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Abstract

In bioinformatics it is often desirable to combine data from various measurement
sources and thus structured feature vectors are to be analyzed that possess different
intrinsic blocking characteristics (e.g., different patterns of missing values, obser-
vation noise levels, effective intrinsic dimensionalities). We propose a new ma-
chine learning tool, heterogeneous component analysis (HCA), for feature extrac-
tion in order to better understand the factors that underlie such complex structured
heterogeneous data. HCA is a linear block-wise sparse Bayesian PCA based not
only on a probabilistic model with block-wise residual variance terms but also on
a Bayesian treatment of a block-wise sparse factor-loading matrix. We study vari-
ous algorithms that implement our HCA concept extracting sparse heterogeneous
structure by obtaining common components for the blocks and specific compo-
nents within each block. Simulations on toy and bioinformatics data underline the
usefulness of the proposed structured matrix factorization concept.

1 Introduction

Microarray and other high-throughput measurement devices have been applied to examine speci-
mens such as cancer tissues of biological and/or clinical interest. The next step is to go towards
combinatorial studies in which tissues measured by two or more of such devices are simultaneously
analyzed. However, such combinatorial studies inevitably suffer from differences in experimental
conditions, or, even more complex, from different measurement technologies. Also, when concate-
nating a data set from different measurement sources, we often observe systematic missing parts
in a dataset (e.g., Fig 3A). Moreover, the noise levels may vary among different experiments. All
these induce aheterogeneous structure in data, that needs to be treated appropriately. Our work will
contribute exactly to this topic, by proposing a Bayesian method for feature subspace extraction,
called heterogeneous component analysis (HCA, sections 2 and 3). HCA performs a linear feature
extraction based on matrix factorization in order to obtain a sparse and structured representation.
After relating to previous methods (section 4), HCA is applied to toy data and more interestingly
to neuroblastoma data from different measurement techniques (section 5). We obtain interesting
factors that may be a first step towards better biological model building.

2 Formulation of the HCA problem

Let a matrixY = {yij}i=1:M,j=1:N denote a set ofN observations ofM -dimensional feature
vectors, whereyij ∈ R is thej-th observation of thei-th feature. In a heterogeneous situation, we
assume theM -dimensional feature vector is decomposed intoL disjoint blocks. LetI(l) denote a
set of feature indices included in thel-th block, so thatI(1) ∪ · · · ∪ I(L) = I andI(l) ∩ I(l′) = ∅ for
l 6= l′.



Figure 1: An illustration of a typical dataset and the result by the HCA. The observation matrix
Y consists of multiple samplesj = 1, . . . , N with high-dimensional featuresi ∈ I. The features
consist of multiple blocks, in this caseI(1) ∪ I(2) ∪ I(3) = I. There are many missing observations
whose distribution is highly structural depending on each block. HCA optimally factorizes the ma-
trix Y so that the factor-loading matrixU has structural sparseness; it includes some regions of zero
elements according to the block structure of the observed data. Each factor may or may not affect all
the features within a block, but each block does not necessarily affect all the factors. Therefore, the
rank of each factor-loading sub-matrix for each block (or any set of blocks) can be different from
the others. The resulting block-wise sparse matrix reflects a characteristicheterogeneity of features
over blocks.

We assume that the matrixY ∈ R
M×N is a noisy observation of a matrix of true valuesX ∈ R

M×N

whose rank isK(< min(M,N)) and has a factorized form:

Y = X + E,X = UV
T, (1)

whereE ∈ R
M×N , U ∈ R

M×K , andV ∈ R
N×K are matrices of residuals, factor-loadings, and

factors, respectively. The superscript T denotes the matrix transpose. There may be missing or
unmeasured observations denoted by a matrixW ∈ {0, 1}M×N , which indicates observationyij is
missing ifwij = 0 or exists otherwise (wij = 1).

Figure 1 illustrates the concept of HCA. In this example, the observed data matrix (left panel) is
made up by three blocks of features. They have block-wise variation in effective dimensionali-
ties, missing rates, observation noise levels, and so on, which we overall callheterogeneity. Such
heterogeneity affects the effective rank of the observation sub-matrix corresponding to each block,
and hence leads naturally to different ranks of factor-loading sub-matrix between blocks. In ad-
dition, there can exist block-wise patterns of missing values (shadowed rectangular regions in the
left panel); such a situation would occur, for example in bioinformatics, when some particular genes
have been measured in one assay (constituting a block) but not in another assay (constituting another
block).

To better understand the objective data based on the feature extraction by matrix factorization, we
assume a block-wise sparse factor-loading matrixU (right panel in Fig.1). Namely, the effective
rank of an observation sub-matrix corresponding to a block is reflected by the number of non-zero
components in the corresponding rows ofU . Assuming such a block-wise sparse structure can
decrease the model’s effective complexity, and will describe the data better and therefore lead to
better generalization ability, e.g., for missing value prediction.

3 A probabilistic model for HCA

Model For each element of the residual matrix,eij ≡ yij −
∑K

k=1 uikvjk, we assume a Gaussian
distribution with a common varianceσ2

l for every featurei in the same blockI(l):

ln p(eij |σ
2
l(i)) = −

1

2
σ−2

l(i)e
2
ij −

1

2
lnσ2

l(i) −
1

2
ln 2π, (2)



wherel(i) denotes the pre-determined block index to which thei-th feature belongs. For a factor
matrixV , we assume a Gaussian prior:

ln p(V ) =

N
∑

j=1

K
∑

k=1

(

−
1

2
v2

jk − ln 2π

)

. (3)

The above two assumptions are exactly the same as those for probabilistic PCA that is a special case
of HCA with a single active block. Another special case where each block contains only one active
feature is probabilistic factor analysis (FA). Namely, maximum likelihood (ML) estimation based
on the following log-likelihood includes both the PCA and the FA as special settings of the blocks.

ln p(Y ,V |U ,σ2) =
1

2

∑

ij

wij

(

−σ−2
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2
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l(i) − ln 2π
)
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)
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σ
2 = (σ2

l )l=1,...,L is a vector of variances of all blocks. Sincewij = 0 iff yij is missing, the
summation

∑

ij is actually taken for all observed values inY .

Another character of the HCA model is the block-wise sparse factor-loading matrix, which is im-
plemented by a prior forU , given by

ln p(U |T ) =
∑

ik

tik

(

−
1

2
u2

ik −
1

2
ln 2π

)

, (5)

whereT = {tik} is a block-wisemask matrix which defines the block-wise-sparse structure; if
tik = 0, thenuik = 0 with probability 1. Each column vector of the mask matrix takes one of
the possible block-wise mask patterns; a binary pattern vector whose dimensionality is the same as
the factor-loading vector, and whose values are consistent, either0 or 1, within each block. When
there areL blocks, each column vector ofT can take one of2L possible patterns including the zero
vector, and hence, the matrixT with K columns can take one of2LK possible patterns.

Parameter estimation We estimated the model parametersU andV by maximuma posteriori

(MAP) estimation, andσ by ML estimation; that is, the log-joint:L
def
= log P (Y ,U ,V |σ,T ) was

maximized w.r.t.U , V andσ.

Maximization of the log-jointL w.r.t U , V , andσ was performed by the conjugate gradient algo-
rithm that was available in the NETLAB toolbox [1]. The stationary condition w.r.t. the variance,

∂L
∂(σ2) = 0, was solved as a closed form ofU andV :

σ̃2
l (U ,V )

def
= mean(i,j|l)[e

2
ij ], (6)

wheremean(i,j|l)[.] is the average over all pairs(i, j) not missing in thel-th block. By redefining
the objective function with the closed form solution plugged in:

L̃(U ,V )
def
= L(U ,V , σ̃2(U ,V )), (7)

the conjugate gradient of̃L w.r.t. U andV led to faster and more stable optimization than the naive
maximization ofL w.r.t. U , V , andσ

2.

Model selection The mask matrixT was determined by maximization of the log-marginal likeli-
hood

∫

LdUdV which was calculated by Laplace approximation around the MAP estimator:

E(T )
def
= L −

1

2
lndetH, (8)

whereH
def
= ∂2

∂θ∂θTL is the Hessian of log-joint w.r.t. all elements(θ) in the parametersU andV .

The log Hessian term,lndetH, which works as a penalty term for maintaining non-zero elements in
the factor-loading matrix, was simplified in order for tractable calculation. Namely, independence
in the log-joint was assumed:

∂2L

∂uikvjk′

≈ 0,
∂2L

∂uikuik′

≈ 0, and
∂2L

∂vjkvjk′

≈ 0, (9)



which enabled a similar tractable computation to variational Bayes (VB) and was expected to pro-
duce satisfactory results.

To avoid searching through an exponentially large number of possibilities, we implemented a greedy
search that optimizes each of the column vectors in a step-wise manner, called HCA-greedy algo-
rithm. In each step of the HCA-greedy algorithm, factor-loading and factor vectors are estimated
based on2L possible settings of block-wise mask vectors, and we accept the one achieving the
maximum log-marginal. It terminated if zero vector is accepted as the best mask vector.

HCA with ARD The greedy search still searches2L possibilities per a factor, whose computation
increases exponentially as the number of blocksL increases. The automatic relevance determination
(ARD) is a hierarchical Bayesian approach for selecting relevant bases, which has been applied to
component analyzers since its first introduction to Bayesian PCA (BPCA) [2].

The prior forU is given by

ln p(U |α) =
1

2

L
∑

l=1

K
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}

, (10)

whereαlk is an ARD hyper-parameter for thel-th block of thek-th column ofU . α is a vector of
all elements ofαlk, l = 1, . . . , L, k = 1, . . . ,K. With this prior, the log-joint probability density
function becomes

ln p(Y ,U ,V |σ2,α) =
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According to this ARD approach,α is updated by the conjugate gradient-based optimization si-
multaneously withU andV . In each step of the optimization,α was updated until the stationary
condition of log-marginal w.r.t.α approximately held.

In HCA with ARD, called HCA-ARD, the initial values ofU andV were obtained by SVD. We also
examined an ARD-based procedure with another initial value setting, i.e., starting from the result
obtained by HCA-greedy, which is signified by HCA-g+ARD.

4 Related work

In this work, the ideas from both probabilistic modeling of linear component analyzers and sparse
matrix factorization frameworks are combined into an analytical tool for data with underlying het-
erogeneous structures.

The weighted low-rank matrix factorization (WLRMF) [3] has been proposed as a minimization
problem of the weighted error:

min
U ,V

=
∑

i,j

wij(yij −
∑

k

uikvjk)2, (12)

wherewij is a weight for the elementyij of the observation matrixY . The weight value is set
as wij = 0 if the correspondingyij is missing orwij > 0 otherwise. This objective func-
tion is equivalent to the (negative) log-likelihood of a probabilistic generative model based on
an assumption that each element of the residual matrix obeys a Gaussian distribution with vari-
ance1/wij . The WLRMF objective function is equivalent to our log-likelihood function (4) if the
weight is set at estimated inverse noise variance for each(i, j)-th element. Although the prior term,
ln p(V ) = − 1

2

∑

jk v2
jk +const., has been added to eq. (4), it just imposes a constraint on the linear

indeterminacy betweenU andV , and hence the resultant low-rank matrixUV
T is identical to that

by WLRMF.

Bayesian PCA [2] is also a matrix factorization procedure, which includes a characteristic prior
density of factor-loading vectors,ln p(U |α) = − 1

2

∑

ik αku2
ik +const.. It is an equivalent prior for
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Figure 2: Experimental results when applied to an artificial data matrix. (A) Missing pattern of the
observation matrix. Vertical and horizontal axes correspond to row (typically, genes) and column
(typically, samples) of the matrix (typically, gene expression matrix). Red cells signify missing
elements. (B) True factor-loading matrix. Horizontal axis denotes factors. Color and its intensity
denote element values and white cells denote zero elements. Panels from (C) to (H) show the
factor-loading matrices estimated by SVD, WLRMF, BPCA, HCA-greedy, HCA-ARD, and HCA-
g+ARD, respectively. The vertical line in panel (F) denotes the automatically determined number
of components. Panel (I) shows missing value prediction performance obtained by the three HCA
algorithms and other methods. The vertical and horizontal axes denote normalized root mean square
of test errors and dimensionalities of factors, respectively.

HCA-ARD (eq. (10)) if we assume only a single block. Although this prior term obviously a simple
L2 norm in the WLRMF, it also includes hyper parameterα which constitute different regularization
term and it leads to automatic model (intrinsic dimensionality) selection whenα is determined by
evidence criterion.

Component analyzers with sparse factor-loadings have recently been investigated as sparse PCA
(SPCA). In a well established context of SPCA studies (e.g. [4]), the tradeoff problem is solved
between the understandability (sparsity of factor-loadings) and the reproducibility of the covariance
matrix from the sparsified factor-loadings. In our HCA, the block-wise sparse factor-loading matrix
is useful not only for understandability but also for generalization ability. The latter merit comes
from the assumption that the observation includes uncertainty due to a small sample size, large
noises, and missing observations, which have not been considered sufficiently in SPCA.

5 Experiments

Experiment 1: an artificial dataset We prepared an artificial data set with an underlying block
structure. For this we generated a170 × 9 factor-loading matrixU that included a pre-determined
block structure (white vs. colored in Fig. 2(B)), and a100 × 9 factor matrixV by applying orthog-
onalization to the factors sampled from a standard Gaussian distribution. The observation matrixY

was produced byUV
T + E, where each element ofE was generated from a standard Gaussian.

Then, missing values were artificially introduced according to the pre-determined block structure
(Fig. 2(A)).

• Block 1 consisted of 20 features with randomly selected 10 % missing entries.

• Block 2 consisted of 50 features whose 50% columns were completely missing and the
remaining columns contained randomly selected 50% missing entries.

• Block 3 consisted of 100 features whose 20% columns were completely missing and the
remaining columns contained randomly selected 20% missing entries.

We applied three HCA algorithms: HCA-greedy, HCA-ARD, and HCA-g+ARD, and three existing
matrix factorization algorithms: SVD, WLRMF and BPCA.



SVD SVD calculated for a matrix whose missing values are imputed to zeros.

WLRMF[3] The weights were set 1 for the value-existing entries or 0 for the missing entries.

BPCA WLRMF with an ARD prior, called here BPCA, which is equivalent to HCA-ARD except
that all features are in a single active block (i.e., colored in Fig. 2(B)). We confirmed this
method exhibited almost the same performance as VB-EM-based algorithm [5].

The generalization ability was evaluated on the basis of the estimation performance for artificially
introduced missing values. The estimated factor-loading matrices and missing value estimation
accuracies are shown in Figure 2. Factor-loading matrices based on WLRMF and BPCA were
obviously almost the same with that by SVD, because these three methods did not assume any
sparsity in the factor-loading matrix.

The HCA-greedy algorithm terminated atK = 10. The factor-loading matrix estimated by HCA-
greedy showed an identical sparse structure to the one consisting of the top five factors in the true
factor-loadings. The sixth factor in the second block was not extracted, possibly because the second
block lacked information due to the large rate of missing values. This algorithm also happened to
extract one factor not included in the original factor-loadings, as the tenth one in the first block.

Although the HCA-ARD and HCA-g+ARD algorithms extracted good ones as the top three and four
factors, respectively, they failed to completely reconstruct the sparsity structure in other factors. As
shown in panel (I), however, such a poorly extracted structure did not increase the generalization
error, implying that the essential structure underlying the data was extracted well by the three HCA-
based algorithms.

Reconstruction of missing values was evaluated by normalized root mean square errors:NRMSE
def
=

√

mean[(y − ỹ)2]/var[y], wherey andỹ denote true and estimated values, respectively, the mean
is the average over all the missing entries and the variance is for all entries of the matrix.

Figure 2(I) shows the generalization ability of missing value predictions. SVD and WLRMF, which
incurred no penalty on extracting a large number of factors, exhibited the best results aroundK = 9,
but got worse with the increase in the number ofK due to over-fitting. HCA-g+ARD showed the
best performance atK = 9, which was better than that obtained by all the other methods. HCA-
greedy, HCA-ARD, and BPCA exhibited comparative performance atK = 9. At K = 2, . . . , 8, the
HCA algorithms performed better than BPCA. Namely, the sparse structure in the factor-loadings
tended to achieve better performance. HCA-ARD performed less effectively than the other two HCA
algorithms atK > 13, because of convergence to local solutions. This reason is supported by the fact
that HCA-g+ARD employing good initialization by HCA-greedy exhibited the best performance
among all the HCA algorithms. Accordingly, HCA showed a better generalization ability with a
smaller number of effective parameters than the existing methods.

Factor loading (HCA-greedy) Factor loading (WLRMF)

5 10 15 20

1000

2000

2448

Missing entries

100 200 300
Factors

5 10 15 20

1000

2000

2448

Factors

(A)

Samples

(B) (C)

array CGH

Microarray 1

Microarray 2 

Figure 3: Analysis of an NBL dataset. Vertical axes denote high-dimensional features. Features
measured by array CGH technology are sorted in the chromosomal order. Microarray features are
sorted by correlations to sample’s prognosis, dead or alive at the end of clinical followup. (A)
Missing pattern in the NBL dataset. White and red colors denote observed and missing entries in
the data matrix, respectively. (B) and (C) Factor-loading matrices estimated by the HCA-greedy and
WLRMF algorithms, respectively.



Experiment 2: a cross-analysis of neuroblastoma data We next applied our HCA to a neu-
roblastoma (NBL) dataset consisting of three data blocks taken by three kinds of high-throughput
genomic measurement technologies.

Array CGH Chromosomal changes of 2340 DNA segments (using 2340 probes) were measured
for each of 230 NBL tumors, by using the array comparative genomic hybridization (array
CGH) technology. Data for 1000 probes were arbitrarily selected from the whole dataset.

Microarray 1 Expression levels of 5340 genes were measured for 136 tumors from NBL patients.
We selected 1000 genes showing the largest variance over the 136 tumors.

Microarray 2 Gene expression levels in 25 out of 136 tumors were also measured by a small-sized
microarray technology harboring 448 probes.

The dataset Microarray 1 was the same one as used in the previous study [6], and the other two
datasets, array CGH and Microarray 2, were also provided by the same research group for this
study. As seen in Figure 3(A), the set of measured samples was quite different in the three experi-
ments, leading to apparent block-wise missing observations. We normalized the data matrix so that
the block-wise variances become unity. We further added 10% missing entries randomly into the
observed entries in order to evaluate missing value prediction performance.

When HCA-greedy was applied to this dataset, it terminated atK = 23, but we continued to obtain
further factors untilK = 80. Figure 3(B) shows the factor-loading matrix fromK = 0 to 23.
HCA-greedy extracted one factor showing the relationship between the three measurement devices
and three factors between aCGH and Microarray 1. The other factors accounted for either of aCGH
or Microarray 1. The first factor was strongly correlated with patient’s prognosis as clearly shown
by the color code in the parts of Microarrays 1 and 2. Note that the features in these two datasets
are aligned by correlations to the prognosis. This suggests that the dataset Microarray 2 did not
include factors other than the first one as those strongly related to the prognosis. On the other hand,
WLRMF extracted the identical first factor to HCA-greedy, but extracted much more factors con-
cerning Microarray 2, all of which may not be trustworthy because the number of samples observed
in Microarray 2 was as small as 25.
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Figure 4: Missing value prediction performance by the six algorithms. Vertical axis denotes nor-
malized root mean square of training errors (A) or test errors (B and C). Horizontal axis denotes the
number of factors (A and B) or the number of non-zero elements in the factor-loading matrices (C).
Each curve corresponds to one of the six algorithms.

We also applied SVD, WLRMF, BPCA and other two HCA algorithms to the NBL dataset. For
WLRMF, BPCA, HCA-ARD, and HCA-g+ARD, the initial numbers of factors were set atK =
5, 10, 20, . . . , 70, and80. Missing value prediction performance in terms of NRMSE was obtained
as a measurement value of generalization performance. Note that the original data matrix included
many missing values, but we evaluated the performance by using artificially introduced missing
values. Figure 4 shows the results.

Training errors almost monotonically decreased as the number of factors increased (Fig. 4A), in-
dicating the stability of the algorithms. The only exception was HCA-ARD whose error increased
from K = 30 to K = 40; this was due to local solution, because HCA-g+ARD employing the
same algorithm but starting from different initialization showed consistent improvements in its per-
formance.



Test errors did not show monotonic profiles except that HCA-greedy exhibited monotonically better
results for largerK values (Fig. 4B and C). SVD and WLRMF exhibited the best performance
at K = 22 andK = 60, respectively, and got worse as the number of factors increased due to
over-fitting.

Overall, the variants of our new HCA concept have shown good generalization performance as
measured on missing values, much similar to existing methods like WLRMF. We would like to
emphasize, however, that HCA yields a clearerfactor structure that is easier interpretable from the
biological point of view.

6 Conclusion

Complex structured data are ubiquitous in practice. For instance, when we should integrate data
derived from different measurement devices, it becomes critically important to combine the infor-
mation in each single source optimally — otherwise no gain can be achieved beyond the individual
analyses. Our Bayesian HCA model allows to take into account such structured feature vectors
that possess different intrinsic blocking characteristics. The new probabilistic structured matrix
factorization framework was applied to toy data and to neuroblastoma data collected by multiple
high-throughput measurement devices which had block-wise missing structures due to different
experimental designs. HCA achieved a block-wise sparse factor-loading matrix, representing the
information amount contained in each block of the dataset simultaneously. While HCA provided
a better or similar missing value prediction performance than existing methods such as BPCA or
WLRMF, the heterogeneous structure underlying the problem was clearly captured much better.
Furthermore the HCA factors derived are an interesting representation that may ultimately lead to a
better modeling of the neuroblastoma data (see section 5).
In the current HCA implementation, block structures were assumed to be known, as for the neu-
roblastoma data. Future work will go into a fully automatic estimate of structure from measured
multi-modal data and the respective model selection techniques to achieve this goal.
Clearly there is an increasing need for methods that are able to reliably extract factors from multi-
modal structured data with heterogeneous features. Our future effort will therefore strive towards
applications beyond bioinformatics and to design novel structured spatio-temporal decomposition
methods in applications like electroencephalography (EEG), image and audio analyses.
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