
∑

j=1

sign(Yj − Yi) , ry(i), (21)

with rY denoting the ranks of allYi in y. This expression simplifies expression forwn aswn =
1

λn
Xdy. It is seen that using kernels as before, the resulting estimator of the order of the responses

corresponding tox andx′ becomes

f̂K(x, x′) = sign (m(x) − m(x′)) , where m(x) =
1

λn

n
∑

i=1

K(Xi, x) rY (i). (22)
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Data (train/test) oMAM LS-SVM oSVM oGP
Bank(1) (100/8.092) 0.37 0.43 0.46 0.41
Bank(1) (500/7.629) 0.49 0.51 0.55 0.50

Bank(1) (5.000/3.192) 0.56 0.56 - -
Bank(1) (7.500/692) 0.57 - - -
Bank(2) (100/8.092) 0.81 0.84 0.87 0.80
Bank(2) (500/7.629) 0.83 0.86 0.87 0.81

Bank(2) (5.000/3.192) 0.86 0.88 - -
Bank(2) (7.500/692) 0.88 - - -
Cpu(1) (100/20.540) 0.44 0.62 0.64 0.63
Cpu(1) (500/20.140) 0.50 0.66 0.66 0.65

Cpu(1) (5.000/15.640) 0.57 0.68 - -
Cpu(1) (7.500/13.140) 0.60 - - -
Cpu(1) (15.000/5.640) 0.69 - - -

(b)

Figure 2:Results on ordinal regression tasks using oMAM (22) ofO(n), a regression on the rank-transformed
responses using LS-SVMs [16] ofO(n2) − O(n3), ordinal SVMs and ordinal Gaussian Processes for prefer-
ential learning ofO(n4) − O(n6). The results are expressed as Kendall’sτ (with −1 ≤ τ ≤ 1) computed on
the validation datasets. Figure (a) reports the numerical results of the artificially generated data, Table (b) gives
the result on a number of large scaled datasets described in [2], if the computation took less than 5 minutes.

Remark that the estimatorm : R
d → R equals (except for the normalization term) the Nadaraya-

Watson kernel based on the rank-transformrY of the responses. This observation suggest the appli-
cation of standard regression tools based on the rank-transformed responses as in [7]. Experiments
confirm the use of the proposed ranking estimator, and also motivate the use of a more involved
function approximation tools as e.g. LS-SVMs [16] based on the rank-transformed responses.

5 Illustrative Example

Table 2.b provides numerical results on the 13 classification (including 100 randomizations) bench-
mark datasets as described in [11]. The choice of an appropriate kernel parameter was obtained by
cross-validation over a range of bandwidths fromσ = 1e − 2 to σ = 1e15. The results illustrate
that the Parzen window classifier performs in general slightly (but not significantly so) worse than
the other methods, but obviously reduces the required amount of memory and computation time
(i.e. O(n) versusO(n2) − O(n3)). Hence, it is advised to use the Parzen classifier as a cheap
base-line method, or to use it in a context where time- or memory requirements are stringent. The
first artificial dataset for testing the ordinal regression scheme is constructed as follows. The train-
ing set{(Xi, Yi)}n

i=1 ⊂ R
5 × R with n = 100 and a validation set{(Xv

i , Y v
i )}nv

i=1 ⊂ R
5 × R

with nv = 250 is constructed such thatZi = (wT
∗ Xi)

3 + ei and Zv
i = (wT

∗ Xv
i )3 + ev

i with
w∗ ∈ N (0, 1), X,Xv ∼ N (0, I5), ande, ev ∼ N (0, 0.25). Now Y (andY v) are generated pre-
serving the order implied by{Zi}100

i=1 (and{Zv
i }250

i=1) with the intervalsχ2-distributed with 5 degrees
of freedom. Figure 2.a shows the results of a Monte Carlo experiment relating both theO(n) pro-
posed estimator (22), a LS-SVM regressor ofO(n2) − O(n3) on the rank-transformed responses
{(Xi, rY (i))}, the O(n4) − O(n6) SVM approach as proposed in [3] and the Gaussian Process
approach ofO(n4) − O(n6) given in [2]. The performance of the different algorithms is expressed
in terms of Kendall’sτ computed on the validation data. Table 2.b reports the results on some large
scale datasets as described in [2], imposing a maximal computation time of 5 minutes. Both tests
suggest the competitive nature of the proposedO(n) procedure, while clearly showing the benefit
of using function estimation (as e.g. LS-SVMs) based on the rank-transformed responses.
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6 Conclusion

This paper discussed the use of the MAM risk optimality principle for designing a learning ma-
chine for classification and ordinal regression. The relation with classical methods including Parzen
windows and Nadaraya-Watson estimators is established, while the relation with the empirical
Rademacher complexity is used to provide a measure of ’certainty of prediction’. Empirical exper-
iments show the applicability of theO(n) algorithms on real world problems, trading performance
somewhat for computational efficiency with respect to state-of-the art learning algorithms.
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