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Abstract

This paper considers kernels invariant to translation, rotation and dilation. We
show that no non-trivial positive definite (p.d.) kernels exist which are radial and
dilation invariant, only conditionally positive definite (c.p.d.) ones. Accordingly,
we discuss the c.p.d. case and provide some novel analysis, including an elemen-
tary derivation of a c.p.d. representer theorem. On the practical side, we give a
support vector machine (s.v.m.) algorithm for arbitrary c.p.d. kernels. For the thin-
plate kernel this leads to a classifier with only one parameter (the amount of regu-
larisation), which we demonstrate to be as effective as an s.v.m. with the Gaussian
kernel, even though the Gaussian involves a second parameter (the length scale).

1 Introduction

Recent years have seen widespread application of reproducing kernel Hilbert space (r.k.h.s.) based
methods to machine learning problems (Schölkopf & Smola, 2002). As a result, kernel methods
have been analysed to considerable depth. In spite of this, the aspects which we presently investigate
seem to have received insufficient attention, at least within the machine learning community.

The first is transformation invariance of the kernel, a topic touched on in (Fleuret & Sahbi, 2003).
Note we do not mean by this the local invariance (or insensitivity) of an algorithm to application
specific transformations which should not affect the class label, such as one pixel image translations
(see e.g. (Chapelle & Schölkopf, 2001)). Rather we are referring to global invariance to transforma-
tions, in the way that radial kernels (i.e. those of the form k(x,y) = φ(‖x− y‖)) are invariant to
translations. In Sections 2 and 3 we introduce the more general concept of transformation scaled-
ness, focusing on translation, dilation and orthonormal transformations. An interesting result is that
there exist no non-trivial p.d. kernel functions which are radial and dilation scaled.

There do exist non-trivial c.p.d. kernels with the stated invariances however. Motivated by this,
we analyse the c.p.d. case in Section 4, giving novel elementary derivations of some key results,
most notably a c.p.d. representer theorem. We then give in Section 6.1 an algorithm for applying
the s.v.m. with arbitrary c.p.d. kernel functions. It turns out that this is rather useful in practice,
for the following reason. Due to its invariances, the c.p.d. thin-plate kernel which we discuss in
Section 5, is not only richly non-linear, but enjoys a duality between the length-scale parameter
and the regularisation parameter of Tikhonov regularised solutions such as the s.v.m. In Section
7 we compare the resulting classifier (which has only a regularisation parameter), to that of the
s.v.m. with Gaussian kernel (which has an additional length scale parameter). The results show that
the two algorithms perform roughly as well as one another on a wide range of standard machine
learning problems, notwithstanding the new method’s advantage in having only one free parameter.
In Section 8 we make some concluding remarks.
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2 Transformation Scaled Spaces and Tikhonov Regularisation

Definition 2.1. Let T be a bijection on X and F a Hilbert space of functions on some non-empty
set X such that f 7→ f ◦ T is a bijection on F . F is T -scaled if

〈f, g〉F = gT (F) 〈f ◦ T , g ◦ T 〉F (1)

for all f ∈ F , where gT (F) ∈ R+ is the norm scaling function associated with the operation of T
on F . If gT (F) = 1 we say that F is T -invariant.

The following clarifies the behaviour of Tikhonov regularised solutions in such spaces.

Lemma 2.2. For any Θ : F −−−→ R and T such that f 7→ f ◦ T is a bijection of F , if the left hand
side is unique then

arg min
f∈F

Θ(f) =
(

arg min
fT ∈F

Θ(fT ◦ T )
)
◦ T

Proof. Let f∗ = arg minf∈F Θ(f) and f∗T = arg minfT ∈F Θ(fT ◦ T ). By definition we have
that ∀g ∈ F ,Θ(f∗T ◦ T ) ≤ Θ(g ◦ T ). But since f 7→ f ◦ T is a bijection on F , we also have
∀g ∈ F ,Θ(f∗T ◦ T ) ≤ Θ(g). Hence, given the uniqueness, this implies f∗ = f∗T ◦ T .

The following Corollary follows immediately from Lemma 2.2 and Definition 2.1.

Corollary 2.3. Let Li be any loss function. If F is T -scaled and the left hand side is unique then

arg min
f∈F

(
‖f‖2

F +
∑

i

Li (f (xi))
)

=
(

arg min
f∈F

(
‖f‖2

F /gT (F) +
∑

i

Li (f (T xi))
))

◦ T .

Corollary 2.3 includes various learning algorithms for various choices of Li — for example the
s.v.m. with linear hinge loss for Li(t) = max (0, 1− yit), and kernel ridge regression for Li(t) =
(yi − t)2. Let us now introduce the specific transformations we will be considering.

Definition 2.4. LetWs, Ta andOA be the dilation, translation and orthonormal transformations
Rd → Rd defined for s ∈ R \ {0}, a ∈ Rd and orthonormal A : Rd → Rd by Wsx = sx,
Tax = x + a and OAx = Ax respectively.

Hence, for an r.k.h.s. which is Ws-scaled for arbitrary s 6= 0, training an s.v.m. and dilating the
resultant decision function by some amount is equivalent training the s.v.m. on similarly dilated
input patterns but with a regularisation parameter adjusted according to Corollary 2.3.

While (Fleuret & Sahbi, 2003) demonstrated this phenomenon for the s.v.m. with a particular kernel,
as we have just seen it is easy to demonstrate for the more general Tikhonov regularisation setting
with any function norm satisfying our definition of transformation scaledness.

3 Transformation Scaled Reproducing Kernel Hilbert Spaces

We now derive the necessary and sufficient conditions for a reproducing kernel (r.k.) to correspond
to an r.k.h.s. which is T -scaled. The relationship between T -scaled r.k.h.s.’s and their r.k.’s is easy
to derive given the uniqueness of the r.k. (Wendland, 2004). It is given by the following novel

Lemma 3.1 (Transformation scaled r.k.h.s.). The r.k.h.s. H with r.k. k : X × X → R, i.e. with k
satisfying

〈k(·,x), f(·)〉H = f(x), (2)

is T -scaled iff
k(x,y) = gT (H) k(T x, T y). (3)

Which we prove in the accompanying technical report (Walder & Chapelle, 2007) . It is now easy
to see that, for example, the homogeneous polynomial kernel k(x,y) = 〈x,y〉p corresponds to a
Ws-scaled r.k.h.s. H with gWs

(H) = 〈x,y〉p / 〈sx, sy〉p = s−2p. Hence when the homogeneous
polynomial kernel is used with the hard-margin s.v.m. algorithm, the result is invariant to multiplica-
tive scaling of the training and test data. If the soft-margin s.v.m. is used however, then the invariance

2



holds only under appropriate scaling (as per Corollary 2.3) of the margin softness parameter (i.e. λ
of the later equation (14)).

We can now show that there exist no non-trivial r.k.h.s.’s with radial kernels that are also Ws-scaled
for all s 6= 0. First however we need the following standard result on homogeneous functions:
Lemma 3.2. If φ : [0,∞) → R and g : (0,∞) → R satisfy φ(r) = g(s)φ(rs) for all r ≥ 0 and
s > 0 then φ(r) = aδ(r)+ brp and g(s) = s−p, where a, b, p ∈ R, p 6= 0, and δ is Dirac’s function.

Which we prove in the accompanying technical report (Walder & Chapelle, 2007). Now, suppose
that H is an r.k.h.s. with r.k. k on Rd × Rd. If H is Ta-invariant for all a ∈ Rd then

k(x,y) = k(T−yx, T−yy) = k(x− y,0) , φT (x− y).
If in addition to thisH isOA-invariant for all orthogonalA, then by choosingA such thatA(x−y) =
‖x− y‖ ê where ê is an arbitrary unit vector in Rd we have

k(x,y) = k(OAx, OAy) = φT (OA(x− y)) = φT (‖x− y‖ ê) , φOT (‖x− y‖)
i.e. k is radial. All of this is straightforward, and a similar analysis can be found in (Wendland,
2004). Indeed the widely used Gaussian kernel satisfies both of the above invariances. But if we
now also assume that H is Ws-scaled for all s 6= 0 — this time with arbitrary gWs

(H) — then
k(x,y) = gWs(H)k(Wsx,Wsy) = gW|s|(H)φOT (|s| ‖x− y‖)

so that letting r = ‖x− y‖ we have that φOT (r) = gW|s|(H)φOT (|s| r) and hence by Lemma 3.2
that φOT (r) = aδ(r) + brp where a, b, p ∈ R. This is positive semi-definite for the trivial case
p = 0, but there are various ways of showing this cannot be non-trivially positive semi-definite for
p 6= 0. One simple way is to consider two arbitrary vectors x1 and x2 such that ‖x1 − x2‖ = d > 0.
For the corresponding Gram matrix

K ,

(
a bdp

bdp a

)
,

to be positive semi definite we require 0 ≤ det(K) = a2 − b2d2p, but for arbitrary d > 0 and
a <∞, this implies b = 0. This may seem disappointing, but fortunately there do exist c.p.d. kernel
functions with the stated properties, such as the thin-plate kernel. We discuss this case in detail in
Section 5, after the following particularly elementary and in part novel introduction to c.p.d. kernels.

4 Conditionally Positive Definite Kernels

In the last Section we alluded to c.p.d. kernel functions – these are given by the following
Definition 4.1. A continuous function φ : X × X → R is conditionally positive definite with
respect to (w.r.t.) the linear space of functions P if, for all m ∈ N, all {xi}i=1...m ⊂ X , and all
α ∈ Rm \ {0} satisfying

∑m
j=1 αjp(xj) = 0 for all p ∈ P , the following holds∑m

j,k=1 αjαkφ(xj ,xk) > 0. (4)

Due to the positivity condition (4) — as opposed one of non negativity — we are referring to c.p.d.
rather than conditionally positive semi-definite kernels. The c.p.d. case is more technical than the
p.d. case. We provide a minimalistic discussion here — for more details we recommend e.g. (Wend-
land, 2004). To avoid confusion, let us note in passing that while the above definition is quite stan-
dard (see e.g. (Wendland, 2004; Wahba, 1990)), many authors in the machine learning community
use a definition of c.p.d. kernels which corresponds to our definition when P = {1} (e.g. (Schölkopf
& Smola, 2002)) or when P is taken to be the space of polynomials of some fixed maximum degree
(e.g. (Smola et al., 1998)). Let us now adopt the notation P⊥(x1, . . . ,xm) for the set

{α ∈ Rm :
∑m

i=1 αip(xi) = 0 for all p ∈ P} .
The c.p.d. kernels of Definition 4.1 naturally define a Hilbert space of functions as per
Definition 4.2. Let φ : X × X → R be a c.p.d. kernel w.r.t. P . We define Fφ (X ) to be the Hilbert
space of functions which is the completion of the set{∑m

j=1 αjφ(·,xj) : m ∈ N,x1, ..,xm ∈ X ,α ∈ P⊥(x1, ..,xm)
}
,

which due to the definition of φ we may endow with the inner productDPm
j=1 αjφ(·, xj),

Pn
k=1 βkφ(·, yk)

E
Fφ(X )

=
Pm

j=1

Pn
k=1 αjβkφ(xj , yk). (5)
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Note that φ is not the r.k. of Fφ (X ) — in general φ(x, ·) does not even lie in Fφ (X ). For the
remainder of this Section we develop a c.p.d. analog of the representer theorem. We begin with

Lemma 4.3. Let φ : X × X → R be a c.p.d. kernel w.r.t. P and p1, . . . pr a basis for P .
For any {(x1, y1), . . . (xm, ym)} ⊂ X × R, there exists an s = sFφ(X ) + sP where sFφ(X ) =∑m

j=1 αjφ(·,xj) ∈ Fφ (X ) and sP =
∑r

k=1 βkpk ∈ P, such that s(xi) = yi, i = 1 . . .m.

A simple and elementary proof (which shows (17) is solvable when λ = 0), is given in (Wendland,
2004) and reproduced in the accompanying technical report (Walder & Chapelle, 2007). Note that
although such an interpolating function s always exists, it need not be unique. The distinguishing
property of the interpolating function is that the norm of the part which lies in Fφ (X ) is minimum.

Definition 4.4. Let φ : X ×X → R be a c.p.d. kernel w.r.t. P . We use the notation Pφ(P) to denote
the projection Fφ (X )⊕ P → Fφ (X ).

Note that Fφ (X )⊕ Pφ(P) is a direct sum since p =
∑m

j=1 βiφ(zj , ·) ∈ P ∩ Fφ (X ) implies

‖p‖2
Fφ(X ) = 〈p, p〉Fφ(X ) =

∑m
i=1

∑n
j=1 βiβjφ(zi,zj) =

∑m
j=1 βjp(zj) = 0.

Hence, returning to the main thread, we have the following lemma — our proof of which seems to
be novel and particularly elementary.

Lemma 4.5. Denote by φ : X × X → R a c.p.d. kernel w.r.t. P and by p1, . . . pr a basis for
P . Consider an arbitrary function s = sFφ(X ) + sP with sFφ(X ) =

∑m
j=1 αjφ(·,xj) ∈ Fφ (X )

and sP =
∑r

k=1 βkpk ∈ P. ‖Pφ(P)s‖Fφ(X ) ≤ ‖Pφ(P)f‖Fφ(X ) holds for all f ∈ Fφ (X ) ⊕ P
satisfying

f(xi) = s(xi), i = 1 . . .m. (6)

Proof. Let f be an arbitrary element of Fφ (X )⊕ P . We can always write f as

f =
m∑

j=1

(αi + αi)φ(·,xj) +
n∑

l=1

blφ(·,zl) +
r∑

k=1

ckpk.

If we define1 [Px]i,j = pj(xi), [Pz]i,j = pj(zi), [Φxx]i,j = φ(xi,xj), [Φxz]i,j = φ(xi,zj), and
[Φzx]i,j = φ(zi,xj), then the condition (6) can hence be written

Pxβ = Φxxα + Φxzb + Pxc, (7)

and the definition of Fφ (X ) requires that e.g. α ∈ P⊥(x1, . . . ,xm), hence implying the constraints

P>x α = 0 and P>x (α + α) + P>z b = 0. (8)

The inequality to be demonstrated is then

L , α>Φxxα ≤
(

α + α
b

)>(
Φxx Φxz

Φzx Φzz

)
︸ ︷︷ ︸

,Φ

(
α + α

b

)
, R. (9)

By expanding

R = α>Φxxα︸ ︷︷ ︸
=L

+
(

α
b

)>
Φ

(
α
b

)
︸ ︷︷ ︸

,∆1

+ 2
(

α
0

)>
Φ

(
α
b

)
︸ ︷︷ ︸

,∆2

,

it follows from (8) that P>x α + P>z β = 0, and since Φ is c.p.d. w.r.t.
(
P>x P>z

)
that ∆1 ≥ 0. But

(7) and (8) imply that L ≤ R, since

∆2 = α>Φxxα + α>Φxzb =

=0︷ ︸︸ ︷
α>Px (β − c)−α>Φxzb + α>Φxzb = 0.

1Square brackets w/ subscripts denote matrix elements, and colons denote entire rows or columns.
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Using these results it is now easy to prove an analog of the representer theorem for the p.d. case.
Theorem 4.6 (Representer theorem for the c.p.d. case). Denote by φ : X × X → R a c.p.d. kernel
w.r.t. P , by Ω a strictly monotonic increasing real-valued function on [0,∞), and by c : Rm →
R ∪ {∞} an arbitrary cost function. There exists a minimiser over Fφ (X )⊕ P of

W (f) , c (f(x1), . . . , f(xm)) + Ω
(
‖Pφ(P)f‖2

Fφ(X )

)
(10)

which admits the form
∑m

i=1 αiφ(·,xi) + p, where p ∈ P .

Proof. Let f be a minimiser of W. Let s =
∑m

i=1 αiφ(·,xi) + p satisfy s(xi) = f(xi), i =
1 . . .m. By Lemma 4.3 we know that such an s exists. But by Lemma 4.5 ‖Pφ(P)s‖2Fφ(X ) ≥
‖Pφ(P)f‖2

Fφ(X ). As a result, W (s) ≤W (f) and s is a minimizer of W with the correct form.

5 Thin-Plate Regulariser

Definition 5.1. The m-th order thin-plate kernel φm : Rd × Rd → R is given by

φm(x,y) =

{
(−1)m−(d−2)/2 ‖x− y‖2m−d log(‖x− y‖) if d ∈ 2N,
(−1)m−(d−1)/2 ‖x− y‖2m−d if d ∈ (2N− 1),

(11)

for x 6= y, and zero otherwise. φm is c.p.d. with respect to πm−1(Rd), the set of d-variate polyno-
mials of degree at most m − 1. The kernel induces the following norm on the space Fφm

(
Rd

)
of

Definition 4.2 (this is not obvious — see e.g. (Wendland, 2004; Wahba, 1990))

〈f, g〉Fφm (Rd) , 〈ψf, ψg〉L2(Rd)

=
d∑

i1=1

· · ·
d∑

im=1

∫ ∞

x1=−∞
· · ·

∫ ∞

xd=−∞

(
∂

∂xi1

· · · ∂

∂xim

f

) (
∂

∂xi1

· · · ∂

∂xim

g

)
dx1 . . . dxd,

where ψ : Fφm

(
Rd

)
→ L2(Rd) is a regularisation operator, implicitly defined above.

Clearly gOA
(Fφm

(
Rd

)
) = gTa

(Fφm

(
Rd

)
) = 1. Moreover, from the chain rule we have

∂

∂xi1

· · · ∂

∂xim

(f ◦Ws) = sm

(
∂

∂xi1

· · · ∂

∂xim

f

)
◦Ws (12)

and therefore since 〈f, g〉L2(Rd) = sd 〈f ◦Ws, g ◦Ws〉L2(Rd) ,we can immediately write

〈ψ (f ◦Ws) , ψ (g ◦Ws)〉L2(Rd) = s2m 〈(ψf) ◦Ws, (ψg) ◦Ws〉L2(Rd) = s2m−d 〈ψf, ψg〉L2(Rd)

(13)
so that gWs(Fφm

(
Rd

)
) = s−(2m−d). Note that although it may appear that this can be shown more

easily using (11) and an argument similar to Lemma 3.1, the process is actually more involved due
to the log factor in the first case of (11), and it is necessary to use the fact that the kernel is c.p.d.
w.r.t. πm−1(Rd). Since this is redundant and not central to the paper we omit the details.

6 Conditionally Positive Definite s.v.m.

In the Section 3 we showed that non-trivial kernels which are both radial and dilation scaled cannot
be p.d. but rather only c.p.d. It is therefore somewhat surprising that the s.v.m. — one of the most
widely used kernel algorithms — has been applied only with p.d. kernels, or kernels which are
c.p.d. respect only to P = {1} (see e.g. (Boughorbel et al., 2005)). After all, it seems interesting
to construct a classifier independent not only of the absolute positions of the input data, but also of
their absolute multiplicative scale.

Hence we propose using the thin-plate kernel with the s.v.m. by minimising the s.v.m. objective over
the space Fφ (X ) ⊕ P (or in some cases just over Fφ (X ), as we shall see in Section 6.1). For this
we require somewhat non-standard s.v.m. optimisation software. The method we propose seems
simpler and more robust than previously mentioned solutions. For example, (Smola et al., 1998)
mentions the numerical instabilities which may arise with the direct application of standard solvers.
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Dataset Gaussian Thin-Plate dim/n
banana 10.567 (0.547) 10.667 (0.586) 2/3000∗

breast 26.574 (2.259) 28.026 (2.900) 9/263
diabetes 23.578 (0.989) 23.452 (1.215) 8/768
flare 36.143 (0.969) 38.190 (2.317) 9/144
german 24.700 (1.453) 24.800 (1.373) 20/1000
heart 17.407 (2.142) 17.037 (2.290) 13/270

Dataset Gaussian Thin-Plate dim/n
image 3.210 (0.504) 1.867 (0.338) 18/2086
ringnm 1.533 (0.229) 1.833 (0.200) 20/3000∗

splice 8.931 (0.640) 8.651 (0.433) 60/2844
thyroid 4.199 (1.087) 3.247 (1.211) 5/215
twonm 1.833 (0.194) 1.867 (0.254) 20/3000∗

wavefm 8.333 (0.378) 8.233 (0.484) 21/3000

Table 1: Comparison of Gaussian and thin-plate kernel with the s.v.m. on the UCI data sets. Results
are reported as “mean % classification error (standard error)”. dim is the input dimension and n
the total number of data points. A star in the n column means that more examples were available
but we kept only a maximum of 2000 per class in order to reduce the computational burden of the
extensive number of cross validation and model selection training runs (see Section 7). None of the
data sets were linearly separable so we always used used the normal (β unconstrained) version of
the optimisation described in Section 6.1.

6.1 Optimising an s.v.m. with c.p.d. Kernel

It is simple to implement an s.v.m. with a kernel φwhich is c.p.d. w.r.t. an arbitrary finite dimensional
space of functions P by extending the primal optimisation approach of (Chapelle, 2007) to the c.p.d.
case. The quadratic loss s.v.m. solution can be formulated as arg minf∈Fφ(X )⊕P of

λ ‖Pφ(P)f‖2
Fφ(X ) +

n∑
i=1

max(0, 1− yif(xi))2, (14)

Note that for the second order thin-plate case we have X = Rd and P = π1(Rd) (the space of
constant and first order polynomials). Hence dim (P) = d + 1 and we can take the basis to be
pj(x) = [x]j for j = 1 . . . d along with pd+1 = 1.

It follows immediately from Theorem 4.6 that, letting p1, p2, . . . pdim(P) span P , the solution to (14)
is given by fsvm(x) =

∑n
i=1 αiφ(xi,x) +

∑dim(P)
j=1 βjpj(x). Now, if we consider only the margin

violators — those vectors which (at a given step of the optimisation process) satisfy yif(xi) < 1,
we can replace the max (0, ·) in (14) with (·). This is equivalent to making a local second order
approximation. Hence by repeatedly solving in this way while updating the set of margin violators,
we will have implemented a so-called Newton optimisation. Now, since

‖Pφ(P)fsvm ‖2
Fφ(X ) =

n∑
i,j=1

αiαjφ(xi,xj), (15)

the local approximation of the problem is, in α and β

minimise λα>Φα + ‖Φα + Pβ − y‖2
, subject to P>α = 0, (16)

where [Φ]i,j = φ(xi,xj), [P ]j,k = pk(xj), and we assumed for simplicity that all vectors violate
the margin. The solution in this case is given by (Wahba, 1990)(

α
β

)
=

(
λI + Φ P>

P 0

)−1 (
y
0

)
. (17)

In practice it is essential that one makes a change of variable for β in order to avoid the numerical
problems which arise when P is rank deficient or numerically close to it. In particular we make the
QR factorisation (Golub & Van Loan, 1996) P> = QR, where Q>Q = I and R is square. We then
solve for α and β = Rβ. As a final step at the end of the optimisation process, we take the minimum
norm solution of the system β = Rβ, β = R#β where R# is the pseudo inverse of R. Note that
although (17) is standard for squared loss regression models with c.p.d. kernels, our use of it in
optimising the s.v.m. is new. The precise algorithm is given in (Walder & Chapelle, 2007), where
we also detail two efficient factorisation techniques, specific to the new s.v.m. setting. Moreover, the
method we present in Section 6.2 deviates considerably further from the existing literature.
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6.2 Constraining β = 0

Previously, if the data can be separated with only the P part of the function space — i.e. with α = 0
— then the algorithm will always do so regardless of λ. This is correct in that, since P lies in the null
space of the regulariser ‖Pφ(P)·‖2Fφ(X ), such solutions minimise (14), but may be undesirable for
various reasons. Firstly, the regularisation cannot be controlled via λ. Secondly, for the thin-plate,
P = π1(Rd) and the solutions are simple linear separating hyperplanes. Finally, there may exist
infinitely many solutions to (14). It is unclear how to deal with this problem — after all it implies
that the regulariser is simply inappropriate for the problem at hand. Nonetheless we still wish to
apply a (non-linear) algorithm with the previously discussed invariances of the thin-plate.

To achieve this, we minimise (14) as before, but over the space Fφ (X ) rather than Fφ (X ) ⊕ P . It
is important to note that by doing so we can no longer invoke Theorem 4.6, the representer theorem
for the c.p.d. case. This is because the solvability argument of Lemma 4.3 no longer holds. Hence
we do not know the optimal basis for the function, which may involve infinitely many φ(·,x) terms.
The way we deal with this is simple — instead of minimising over Fφ (X ) we consider only the
finite dimensional subspace given by{∑n

j=1 αjφ(·,xj) : α ∈ P⊥(x1, . . . ,xn)
}
,

where x1, . . .xn are those of the original problem (14). The required update equation can be ac-
quired in a similar manner as before. The closed form solution to the constrained quadratic pro-
gramme is in this case given by (see (Walder & Chapelle, 2007))

α = −P⊥
(
P>⊥

(
λΦ + Φ>sxΦsx

)
P⊥

)−1
P>⊥Φ>sxys (18)

where Φsx = [Φ]s,:, s is the current set of margin violators and P⊥ the null space of P satisfying
PP⊥ = 0. The precise algorithm we use to optimise in this manner is given in the accompanying
technical report (Walder & Chapelle, 2007), where we also detail efficient factorisation techniques.

7 Experiments and Discussion

We now investigate the behaviour of the algorithms which we have just discussed, namely the thin-
plate based s.v.m. with 1) the optimisation over Fφ (X ) ⊕ P as per Section 6.1, and 2) the optimi-
sation over a subspace of Fφ (X ) as per Section 6.2. In particular, we use the second method if the
data is linearly separable, otherwise we use the first. For a baseline we take the Gaussian kernel
k(x,y) = exp

(
−‖x− y‖2

/(2σ2)
)

, and compare on real world classification problems.

Binary classification (UCI data sets). Table 1 provides numerical evidence supporting our claim
that the thin-plate method is competitive with the Gaussian, in spite of it’s having one less hyper
parameter. The data sets are standard ones from the UCI machine learning repository. The experi-
ments are extensive — the experiments on binary problems alone includes all of the data sets used in
(Mika et al., 2003) plus two additional ones (twonorm and splice). To compute each error measure,
we used five splits of the data and tested on each split after training on the remainder. For parameter
selection, we performed five fold cross validation on the four-fifths of the data available for training
each split, over an exhaustive search of the algorithm parameter(s) (σ and λ for the Gaussian and
happily just λ for the thin-plate). We then take the parameter(s) with lowest mean error and retrain
on the entire four fifths. We ensured that the chosen parameters were well within the searched range
by visually inspecting the cross validation error as a function of the parameters. Happily, for the
thin-plate we needed to cross validate to choose only the regularisation parameter λ, whereas for the
Gaussian we had to choose both λ and the scale parameter σ. The discovery of an equally effec-
tive algorithm which has only one parameter is important, since the Gaussian is probably the most
popular and effective kernel used with the s.v.m. (Hsu et al., 2003).

Multi class classification (USPS data set). We also experimented with the 256 dimensional, ten
class USPS digit recognition problem. For each of the ten one vs. the rest models we used five fold
cross validation on the 7291 training examples to find the parameters, retrained on the full training
set, and labeled the 2007 test examples according to the binary classifier with maximum output. The
Gaussian misclassified 88 digits (4.38%), and the thin-plate 85 (4.25%). Hence the Gaussian did not
perform significantly better, in spite of the extra parameter.
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Computational complexity. The normal computational complexity of the c.p.d. s.v.m. algo-
rithm is the usual O(nsv

3) — cubic in the number of margin violators. For the β = 0 variant
(necessary only on linearly separable problems — presently only the USPS set) however, the cost
is O(nb

2nsv + nb
3), where nb is the number of basis functions in the expansion. For our USPS

experiments we expanded on all m training points, but if nsv � m this is inefficient and proba-
bly unnecessary. For example the final ten models (those with optimal parameters) of the USPS
problem had around 5% margin violators, and so training each Gaussian s.v.m. took only ∼ 40s in
comparison to ∼ 17 minutes (with the use of various efficient factorisation techniques as detailed
in the accompanying (Walder & Chapelle, 2007) ) for the thin-plate. By expanding on only 1500
randomly chosen points however, the training time was reduced to∼ 4 minutes while incurring only
88 errors — the same as the Gaussian. Given that for the thin-plate cross validation needs to be
performed over one less parameter, even in this most unfavourable scenario of nsv � m, the overall
times of the algorithms are comparable. Moreover, during cross validation one typically encoun-
ters larger numbers of violators for some suboptimal parameter configurations, in which cases the
Gaussian and thin-plate training times are comparable.

8 Conclusion

We have proven that there exist no non-trivial radial p.d. kernels which are dilation invariant (or
more accurately, dilation scaled), but rather only c.p.d. ones. Such kernels have the advantage that,
to take the s.v.m. as an example, varying the absolute multiplicative scale (or length scale) of the data
has the same effect as changing the regularisation parameter — hence one needs model selection to
chose only one of these, in contrast to the widely used Gaussian kernel for example.

Motivated by this advantage we provide a new, efficient and stable algorithm for the s.v.m. with
arbitrary c.p.d. kernels. Importantly, our experiments show that the performance of the algorithm
nonetheless matches that of the Gaussian on real world problems.

The c.p.d. case has received relatively little attention in machine learning. Our results indicate that
it is time to redress the balance. Accordingly we provided a compact introduction to the topic,
including some novel analysis which includes an new, elementary and self contained derivation of
one particularly important result for the machine learning community, the representer theorem.
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