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Abstract

In this paper, we propose a method for support vector machine classification using
indefinite kernels. Instead of directly minimizing or stabilizing a nonconvex loss
function, our method simultaneously finds the support vectors and a proxy kernel
matrix used in computing the loss. This can be interpreted as a robust classification
problem where the indefinite kernel matrix is treated as a noisy observation of the
true positive semidefinite kernel. Our formulation keeps the problem convex and
relatively large problems can be solved efficiently using the analytic center cutting
plane method. We compare the performance of our technique with other methods
on several data sets.

1 Introduction

Here, we present an algorithm for support vector machine (SVM) classification using indefinite ker-
nels. Our interest in indefinite kernels is motivated by several observations. First, certain similarity
measures take advantage of application-specific structure in the data and often display excellent
empirical classification performance. Unlike popular kernels used in support vector machine clas-
sification, these similarity matrices are often indefinite and so do not necessarily correspond to a
reproducing kernel Hilbert space (see [1] for a discussion).

An application of classification with indefinite kernels to image classification using Earth Mover’s
Distance was discussed in [2]. Similarity measures for protein sequences such as the Smith-
Waterman and BLAST scores are indefinite yet have provided hints for constructing useful positive
semidefinite kernels such as those decribed in [3] or have been transformed into positive semidefinite
kernels (see [4] for example). Here instead, our objective is to directly use these indefinite similarity
measures for classification.

Our work also closely follows recent results on kernel learning (see [5] or [6]), where the kernel
matrix is learned as a linear combination of given kernels, and the resulting kernel is explicitly
constrained to be positive semidefinite (the authors of [7] have adapted the SMO algorithm to solve
the case where the kernel is written as a positively weighted combination of other kernels). In our
case however, we neverexplicitlyoptimize the kernel matrix because this part of the problem can be
solved explicitly, which means that the complexity of our method is substantially lower than that of
classical kernel learning methods and closer in spirit to the algorithm used in [8], who formulate the
multiple kernel learning problem of [7] as a semi-infinite linear program and solve it with a column
generation technique similar to the analytic center cutting plane method we use here.

Finally, it is sometimes impossible to prove that some kernels satisfy Mercer’s condition or the
numerical complexity of evaluating the exact positive semidefinite kernel is too high and a proxy
(and not necessarily positive semidefinite) kernel has to be used instead (see [9] for example). In
both cases, our method allows us to bypass these limitations.
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1.1 Current results

Several methods have been proposed for dealing with indefinite kernels in SVMs. A first direction
embeds data in a pseudo-Euclidean (pE) space: [10] for example, formulates the classification prob-
lem with an indefinite kernel as that of minimizing the distance between convex hulls formed from
the two categories of data embedded in the pE space. The nonseparable case is handled in the same
manner using reduced convex hulls (see [11] for a discussion of SVM geometric interpretations).

Another direction applies direct spectral transformations to indefinite kernels: flipping the nega-
tive eigenvalues or shifting the kernel’s eigenvalues and reconstructing the kernel with the original
eigenvectors in order to produce a positive semidefinite kernel (see [12] and [2]).

Yet another option is to reformulate either the maximum margin problem or its dual in order to
use the indefinite kernel in a convex optimization problem (see [13]). An equivalent formulation
of SVM with the same objective but where the kernel appears in the constraints can be modified
to a convex problem by eliminating the kernel from the objective. Directly solving the nonconvex
problem sometimes gives good results as well (see [14] and [10]).

1.2 Contribution

Here, instead of directly transforming the indefinite kernel, we simultaneously learn the support vec-
tor weights and a proxy positive semidefinite kernel matrix, while penalizing the distance between
this proxy kernel and the original, indefinite one. Our main result is that the kernel learning part of
that problem can be solved explicitly, meaning that the classification problem with indefinite kernels
can simply be formulated as a perturbation of the positive semidefinite case.

Our formulation can also be interpreted as a worst-case robust classification problem with uncer-
tainty on the kernel matrix. In that sense, indefinite similarity matrices are seen as noisy observa-
tions of an unknown positive semidefinite kernel. From a complexity standpoint, while the original
SVM classification problem with indefinite kernel is nonconvex, the robustification we detail here is
a convex problem, and hence can be solved efficiently with guaranteed complexity bounds.

The paper is organized as follows. In Section 2 we formulate our main classification problem and
detail its interpretation as a robust SVM. In Section 3 we describe an algorithm for solving this
problem. Finally, in Section 4, we test the numerical performance of these methods on various
applications.

2 SVM with indefinite kernels

Here, we introduce our robustification of the SVM classification problem with indefinite kernels.

2.1 Robust classification

Let K ∈ Sn be a given kernel matrix andy ∈ Rn be the vector of labels, withY = diag(y) the
matrix with diagonaly, whereSn is the set of symmetric matrices of sizen andRn is the set of
n-vectors of real numbers. We can write the dual of the SVM classification problem with hinge loss
and quadratic penalty as:

maximize αT e − Tr(K(Y α)(Y α)T )/2
subject to αT y = 0

0 ≤ α ≤ C
(1)

in the variableα ∈ Rn and wheree is ann-vector of ones. WhenK is positive semidefinite, this
problem is a convex quadratic program. Suppose now that we are given an indefinite kernel matrix
K0 ∈ Sn. We formulate a robust version of problem (1) by restrictingK to be a positive semidefinite
kernel matrix in some given neighborhood of the original (indefinite) kernel matrixK0:

max
{αT y=0, 0≤α≤C}

min
{K�0, ‖K−K0‖2

F
≤β}

αT e −
1

2
Tr(K(Y α)(Y α)T ) (2)

in the variablesK ∈ Sn andα ∈ Rn, where the parameterβ > 0 controls the distance between
the original matrixK0 and the proxy kernelK. This can be interpreted as a worst-case robust
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classification problem with bounded uncertainty on the kernel matrixK. The above problem is
infeasible for some values ofβ so we replace here the hard constraint onK by a penalty on the
distance between the proxy positive semidefinite kernel and the given indefinite matrix. The problem
we solve is now:

max
{αT y=0,0≤α≤C}

min
{K�0}

αT e −
1

2
Tr(K(Y α)(Y α)T ) + ρ‖K − K0‖

2
F (3)

in the variablesK ∈ Sn andα ∈ Rn, where the parameterρ > 0 controls the magnitude of the
penalty on the distance betweenK andK0. The inner minimization problem is a convex conic
program onK. Also, as the pointwise minimum of a family of concave quadratic functions ofα, the
solution to the inner problem is a concave function ofα, and hence the outer optimization problem
is also convex (see [15] for further details). Thus, (3) is a concave maximization problem subject to
linear constraints and is therefore a convex problem inα.

Our key result here is that the inner kernel learning optimization problem can be solved in closed
form. For a fixedα, the inner minimization problem is equivalent to the following problem:

minimize ‖K − (K0 + 1

4ρ
(Y α)(Y α)T )‖2

F

subject to K � 0

in the variableK ∈ Sn. This is the projection of theK0 + (1/4ρ)(Y α)(Y α)T on the cone of
positive semidefinite matrices. The optimal solution to this problem is then given by:

K∗ = (K0 + (1/4ρ)(Y α)(Y α)T )+ (4)

whereX+ is the positive part of the matrixX , i.e. X+ =
∑

i max(0, λi)xix
T
i whereλi andxi are

theith eigenvalue and eigenvector of the matrixX . Plugging this solution into (3), we get:

max
{αT y=0, 0≤α≤C}

αT e −
1

2
Tr(K∗(Y α)(Y α)T ) + ρ‖K∗ − K0‖

2
F

in the variableα ∈ Rn, where(Y α)(Y α)T is the rank one matrix with coefficientsyiαiαjyj,
i, j = 1, . . . , n. We can rewrite this as an eigenvalue optimization problem by using the eigenvalue
representation ofX+. Letting the eigenvalue decomposition ofK0+(1/4ρ)(Y α)(Y α)T beV DV T ,
we getK∗ = V D+V T and, withvi theith column ofV , we can write:

Tr(K∗(Y α)(Y α)T ) = (Y α)T V D+V T (Y α)

=

n
∑

i=1

max

(

0, λi

(

K0 +
1

4ρ
(Y α)(Y α)T

))

(αT Y vi)
2

whereλi (X) is theith eigenvalue of the quantityX . Using the same technique, we can also rewrite
the term‖K∗ − K0|

2
F using this eigenvalue decomposition. Our original optimization problem (3)

finally becomes:

maximize αT e − 1

2

∑

i max(0, λi(K0 + (Y α)(Y α)T /4ρ))(αT Y vi)
2

+ρ
∑

i (max(0, λi(K0 + (Y α)(Y α)T /4ρ)))2

−2ρ
∑

i Tr((viv
T
i )K0)max(0, λi(K0 + (Y α)(Y α)T /4ρ)) + ρTr(K0K0)

subject to αT y = 0, 0 ≤ α ≤ C

(5)

in the variableα ∈ Rn.

2.2 Dual problem

Because problem (3) is convex with at least one compact feasible set, we can formulate the dual
problem to (5) by simply switching the max and the min. The inner maximization is a quadratic
program inα, and hence has a quadratic program as its dual. We then get the dual by plugging this
inner dual quadratic program into the outer minimization, to get the following problem:

minimize Tr(K−1(Y (e − λ + µ + yν))(Y (e − λ + µ + yν))T )/2 + CµT e + ρ‖K − K0‖
2
F

subject to K � 0, λ, µ ≥ 0
(6)
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in the variablesK ∈ Sn, λ, µ ∈ Rn andν ∈ R. This dual problem is a quadratic program in the
variablesλ andµ which correspond to the primal constraints0 ≤ α ≤ C andν which is the dual
variable for the constraintαT y = 0. As we have seen earlier, any feasible solution to the primal
problem produces a corresponding kernel in (4), and plugging this kernel into the dual problem in
(6) allows us to calculate a dual feasible point by solving a quadratic program which gives a dual
objective value, i.e. an upper bound on the optimum of (5). This bound can then be used to compute
a duality gap and track convergence.

2.3 Interpretation

We noted that our problem can be viewed as a worst-case robust classification problem with uncer-
tainty on the kernel matrix. Our explicit solution of the optimal worst-case kernel given in (4) is the
projection of a penalized rank-one update to the indefinite kernel on the cone of positive semidefinite
matrices. Asρ tends to infinity, the rank-one update has less effect and in the limit, the optimal ker-
nel is the kernel given by zeroing out the negative eigenvalues of the indefinite kernel. This means
that if the indefinite kernel contains a very small amount of noise, the best positive semidefinite
kernel to use with SVM in our framework is the positive part of the indefinite kernel.

This limit asρ tends to infinity also motivates a heuristic for the transformation of the kernel on
the testing set. Since the negative eigenvalues of the training kernel are thresholded to zero in the
limit, the same transformation should occur for the test kernel. Hence, we update the entries of the
full kernel corresponding to training instances by the rank-one update resulting from the optimal
solution to (3) and threshold the negative eigenvalues of the full kernel matrix to zero. We then use
the test kernel values from the resulting positive semidefinite matrix.

3 Algorithms

We now detail two algorithms that can be used to solve Problem (5). The optimization problem is
the maximization of a nondifferentiable concave function subject to convex constraints. An optimal
point always exists since the feasibility set is bounded and nonempty. For numerical stability, in both
algorithms, we quadratically smooth our objective to calculate a gradient instead. We first describe
a simple projected gradient method which has numerically cheap iterations but has no convergence
bound. We then show how to apply the much more efficient analytic center cutting plane method
whose iterations are slightly more complex but which converges linearly.

Smoothing Our objective contains terms of the formmax{0, f(x)} for some functionf(x), which
are not differentiable (described in the section below). These functions are easily smoothed out by
a regularization technique (see [16] for example). We replace them by a continuously differentiable
ǫ
2
-approximation as follows:

ϕǫ(f(x)) = max
0≤u≤1

(uf(x) −
ǫ

2
u2).

and the gradient is given by∇ϕǫ(f(x)) = u∗(x)∇f(x) whereu∗(x) = argmaxϕǫ(f(x)).

Gradient Calculating the gradient of our objective requires a full eigenvalue decomposition to
compute the gradient of each eigenvalue. Given a matrixX(α), the derivative of theith eigenvalue
with respect toα is given by:

∂λi(X(α))

∂α
= vT

i

∂X(α)

∂α
vi (7)

wherevi is the ith eigenvector ofX(α). We can then combine this expression with the smooth
approximation above to get the gradient.

We note that eigenvalues of symmetric matrices are not differentiable when some of them have mul-
tiplicities greater than one (see [17] for a discussion). In practice however, most tested kernels were
of full rank with distinct eigenvalues so we ignore this issue here. One may also consider projected
subgradient methods, which are much slower, or use subgradients for analytic center cutting plane
methods (which does not affect complexity).
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3.1 Projected gradient method

The projected gradient method takes a steepest descent, then projects the new point back onto the
feasible region (see [18] for example). In order to use these methods the objective function must be
differentiable and the method is only efficient if the projection step is numerically cheap. We choose
an initial pointα0 ∈ Rn and the algorithm proceeds as follows:

Projected gradient method

1. Computeαi+1 = αi + t∇f(αi).

2. Setαi+1 = pA(αi+1).

3. If gap≤ ǫ stop, otherwise go back to step 1.

The complexity of each iteration breaks down as follows.

Step 1.This requires an eigenvalue decomposition and costsO(n3). We note that a line search would
be costly because it would require multiple eigenvalue decompositions to recalculate the objective
multiple times.

Step 2. This is a projection onto the regionA = {αT y = 0, 0 ≤ α ≤ C} and can be solved
explicitly by sorting the vector of entries, with costO(n log n).

Stopping Criterion. We can compute a duality gap using the results of§2.2: let Ki = (K0 +
(Y αi)(Y αi)

T /4ρ)+ (the kernel at iterationi), then solving problem (1) which is just an SVM with
a convex kernelKi produces an upper bound on (5), and hence a bound on the suboptimality of the
current solution.

Complexity. The number of iterations required by this method to reach a target precision ofǫ is
typically in O(1/ǫ2).

3.2 Analytic center cutting plane method

The analytic center cutting plane method (ACCPM) reduces the feasible region on each iteration
using a newcutof the feasible region computed by evaluating a subgradient of the objective function
at the analytic center of the current set, until the volume of the reduced region converges to the target
precision. This method does not require differentiability. We setA0 = {αT y = 0, 0 ≤ α ≤ C}
which we can write as{A0 ≤ b0} to be our first localization set for the optimal solution. The
method then works as follows (see [18] for a more complete reference on cutting plane methods):

Analytic center cutting plane method

1. Computeαi as the analytic center ofAi by solving:

αi+1 = argmin
y∈Rn

−
m

∑

i=1

log(bi − aT
i y)

whereaT
i represents theith row of coefficients from the left-hand side of{A0 ≤ b0}.

2. Compute∇f(x) at the centerαi+1 and update the (polyhedral) localization set:

Ai+1 = Ai ∪ {∇f(αi+1)(α − αi+1) ≥ 0}

3. If gap≤ ǫ stop, otherwise go back to step 1.

The complexity of each iteration breaks down as follows.

Step 1.This step computes the analytic center of a polyhedron and can be solved inO(n3) operations
using interior point methods for example.
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Step 2.This simply updates the polyhedral description.

Stopping Criterion.An upper bound is computed by maximizing a first order Taylor approximation
of f(α) atαi over all points in an ellipsoid that coversAi, which can be done explicitly.

Complexity.ACCPM is provably convergent inO(n log(1/ǫ)2) iterations when using cut elimina-
tion which keeps the complexity of the localization set bounded. Other schemes are available with
slightly different complexities: anO(n2/ǫ2) is achieved in [19] using (cheaper) approximate centers
for example.

4 Experiments

In this section we compare the generalization performance of our technique to other methods of
applying SVM classification given an indefinite similarity measure. We also test SVM classification
performance on positive semidefinite kernels using the LIBSVM library. We finish with experiments
showing convergence of our algorithms. Our algorithms were implemented in Matlab.

4.1 Generalization

We compare our method for SVM classification with indefinite kernels to several of the kernel pre-
processing techniques discussed earlier. The first three techniques perform spectral transformations
on the indefinite kernel. The first, denoteddenoise, thresholds the negative eigenvalues to zero. The
second transformation, calledflip, takes the absolute value of all eigenvalues. The last transforma-
tion, shift, adds a constant to each eigenvalue making them all positive. See [12] for further details.
We finally also compare with using SVM on the original indefinite kernel (SVM converges but the
solution is only a stationary point and is not guaranteed to be optimal).

We experiment on data from the USPS handwritten digits database (described in [20]) using the
indefinite Simpson score (SS) to compare two digits and on two data sets from the UCI repository
(see [21]) using the indefinite Epanechnikov (EP) kernel. The data is randomly divided into training
and testing data. We apply 5-fold cross validation and use an accuracy measure (described below)
to determine the optimal parametersC andρ. We then train a model with the full training set and
optimal parameters and test on the independent test set.

Table 1: Statistics for various data sets.

Data Set # Train # Test λmin λmax

USPS-3-5-SS 767 773 -34.76 453.58

USPS-4-6-SS 829 857 -37.30 413.17

Diabetes-EP 614 154 -0.27 18.17

Liver-EP 276 69 -1.38e-15 3.74

Table 1 provides statistics including the minimum and maximum eigenvalues of the training kernels.
The main observation is that the USPS data uses highly indefinite kernels while the UCI data use
kernels that are nearly positive semidefinite. Table 2 displays performance by comparing accuracy
and recall. Accuracy is defined as the percentage of total instances predicted correctly. Recall is the
percentage of true positives that were correctly predicted positive.

Our method is referred to as Indefinite SVM. We see that our method performs favorably among
the USPS data. Both measures of performance are quite high for all methods. Our method does
not perform as well on the UCI data sets but is still favorable on one of the measures in each
experiment. Notice though that recall is not good in the liver data set overall which could be the
result of overfitting one of the classification categories. The liver data set uses a kernel that is almost
positive semidefinite - this is an example where the input is almost a true kernel and Indefinite
SVM finds one slightly better. We postulate that our method will perform better in situations where
the similarity measure is highly indefinite as in the USPS dataset, while measures that are almost
positive semidefinite maybe be seen as having a small amount of noise.
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Table 2: Performance Measures for various data sets.

Data Set Measure Denoise Flip Shift SVM Indefinite SVM

USPS-3-5-SS
Accuracy 95.47 95.73 90.43 74.90 96.25

Recall 94.50 95.45 92.11 72.73 96.65

USPS-4-6-SS Accuracy 97.78 97.90 94.28 90.08 97.90

Recall 98.42 98.65 93.68 88.49 98.87

Diabetes-EP Accuracy 75.32 74.68 68.83 75.32 68.83

Recall 90.00 90.00 92.00 90.00 95.00

Liver-EP Accuracy 63.77 63.77 57.97 63.77 65.22

Recall 22.58 22.58 25.81 22.58 22.58

4.2 Algorithm Convergence

We ran our two algorithms on data sets created by randomly perturbing the four USPS data sets used
above. The average results with one standard deviation above and below the mean are displayed in
Figure 1 with the duality gap in log scale (note that the codes were not stopped here and that the
target gap improvement is usually much smaller than10−8). As expected, ACCPM converges much
faster (in fact linearly) to a higher precision while each iteration requires solving a linear program
of sizen. The gradient projection method converges faster in the beginning but stalls at a higher
precision, however each iteration only requires sorting the current point.
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Figure 1: Convergence plots for ACCPM (left) & projected gradient method (right) on randomly perturbed
USPS data sets (average gap versus iteration number, dashed lines at plus and minus one standard deviation).

5 Conclusion

We have proposed a technique for incorporating indefinite kernels into the SVM framework with-
out any explicit transformations. We have shown that if we view the indefinite kernel as a noisy
instance of a true kernel, we can learn an explicit solution for the optimal kernel with a tractable
convex optimization problem. We give two convergent algorithms for solving this problem on rel-
atively large data sets. Our initial experiments show that our method can at least fare comparably
with other methods handling indefinite kernels in the SVM framework but provides a much clearer
interpretation for these heuristics.
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