
A Randomized Algorithm for Large Scale Support
Vector Learning

Krishnan S.
Department of Computer Science and Automation, Indian Institute of Science, Bangalore-12

krishi@csa.iisc.ernet.in

Chiranjib Bhattacharyya
Department of Computer Science and Automation, Indian Institute of Science, Bangalore-12

chiru@csa.iisc.ernet.in

Ramesh Hariharan
Strand Genomics, Bangalore-80
ramesh@strandls.com

Abstract

This paper investigates the application of randomized algorithms for large scale
SVM learning. The key contribution of the paper is to show that, by using ideas
random projections, the minimal number of support vectors required to solve al-
most separable classification problems, such that the solution obtained is near
optimal with a very high probability, is given by O(log n); if on removal of prop-
erly chosen O(log n) points the data becomes linearly separable then it is called
almost separable. The second contribution is a sampling based algorithm, moti-
vated from randomized algorithms, which solves a SVM problem by considering
subsets of the dataset which are greater in size than the number of support vectors
for the problem. These two ideas are combined to obtain an algorithm for SVM
classification problems which performs the learning by considering only O(log n)
points at a time. Experiments done on synthetic and real life datasets show that the
algorithm does scale up state of the art SVM solvers in terms of memory required
and execution time without loss in accuracy. It is to be noted that the algorithm
presented here nicely complements existing large scale SVM learning approaches
as it can be used to scale up any SVM solver.

1 Introduction

Consider a training dataset D = {(xi, yi)}, i = 1 . . . n and yi = {+1,−1}, where xi ∈ Rd are data
points and yi specify the class labels. the problem of learning the classifier, y = sign(wT x + b),
can be narrowed down to computing {w, b} such that it has good generalization ability. The SVM
formulation for classification, which will be called C − SV M , for determining {w, b} is given by
[1]
C-SVM-1:

Minimize(w,b,ξ)
1

2
||w||2 + C

n∑

i=1

ξi

Subject to : yi(w · xi + b) ≥ 1 − ξi, , ξi ≥ 0, i = 1 . . . n

At optimality w is given by w =
∑

i:αi>0

αiyixi, 0 ≤ αi ≤ C

1

Consider the set S = {xi|αi > 0}; the elements of this set are called the Support vectors. Note
that S completely determines the solution of C − SV M .The set S may not be unique, though w is.
Define a parameter ∆ to be the minimum cardinality over all S. See that ∆ does not change with
number of examples, n, and is often much less than n.

More generally, the C − SV M problem can be seen as an instance of Abstract optimization prob-
lem(AOP) [2, 3, 4]. An AOP is defined as follows:
An AOP is a triple (H,<, Φ) where H is a finite set, < a total ordering on 2H , and Φ an oracle
that, for a given F ⊆ G ⊆ H , either reports F = min<F ′|F ′ ⊆ G or returns a set F ′ ⊆ G with
F ′ < F .
Many SVM learning problems are AOP problems; algorithms developed for AOP problems can be
used for solving SVM problems. Every AOP has a combinatorial dimension associated with it; the
combinatorial dimension captures the notion of number of free variables for that AOP. An AOP can
be solved by a randomized algorithm by selecting subsets of size greater than the combinatorial
dimension of the problem [2].

For SVM, ∆ is the combinatorial dimension of the problem; by iterating over subsets of size greater
than ∆, the subsets chosen using random sampling, the problem can be solved efficiently [3, 4]; this
algorithm was called RandSVM by the authors. Apriori the value of ∆ is not known, but for linearly
separable classification problems the following holds: 2 ≤ ∆ ≤ d + 1. This follows from the fact
that the dual problem is the minimum distance between 2 non-overlapping convex hulls[5]. When
the problem is not linearly separable, the authors use the reduced convex hull formulation [5] to
come up with an estimate of the combinatorial dimension; this estimate is not very clear and much
higher than d1. The algorithm RandSVM2 iterates over subsets of size proportional to ∆2.

RandSVM is not practical because of the following reasons: the sample size is too large in case of
high dimensional datasets, the dimension of feature space is usually unknown when using kernels,
and the reduced convex hull method used to calculate the combinatorial dimension, when the data is
not separable in the feature space, isn’t really useful as the number obtained is very large.

This work overcomes the above problems using ideas from random projections[6, 7] and random-
ized algorithms[8, 9, 2, 10],. As mentioned by the authors of RandSVM, the biggest bottleneck
in their algorithm is the value of ∆ as it is too large. The main contribution is, using ideas from
random projections, the conjecture that if RandSVM is solved using ∆ equal to O(log n), then the
solution obtained is close to optimal with high probability(Theorem 3), in particular for almost
separable datasets. Almost separable datasets are those which become linearly separable when a
small number of properly chosen data points are deleted from them. The second contribution is an
algorithm which, using ideas from randomized algorithms for Linear Programming(LP), solves the
SVM problem by using samples of size linear in ∆. This work also shows that the theory can be
applied to non-linear kernels.

2 A NEW RANDOMIZED ALGORITHM FOR CLASSIFICATION

This section uses results from random projections, and randomized algorithms for linear program-
ming, to develop a new algorithm for learning large scale SVM problems. In Section 2.1, we discuss
the case of linearly separable data and estimate the number of support vectors required such that the
margin is preserved with high probability, and show that this number is much smaller than the data
dimension d, using ideas from random projections. In Section 2.2, we look how the analysis applies
to almost separable data and present the main result of the paper(Theorem 2.2). The section ends
with a discussion on the application of the theory to non-linear kernels. In Section 2.3, we present
shows the randomized algorithm from SVM learning.

2.1 Linearly separable data

We start with determining the dimension k of the target space such that on performing a random pro-
jection to the space, the Euclidean distances and dot products are preserved. The appendix contains
a few results from random projections which will be used in this section.

1Details of this calculation are present in the supplementary material
2Presented in supplementary material

2

For a linearly separable dataset D = {(xi, yi), i = 1, . . . , n}, xi ∈ Rd, yi ∈ {+1,−1}, the C-SVM
formulation is the same as C-SVM-1 with ξi = 0, i = 1 . . . n. By dividing all the constraints by
||w||, the problem can be reformulated as follows:
C-SVM-2a:

Maximize(ŵ,b,l)l; Subject to : yi(ŵ · xi + b̂) ≥ l, i = 1 . . . n, ||ŵ|| = 1

where ŵ = w
||w|| , b̂ = b

||w|| , and l = 1
||w|| . l is the margin induced by the separating hyperplane,

that is, it is the distance between the 2 supporting hyperplanes, h1 : yi(w · xi + b) = 1 and
h2 : yi(w · xi + b) = −1.

The determination of k proceeds as follows. First, for any given value of k, we show the change in
the margin as a function of k, if the data points are projected onto the k dimensional subspace and
the problem solved. From this, we determine the value k(k << d) which will preserve margin with
a very high probability. In a k dimensional subspace, there are at the most k + 1 support vectors.
Using the idea of orthogonal extensions(definition appears later in this section), we prove that when
the problem is solved in the original space, using an estimate of k + 1 on the number of support
vectors, the margin is preserved with a very high probability.

Let w′ and x′
i, i = 1, . . . , n be the projection of ŵ and xi, i = 1, . . . , n respectively onto a k

dimensional subspace (as in Lemma 2, Appendix A). The classification problem in the projected
space with the dataset being D′ = {(x′

i, yi), i = 1, . . . , n}, x′
i ∈ Rk, yi ∈ {+1,−1} can be written

as follows:
C-SVM-2b:

Maximize(w′,b̂,l′)l
′; Subject to : yi(w

′ · x′
i + b̂) ≥ l′, i = 1 . . . n, ||w′|| ≤ 1

where l′ = l(1 − γ), γ is the distortion and 0 < γ < 1. The following lemma predicts, for a given
value of γ, the k such that the margin is preserved with a high probability upon projection. be solved
with the optimal margin obtained close to the optimal margin for the original problem is given by
the following lemma.

Theorem 1. Let L = max||xi|| and (w∗, b∗, l∗) be the optimal solution for C-SVM-2a. Let R be

a random d × k matrix as given in Lemma 2(Appendix A). Let w̃ = RT w∗

√
k

and x′
i = RT xi√

k
, i =

1, . . . , n and k ≥ 8
γ2 (1 + (1+L2)

2l∗
)2 log 4n

δ
, 0 < γ < 1, 0 < δ < 1, then the following bound holds

on the optimal margin lP obtained by solving the problem C-SVM-2b:

P (lP ≥ l∗(1 − γ)) ≥ 1 − δ

Proof. From Corollary 1 of Lemma 2(Appendix A), we have

w∗ · xi −
ε

2
(1 + L2) ≤ w̃ · x′

i ≤ w∗ · xi +
ε

2
(1 + L2)

which holds with probability at least 1 − 4e−ε2 k
8 , for some ε > 0. Consider some example xi with

yi = 1. Then the following holds with probability at least 1 − 2e−ε2 k
8

w̃ · x′
i + b∗ ≥ w∗ · xi −

ε

2
(1 + L2) + b∗ ≥ l∗ − ε

2
(1 + L2)

Dividing the above by ||w̃||, we have ew·x′

i+b∗

|| ew|| ≥ l∗− ε
2 (1+L2)

|| ew|| . Note that from Lemma
1(Appendix A), we have (1 − ε)||w∗|| ≤ ||w̃|| ≤ (1 + ε)||w∗||, with probability
at least 1 − 2e−ε2 k

8 . Since ||w∗|| = 1, we have
√

1 − ε ≤ ||w̃|| ≤
√

1 + ε.
Hence we have

w̃ · x′
i + b∗

||w̃|| ≥ l∗ − ε
2 (1 + L2)√
1 + ε

≥ (l∗ − ε

2
(1 + L2))(

√
1 − ε) = l∗(1 − ε

2l∗
(1 + L2)(

√
1 − ε))

≥ l∗(
√

1 − ε − ε

2l∗
(1 + L2)) = l∗(1 − ε(1 +

1 + L2

2l∗
))

3

This holds with probability at least 1 − 4e−ε2 k
8 . A similar result can be derived for a point xj for

which yj = −1. The above analysis guarantees that by projecting onto a k dimensional space, there
exists at least one hyperplane (ew

|| ew|| ,
b∗

|| ew||), which guarantees a margin of l∗(1 − γ) where

γ ≤ ε(1 +
1 + L2

2l∗
) (1)

with probability at least 1 − n4e−ε2 k
8 . The margin obtained by solving the problem C-SVM-2b, lP

can only be better than this. So the value of k is given by:

n4e
− γ2

(1+ 1+L2

2l∗
)2

k
8 ≤ δ ⇒ k ≥ 8(1 + (1+L2)

2l∗
)2

γ2
log

4n

δ
(2)

As seen above, by randomly projecting the points onto a k dimensional subspace, the margin is
preserved with a high probability. This result is similar to the results obtained in work on random
projections[7]. But there are fundamental differences between the method proposed in this paper
and the previous methods: No random projection is actually done here, and no black box access
to the data distribution is required. We use Theorem 1 to determine an estimate on the number of
support vectors such that margin is preserved with a high probability, when the problem is solved
in the original space. This is given in Theorem 2 and is the main contribution of this section. The
theorem is based on the following fact: in a k dimensional space, the number of support vectors
is upper bounded by k + 1. We show that this k + 1 can be used as an estimate of the number of
support vectors in the original space such that the solution obtained preserves the margin with a high
probability. We start with the following definition.

Definition An orthogonal extension of a k − 1-dimensional flat(a k − 1 dimensional flat
is a k − 1-dimensional affine space) hp = (wp, b), where wp = (w1, . . . , wk), in a subspace Sk

of dimension k to a d − 1-dimensional hyperplane h = (w̃, b) in d-dimensional space, is defined
as follows. Let R ∈ Rd×d be a random projection matrix as in Lemma 2((Appendix A)). Let
R̂ ∈ Rd×k be a another random projection matrix which consists of only the the first k columns of
R. Let x̂i = RT xi and x′

i = R̂T

√
k
xi as follows: Let wp = (w1, . . . , wk) be the optimal hyperplane

classifier with margin lP for the points x′
1, . . . , x

′
n in the k dimensional subspace. Now define w̃

to be all 0’s in the last d − k coordinates and identical to wp in the first k coordinates, that is,
w̃ = (w1, . . . , wk, 0, . . . , 0). Orthogonal extensions have the following key property. If (wp, b) is a
separator with margin lp for the projected points, then its orthogonal extension (w̃, b) is a separator
with margin lp for the original points,that is,
if, yi(wp · x′

i + b) ≥ l, i = 1, . . . , n then yi(w̃ · x̂i + b) ≥ l, i = 1, . . . , n

An important point to note, which will be required when extending orthogonal extensions to non-
linear kernels, is that dot products between the points are preserved upon doing orthogonal projec-
tions, that is, x′T

i x′
j = x̂i

T x̂j .

Let L, l∗, γ, δ and n be as defined in Theorem 1. The following is the main result of this section.

Theorem 2. Given k ≥ 8
γ2 (1 + (1+L2)

2l∗
)2 log 4n

δ
and n training points with maximum norm L in d

dimensional space and separable by a hyperplane with margin l∗, there exists a subset of k′ training
points x1′ . . . xk′ where k′ ≤ k and a hyperplane h satisfying the following conditions:

1. h has margin at least l∗(1 − γ) with probability at least 1 − δ

2. x1′ . . . xk′ are the only training points which lie either on h1 or on h2

Proof. Let w∗, b∗ denote the normal to a separating hyperplane with margin l∗, that is, yi(w
∗ · xi +

b∗) ≥ l∗ for all xi and ||w∗|| = 1. Consider a random projection of x1, . . . , xn to a k dimensional
space and let w′, z1, . . . , zn be the projections of w∗, x1, . . . , xn, respectively, scaled by 1/

√
k. By

Theorem 1, yi(w
′ · zi + b∗) ≥ l∗(1− γ) holds for all zi with probability at least 1− δ. Let h be the

orthogonal extension of w′, b∗ to the full d dimensional space. Then h has margin at least l∗(1− γ),
as required. This shows the first part of the claim.

To prove the second part, consider the projected training points which lie on w′, b∗ (that is, they lie
on either of the two sandwiching hyperplanes). Barring degeneracies, there are at the most k such
points. Clearly, these will be the only points which lie on the orthogonal extension h, by definition.�

4

From the above analysis, it is seen that if k << d, then we can estimate that the number of support
vectors is k + 1, and the algorithm RandSVM would take on average O(k log n) iterations to solve
the problem [3, 4].

2.2 Almost separable data

In this section, we look at how the above analysis can be applied to almost separable datasets. We
call a dataset almost separable if by removing a fraction κ = O(log n

n
) of the points, the dataset

becomes linearly separable.

The C-SVM formulation when the data is not linearly separable(and almost separable) was given in
C-SVM-1. This problem can be reformulated as follows:

Minimize(w,b,ξ)

n∑

i=1

ξi

Subject to : yi(w · xi + b) ≥ l − ξi, ξi ≥ 0, i = 1 . . . n; ||w|| ≤ 1

l
This formulation is known as the Generalized Optimal Hyperplane formulation. Here l depends on
the value of C in the C-formulation. At optimality, the margin l∗ = l. The following theorem proves
a result for almost separable data similar to the one proved in Claim 1 for separable data.

Theorem 3. Given k ≥ 8
γ2 (1 + (1+L2)

2l∗
)2 log 4n

δ
+ κn, l∗ being the margin at optimality, l the

lower bound on l∗ as in the Generalized Optimal Hyperplane formulation and κ = O(log n
n

), there
exists a subset of k′ training points x1′ . . . xk′ , k′ ≤ k and a hyperplane h satisfying the following
conditions:

1. h has margin at least l(1 − γ) with probability at least 1 − δ

2. At the most
8(1+

(1+L2)
2l∗

)2

γ2 log 4n
δ

points lie on the planes h1 or on h2

3. x1′ , . . . , xk′ are the only points which define the hyperplane h, that is, they are the support
vectors of h.

Proof. Let the optimal solution for the generalized optimal hyperplane formulation be (w∗, b∗, ξ∗).

w∗ =
∑

i:αi>0

αiyixi, and l∗ = 1
||w∗|| as mentioned before. The set of support vectors can be split

into to 2 disjoint sets,SV1 = {xi : αi > 0 and ξ∗i = 0}(unbounded SVs), and SV2 = {xi : αi >
0 and ξ∗i > 0}(bounded SVs).

Now, consider removing the points in SV2 from the dataset. Then the dataset becomes linearly
separable with margin l∗. Using an analysis similar to Theorem 1, and the fact that l∗ ≥ l, we have
the proof for the first 2 conditions.

When all the points in SV2 are added back, at most all these points are added to the set of support
vectors and the margin does not change. The margin not changing is guaranteed by the fact that for
proving the conditions 1 and 2, we have assumed the worst possible margin, and any value lower
than this would violate the constraints of the problem. This proves condition 3. �

Hence the number of support vectors, such that the margin is preserved with high probability, can
be upper bounded by

k + 1 =
8

γ2
(1 +

(1 + L2)

2l∗
)2 log

4n

δ
+ κn + 1 =

8

γ2
(1 +

(1 + L2)

2l∗
)2 log

4n

δ
+ O(log n) (3)

Using a non-linear kernel Consider a mapping function Φ : Rd → Rd′

, d′ > d, which projects
a point xi ∈ Rd to a point zi ∈ Rd′

, where Rd′

is a Euclidean space. Let the points be projected
onto a random k dimensional subspace as before. Then, as in the case of linear kernels, the lemmata
in the appendix are applicable to these random projections[11]. The orthogonal extensions can be

5

considered as a projection from the k dimensional space to the Φ-space, such that the kernel function
values are preserved. Then it can be shown that Theorem 3 applies when using non-linear kernels
also.

2.3 A Randomized Algorithm

The reduction in the sample size from 6d2 to 6k2 is not enough to make RandSVM useful
in practice as 6k2 is still a large number. This section presents another randomized algorithm
which only requires that the sample size be greater than the number of support vectors. Hence
a sample size linear in k can be used in the algorithm. This algorithm was first proposed to
solve large scale LP problems[10]; it has been adapted for solving large scale SVM problems.

Algorithm 1 RandSVM-1(D,k,r)
Require: D - The dataset.
Require: k - The estimate of the number of support vectors.
Require: r - Sample size = ck, c > 0.

1: S = randomsubset(D, r); // Pick a random subset, S, of size r from the dataset D
2: SV = svmlearn(Φ, S); // SV - set of support vectors obtained by solving the problem S
3: V = {x ∈ D−S|violates(x, SV)} //violator - nonsampled point not satisfying KKT conditions
4: while |V | > 0 and |SV | < k do
5: R = randomsubset(V , r − |SV |); //Pick a random subset from the set of violators
6: SV = svmlearn(SV,R); //SV - set of support vectors obtained by solving the problem SV ∪R
7: V = {x ∈ D − (SV ∪ R)|violates(x, SV)}; //Determine violators from nonsampled set
8: end while
9: return SV

Proof of Convergence: Let SV be the current set of support vectors. Condition |SV | < k comes
from Theorem 3. Hence if the condition is violated, then the algorithm terminates solution which
is near optimal with a very high probability.
Now consider the case where |SV | < k and |V | > 0. Let xi be a violator(xi is a non-sampled
point such that yi(w

T xi + b) < 1). Solving the problem with the set of constraints as SV ∪ xi will
only result, since SVM is an instance of AOP, in the increase(decrease) of the objective function
of the primal(dual). As there are only finite number of basis for an AOP, the algorithm is bound to
terminate; also if termination happens with the number of violators equal to zero, then the solution
obtained is optimal.

Determination of k The value of k depends on the l which is not available in case of C-SVM and
nu-SVM. This can be handled only be solving for k as a function of ε where ε is the maximum al-
lowed distortion in the L2 norms of the vectors upon projection. If all the data points are normalized
to length 1, that is, L = 1, then Equation 1 becomes ε ≥ γ/(1 + 1+L2

2l∗
). Combining this with the

result from Theorem 2, the value of k can be determined in terms of ε as follows:

k ≥ 8

γ2
(1 +

(1 + L2)

2l∗
)2 log

4n

δ
+ O(log n) ≥ 16

γ2
(1 +

(1 + L2)

2l∗
)2 log

4n

δ
) ≥ 16

ε2
log

4n

δ
(4)

3 Experiments

This section discusses the performance of RandSVM in practice. The experiments were performed
on 3 synthetic and 1 real world dataset. RandSVM was used with LibSVM as the solver when using
a non-linear kernel; with SVMLight for a linear kernel. This choice was made because it was ob-
served that SVMLight is much faster than LibSVM when using a linear kernel, and vice-versa when
using non-linear kernels. RandSVM has been compared with state of the art SVM solvers: LibSVM
for non-linear kernels, and SVMPerf and SVMLin for linear kernels.
Synthetic datasets
The twonorm dataset is a 2 class problem where each class is drawn from a multivariate nor-
mal distribution with unit variance. Each vector is a 20 dimensional vector. One class has mean
(a, a, . . . , a), and the other class has mean (−a,−a, . . . ,−a), where a = 2/

√
(20).

The ringnorm dataset is a 2 class problem with each vector consisting of 20 dimensions. Each class

6

Category Kernel RandSVM LibSVM SVMPerf SVMLin
twonorm1 Gaussian 300 (94.98%) 8542 (96.48%) X X
twonorm2 Gaussian 437 (94.71%) - X X
ringnorm1 Gaussian 2637 (70.66%) 256 (70.31%) X X
ringnorm2 Gaussian 4982 (65.74%) 85124 (65.34%) X X

checkerboard1 Gaussian 406 (93.70%) 1568.93 (96.90%) X X
checkerboard2 Gaussian 814 (94.10%) - X X

CCAT∗ Linear 345 (94.37%) X 148 (94.38%) 429(95.1913%)
C11∗ Linear 449 (96.57%) X 120 (97.53%) 295 (97.71%)

Table 1: The table gives the execution time(in seconds) and the classification accuracy(in brackets).
The subscripts 1 and 2 indicate that the corresponding training set sizes are 105 and 106 respectively.
A ’-’ indicates that the solver did not finish execution even after a running for a day. A ’X’ indicates
that the experiment is not applicable for the corresponding solver. The ’∗’ indicates that the solver
used with RandSVM was SVMLight; otherwise it was LibSVM.

is drawn from a multivariate normal distribution. One class has mean 1, and covariance 4 times the
identity. The other class has mean (a, a, . . . , a), and unit covariance where a = 2/

√
(20).

The checkerboard dataset consists of vectors in a 2 dimensional space. The points are generated in
a 4 × 4 grid. Both the classes are generated from a multivariate uniform distribution; each point is
(x1 = U(0, 4), x2 = U(0, 4)). The points are labelled as follows - if(dx1e%2 6= dx2e%2), then the
point is labelled negative, else the point is labelled positive.
For each of the synthetic datasets, a training set of 10,00,000 points and a test set of 10,000 points
was generated. A smaller subset of 1,00,000 points was chosen from training set for parameter tun-
ing. From now on, the smaller training set will have a subscript of 1 and the larger training set will
have a subscript of 2, for example, ringnorm1 and ringnorm2.
Real world dataset
The RCV1 dataset consists of 804,414 documents, with each document consisting of 47,236 fea-
tures. Experiments were performed using 2 categories of the dataset - CCAT and C11. The dataset
was split into a training set of 7,00,000 documents and a test set of 104,414 documents.
Table 1 shows the kernels which were used for each of the datasets. The parameters used for the
gaussian kernels, σ and C, were obtained using grid search based tuning. The parameter for the
linear kernel, C, for CCAT and C11 were obtained from previous work done[12].
Selection of k for RandSVM: The values of ε and δ were fixed to 0.2 and 0.9 respectively, for all
the datasets. For linearly separable datasets, k was set to (16 log(4n/δ))/ε2. For the others, k was
set to (32 log(4n/δ))/ε2.
Discussion of results: Table 1, which has the timing and classification accuracy comparisons, shows
that RandSVM can scale up SVM solvers for very large datasets. Using just a small wrapper around
the solvers, RandSVM has scaled up SVMLight so that its performance is comparable to that of
state of the art solvers such as SVMPerf and SVMLin. Similarly LibSVM has been made capable of
quickly solving problems which it could not do before, even after executing for a day. Furthermore,
it is clear, from the experiments on the synthetic datasets, that the execution times taken for training
with 105 examples and 106 examples are not too far apart; this is a clear indication that the execution
time does not increase rapidly with the increase in the dataset size.
All the runs of RandSVM terminated with the condition |SV | < k being violated. Since the clas-
sification accuracies obtained by using RandSVM and the baseline solvers are very close, it is clear
that Theorem 2 holds in practice.

4 Further Research

It is clear from the experimental evaluations that randomized algorithms can be used to scale up
SVM solvers to large scale classification problems. If an estimate of the number of support vectors
is obtained then algorithm RandSVM-1 can be used for other SVM learning problems also, as they
are usually instances of an AOP. The future work would be to apply the work done here to such
problems.

7

A Some Results from Random Projections

Here we review a few lemmas from random projections [7]. The following lemma discusses how
the L2 norm of a vector is preserved when it is projected on a random subspace.
Lemma 1. Let R = (rij) be a random d × k matrix, such that each entry (rij) is chosen indepen-

dently according to N(0, 1). For any fixed vector u ∈ Rd, and any ε > 0, let u′ = RT u√
k

. Then

E[||u′||2] = ||u||2 and the following bound holds:

P ((1 − ε)||u||2 ≤ ||u′||2 ≤ (1 + ε)||u||2) ≥ 1 − 2e−(ε2−ε3) k
4

The following theorem and its corollary show the change in the Euclidean distance between 2 points
and the dot products when they are projected onto a lower dimensional space [7].

Lemma 2. Let u, v ∈ Rd. Let u′ = RT u√
k

and v′ = RT u√
k

be the projections of u and v to Rk via a

random matrix R whose entries are chosen independently from N(0, 1) or U(−1, 1). Then for any
ε > 0, the following bounds hold

P ((1 − ε)‖u − v‖2 ≤ ‖u′ − v′‖2) ≥ 1 − e−(ε2−ε3) k
4 , and

P (‖u′ − v′‖2 ≤ (1 + ε)‖u − v‖2) ≥ 1 − e−(ε2−ε3) k
4

A corollary of the above theorem shows how well the dot products are preserved upon projec-
tion(This is a slight modification of the corollary given in [7]).
Corollary 1. Let u, v be vectors in Rd s.t. ‖u‖ ≤ L1, ‖v‖ ≤ L2. Let R be a random matrix whose

entries are chosen independently from either N(0, 1) or U(−1, 1). Define u′ = RT u√
k

and v′ = RT v√
k

.

Then for any ε > 0, the following holds with probability at least 1 − 4e−ε2 k
8

u · v − ε

2
(L2

1 + L2
2) ≤ u′ · v′ ≤ u · v +

ε

2
(L2

1 + L2
2)

References

[1] V. Vapnik. The Nature of Statistical Learning Theory. Springer, New York, 1995.

[2] Bernd Gartner. A subexponential algorithm for abstract optimization problems. In Proceedings
33rd Symposium on Foundations of Computer Science, IEEE CS Press, 1992.

[3] Jose L. Balcazar, Yang Dai, and Osamu Watanabe. A random sampling technique for training
support vector machines. In ALT. Springer, 2001.

[4] Jose L. Balcazar, Yang Dai, and Osamu Watanabe. Provably fast training algorithms for sup-
port vector machines. In ICDM, pages 43–50, 2001.

[5] K. P. Bennett and E. J. Bredensteiner. Duality and geometry in SVM classifiers. In P. Langley,
editor, ICML, pages 57–64, San Francisco, California, 2000.

[6] W. Johnson and J. Lindenstauss. Extensions of lipschitz maps into a hilbert space. Contempo-
rary Mathematics, 1984.

[7] R. I. Arriaga and S. Vempala. An algorithmic theory of learning: Random concepts and random
projections. In Proceedings of the 40th Foundations of Computer Science, 1999.

[8] Kenneth L. Clarkson. Las vegas algorithms for linear and integer programming when the
dimension is small. Journal of the ACM, 42(2):488–499, 1995.

[9] B. Gartner and E. Welzl. A simple sampling lemma: analysis and application in geometric
optimization. In Proceedings of the 16th annual ACM symposium on Computational Geometry,
2000.

[10] M. Pellegrini. Randomizing combinatorial algorithms for linear programming when the di-
mension is moderately high. In SODA ’01, pages 101–108, Philadelphia, PA, USA, 2001.

[11] Maria-Florina Balcan, Avrim Blum, and Santosh Vempala. On kernels, margins and low-
dimensional mappings. In Proc. of the 15th Conf. Algorithmic Learning Theory, 2004.

[12] T. Joachims. Training linear svms in linear time. In Proceedings of the ACM Conference on
Knowledge Discovery and Data Mining (KDD), 2006.

8

