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Abstract

We present a simple variant of thek-d tree which automatically adapts to intrinsic
low dimensional structure in data.

1 Introduction

The curse of dimensionality has traditionally been the bane of nonparametric statistics, as reflected
for instance in convergence rates that are exponentially slow in dimension. An exciting way out of
this impasse is the recent realization by the machine learning and statistics communities that in many
real world problems the high dimensionality of the data is only superficial and does not represent
the true complexity of the problem. In such cases data of lowintrinsic dimension is embedded in a
space of highextrinsicdimension.

For example, consider the representation of human motion generated by a motion capture system.
Such systems typically track marks located on a tight-fitting body suit. The number of markers, say
N , is set sufficiently large in order to get dense coverage of the body. A posture is represented by a
(3N)-dimensional vector that gives the 3D location of each of theN marks. However, despite this
seeming high dimensionality, the number of degrees of freedom is relatively small, corresponding
to the dozen-or-so joint angles in the body. The marker positions are more or less deterministic
functions of these joint angles. Thus the data lie inR3N , but on (or very close to) amanifold[4] of
small dimension.

In the last few years, there has been an explosion of research investigating methods for learning in
the context of low-dimensional manifolds. Some of this work (for instance, [2]) exploits the low
intrinsic dimension to improve the convergence rate of supervised learning algorithms. Other work
(for instance, [12, 11, 1]) attempts to find an embedding of the data into a low-dimensional space,
thus finding an explicit mapping that reduces the dimensionality.

In this paper, we describe a new way of modeling data that resides inRD but has lower intrinsic
dimensiond < D. Unlike many manifold learning algorithms, we do not attempt to find a single
unified mapping fromRD to Rd. Instead, we hierarchically partitionRD into pieces in a manner
that is provably sensitive to low-dimensional structure. We call this spatial data structure arandom
projection tree(RP tree). It can be thought of as a variant of thek-d tree that is provably manifold-
adaptive.

k-d trees, RP trees, and vector quantization

Recall that ak-d tree [3] partitionsRD into hyperrectangular cells. It is built in a recursive manner,
splitting along one coordinate direction at a time. The succession of splits corresponds to a binary
tree whose leaves contain the individual cells inRD. These trees are among the most widely-used
methods for spatial partitioning in machine learning and computer vision.
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Figure 1: Left: A spatial partitioning ofR2 induced by ak-d tree with three levels. The dots are data
vectors; each circle represents the mean of the vectors in one cell. Right: Partitioning induced by an
RP tree.

On the left part of Figure 1 we illustrate ak-d tree for a set of vectors inR2. The leaves of the tree
partitionRD into cells; given a query pointq, the cell containingq is identified by traversing down
thek-d tree. Each cell can be thought of as having a representative vector: its mean, depicted in the
figure by a circle. The partitioning together with these mean vectors define avector quantization
(VQ) of R2: a mapping fromR2 to a finite set of representative vectors (called a “codebook” in the
context of lossy compression methods). A good property of this tree-structured vector quantization
is that a vector can be mapped efficiently to its representative. The design goal of VQ is to minimize
the error introduced by replacing vectors with their representative.

We quantify the VQ error by the averagesquaredEuclidean distance between a vector in the set and
the representative vector to which it is mapped. This error is closely related (in fact, proportional) to
theaverage diameterof cells, that is, the average squared distance between pairs of points in a cell.1

As the depth of thek-d tree increases the diameter of the cells decreases and so does the VQ error.
However, in high dimension, the rate of decrease of the average diameter can be very slow. In fact,
as we show in the supplementary material, there are data sets inRD for which ak-d tree requiresD
levels in order to halve the diameter. This slow rate of decrease of cell diameter is fine ifD = 2 as
in Figure 1, but it is disastrous ifD = 1000. Constructing1000 levels of the tree requires21000 data
points! This problem is a real one that has been observed empirically:k-d trees are prone to a curse
of dimensionality.

What if the data have low intrinsic dimension? In general,k-d trees will not be able to benefit from
this; in fact the bad example mentioned above has intrinsic dimensiond = 1. But we show that
a simple variant of thek-d tree does indeed decrease cell diameters much more quickly. Instead
of splitting along coordinate directions, we use randomly chosen unit vectors, and instead of split-
ting data exactly at the median, we use a more carefully chosen split point. We call the resulting
data structure arandom projection tree(Figure 1, right) and we show that it admits the following
theoretical guarantee (formal statement is in the next section).

Pick any cellC in the RP tree, and suppose the data inC have intrinsic dimension
d. Pick a descendant cell≥ d levels below; then with constant probability, this
descendant has average diameter at most half that ofC.2

There is no dependence at all on the extrinsic dimensionality (D) of the data. We thus have a
vector quantization construction method for which the diameter of the cells depends on the intrinsic
dimension, rather than the extrinsic dimension of the data.

A large part of the benefit of RP trees comes from the use of random unit directions, which is
rather like runningk-d trees with a preprocessing step in which the data are projected into a random

1This is in contrast to themax diameter, the maximum distance between two vectors in a cell.
2Here the probability is taken over the randomness in constructing the tree.
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low-dimensional subspace. In fact, a recent experimental study of nearest neighbor algorithms [8]
observes that a similar pre-processing step improves the performance of nearest neighbor schemes
based on spatial data structures. Our work provides a theoretical explanation for this improvement
and shows both theoretically and experimentally that this improvement is significant. The explana-
tion we provide is based on the assumption that the data has low intrinsic dimension.

Another spatial data structure based on random projections is thelocality sensitive hashingscheme
[6].

Manifold learning and near neighbor search

The fast rate of diameter decrease in random projection trees has many consequences beyond the
quality of vector quantization. In particular, the statistical theory of tree-based statistical estimators
— whether used for classification or regression — is centered around the rate of diameter decrease;
for details, see for instance Chapter 20 of [7]. Thus RP trees generically exhibit faster convergence
in all these contexts.

Another case of interest is nearest neighbor classification. If the diameter of cells is small, then it
is reasonable to classify a query point according to the majority label in its cell. It is not necessary
to find thenearest neighbor; after all, the only thing special about this point is that it happens to be
close to the query. The classical work of Cover and Hart [5] on the Bayes risk of nearest neighbor
methods applies equally to the majority vote in a small enough cell.

Figure 2:Distributions with low intrinsic dimension. The purple areas in these figures indicate re-
gions in which the density of the data is significant, while the complementary white areas indicate ar-
eas where data density is very low. The left figure depicts data concentrated near a one-dimensional
manifold. The ellipses represent mean+PCA approximations to subsets of the data. Our goal is to
partition data into small diameter regions so that the data in each region is well-approximated by its
mean+PCA. The right figure depicts a situation where the dimension of the data is variable. Some of
the data lies close to a one-dimensional manifold, some of the data spans two dimensions, and some
of the data (represented by the red dot) is concentrated around a single point (a zero-dimensional
manifold).

Finally, we return to our original motivation: modeling data which lie close to a low-dimensional
manifold. In the literature, the most common way to capture this manifold structure is to create a
graph in which nodes represent data points and edges connect pairs of nearby points. While this is
a natural representation, it does not scale well to very large datasets because the computation time
of closest neighbors grows like the square of the size of the data set. Our approach is fundamentally
different. Instead of a bottom-up strategy that starts with individual data points and links them
together to form a graph, we use a top-down strategy that starts with the whole data set and partitions
it, in a hierarchical manner, into regions of smaller and smaller diameter. Once these individual cells
are small enough, the data in them can be well-approximated by an affine subspace, for instance that
given by principal component analysis. In Figure 2 we show how data in two dimensions can be
approximated by such a set of local ellipses.

2 The RP tree algorithm

2.1 Spatial data structures

In what follows, we assume the data lie inRD, and we consider spatial data structures built by
recursive binary splits. They differ only in the nature of the split, which we define in a subroutine
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called CHOOSERULE. The core tree-building algorithm is called MAKETREE, and takes as input a
data setS ⊂ RD.

procedure MAKETREE(S)
if |S| < MinSize

then return (Leaf)

else


Rule← CHOOSERULE(S)
LeftTree← MAKETREE({x ∈ S : Rule(x) = true})
RightTree← MAKETREE({x ∈ S : Rule(x) = false})
return ([Rule, LeftTree, RightTree])

A natural way to try building a manifold-adaptive spatial data structure is to split each cell along its
principal component direction (for instance, see [9]).

procedure CHOOSERULE(S)
comment:PCA tree version

let u be the principal eigenvector of the covariance ofS
Rule(x) := x · u ≤ median({z· u : z ∈ S})
return (Rule)

This method will do a good job of adapting to low intrinsic dimension (details omitted). However,
it has two significant drawbacks in practice. First, estimating the principal eigenvector requires a
significant amount of data; recall that only about1/2k fraction of the data winds up at a cell at level
k of the tree. Second, when the extrinsic dimension is high, the amount of memory and computation
required to compute the dot product between the data vectors and the eigenvectors becomes the
dominant part of the computation. As each node in the tree is likely to have a different eigenvector
this severely limits the feasible tree depth. We now show that using random projections overcomes
these problems while maintaining the adaptivity to low intrinsic dimension.

2.2 Random projection trees

We shall see that the key benefits of PCA-based splits can be realized much more simply, by picking
randomdirections. To see this pictorially, consider data that is concentrated on a subspace, as in the
following figure. PCA will of course correctly identify this subspace, and a split along the principal
eigenvectoru will do a good job of reducing the diameter of the data. But a random directionv will
also have some component in the direction ofu, and splitting along the median ofv will not be all
that different from splitting alongu.

Figure 3:Intuition: a random direction is almost as good as the principal eigenvector.

Now only medians need to be estimated, not principal eigenvectors; this significantly reduces the
data requirements. Also, we can use the same random projection in different places in the tree; all
we need is to choose a large enough set of projections that, with high probability, there is be a good
projection direction for each node in the tree. In our experience setting the number of projections
equal to the depth of the tree is sufficient. Thus, for a tree of depthk, we use onlyk projection
vectorsv, as opposed to2k with a PCA tree. When preparing data to train a tree we can compute
the k projection values before building the tree. This also reduces the memory requirements for
the training set, as we can replace each high dimensional data point with itsk projection values
(typically we use10 ≤ k ≤ 20).

We now define RP trees formally. For a cell containing pointsS, let ∆(S) be the diameter ofS (the
distance between the two furthest points in the set), and∆A(S) the averagediameter, that is, the
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average distance between points ofS:

∆2
A(S) =

1
|S|2

∑
x,y∈S

‖x− y‖2 =
2
|S|

∑
x∈S

‖x−mean(S)‖2.

We use two different types of splits: if∆2(S) is less thanc∆2
A(S) (for some constantc) then we

use the hyperplane split discussed above. Otherwise, we splitS into two groups based on distance
from the mean.

procedure CHOOSERULE(S)
comment:RP tree version

if ∆2(S) ≤ c ·∆2
A(S)

then



choose a random unit directionv
sort projection values:a(x) = v · x ∀x ∈ S, generating the lista1 ≤ a2 ≤ · · · ≤ an

for i = 1, . . . , n− 1 compute{
µ1 = 1

i

∑i
j=1 aj , µ2 = 1

n−i

∑n
j=i+1 aj

ci =
∑i

j=1(aj − µ1)2 +
∑n

j=i+1(aj − µ2)2

find i that minimizesci and setθ = (ai + ai+1)/2
Rule(x) := v · x ≤ θ

else{Rule(x) := ‖x−mean(S)‖ ≤ median{‖z−mean(S)‖ : z ∈ S}
return (Rule)

In the first type of split, the data in a cell are projected onto a random direction and an appropriate
split point is chosen. This point is not necessarily the median (as ink-d trees), but rather the position
that maximally decreases average squared interpoint distance. In Figure 4.4, for instance, splitting
the bottom cell at the median would lead to a messy partition, whereas the RP tree split produces
two clean, connected clusters.

Figure 4:An illustration of the RP-Tree algorithm. 1: The full data set and the PCA ellipse that
approximates it. 2: The first level split. 3: The two PCA ellipses corresponding to the two cells after
the first split. 4: The two splits in the second level. 5: The four PCA ellipses for the cells at the third
level. 6: The four splits at the third level. As the cells get smaller, their individual PCAs reveal 1D
manifold structure. Note: the ellipses are for comparison only; the RP tree algorithm does not look
at them.

The second type of split, based on distance from the mean of the cell, is needed to deal with cases in
which the cell contains data at very different scales. In Figure 2, for instance, suppose that the vast
majority of data is concentrated at the singleton “0-dimensional” point. If only splits by projection
were allowed, then a large number of splits would be devoted to uselessly subdividing this point
mass. The second type of split separates it from the rest of the data in one go. For a more concrete
example, suppose that the data are image patches. A large fraction of them might be “empty”
background patches, in which case they’d fall near the center of the cell in a very tight cluster. The
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remaining image patches will be spread out over a much larger space. The effect of the split is then
to separate out these two clusters.

2.3 Theoretical foundations

In analyzing RP trees, we consider a statistical notion of dimension: we say setS haslocal covari-
ance dimension(d, ε) if (1− ε) fraction of the variance is concentrated in ad-dimensional subspace.
To make this precise, start by lettingσ2

1 ≥ σ2
2 ≥ · · · ≥ σ2

D denote the eigenvalues of the covariance
matrix; these are the variances in each of the eigenvector directions.

Definition 1 S ⊂ RD has local covariance dimension(d, ε) if the largestd eigenvalues of its
covariance matrix satisfyσ2

1 + · · ·+ σ2
d ≥ (1− ε) · (σ2

1 + · · ·+ σ2
D). (Note thatσ2

1 + · · ·+ σ2
D =

(1/2)∆2
A(S).)

Now, suppose an RP tree is built from a data setX ⊂ RD, not necessarily finite. Recall that there
are two different types of splits; let’s call them splitsby distanceand splitsby projection.

Theorem 2 There are constants0 < c1, c2, c3 < 1 with the following property. Suppose an RP
tree is built using data setX ⊂ RD. Consider any cellC for whichX ∩ C has local covariance
dimension(d, ε), whereε < c1. Pick a pointx ∈ S ∩ C at random, and letC ′ be the cell that
contains it at the next level down.

• If C is split by distance then

E [∆(S ∩ C ′)] ≤ c2∆(S ∩ C).

• If C is split by projection, then

E
[
∆2

A(S ∩ C ′)
]
≤

(
1− c3

d

)
∆2

A(S ∩ C).

In both cases, the expectation is over the randomization in splittingC and the choice of
x ∈ S ∩ C.

As a consequence, the expected average diameter of cells is halved everyO(d) levels. The proof of
this theorem is in the supplementary material, along with even stronger results for different notions
of dimension.

3 Experimental Results

3.1 A streaming version of the algorithm

The version of the RP algorithm we use in practice differs from the one above in three ways. First
of all, both splits operate on the projected data; for the second type of split (split by distance), data
that fall in an interval around the median are separated from data outside that interval. Second,
the tree is built in astreamingmanner: that is, the data arrive one at a time, and are processed (to
update the tree) and immediately discarded. This is managed by maintaining simple statistics at
each internal node of the tree and updating them appropriately as the data streams by (more details
in the supplementary matter). The resulting efficiency is crucial to the large-scale applications we
have in mind. Finally, instead of choosing a new random projection in each cell, a dictionary of a
few random projections is chosen at the outset. In each cell, every one of these projections is tried
out and the best one (that gives the largest decrease in∆2

A(S)) is retained. This last step has the
effect of boosting the probability of a good split.

3.2 Synthetic datasets

We start by considering two synthetic datasets that illustrate the shortcomings ofk-d trees. We
will see that RP trees adapt well to such cases. For the first dataset, pointsx1, . . . , xn ∈ RD are
generated by the following process: for each pointxi,
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Figure 5: Performance of RP trees withk-d trees on first synthetic dataset (left) and the second
synthetic dataset (right)

• choosepi uniformly at random from[0, 1], and

• select each coordinatexij independently fromN(pi, 1).

For the second dataset, we choosen points from twoD-dimensional Gaussians (with equal proba-
bility) with means at(−1,−1, . . . ,−1) and(1, 1, . . . , 1), and identity covariances.

We compare the performance of different trees according to the average VQ error they incur at
various levels. We consider four types of trees: (1)k-d trees in which the coordinate for a split is
chosen at random; (2)k-d trees in which at each split, the best coordinate is chosen (the one that
most improves VQ error); (3) RP trees; and (4) for reference, PCA trees.

Figure 5 shows the results for the two datasets (D= 1,000 andn = 10,000) averaged over 15 runs.
In both cases, RP trees outperform bothk-d tree variants and are close to the performance of PCA
trees without having to explicitly compute any principal components.

3.3 MNIST dataset

We next demonstrate RP trees on the all-familiar MNIST dataset of handwritten digits. This dataset
consists of28 × 28 grayscale images of the digits zero through nine, and is believed to have low
intrinsic dimension (for instance, see [10]). We restrict our attention to digit1 for this discussion.

Figure 6 (top) shows the first few levels of the RP tree for the images of digit1. Each node is
represented by the mean of the datapoints falling into that cell. Hence, the topmost node shows the
mean of the entire dataset; its left and the right children show the means of the points belonging to
their respective partitions, and so on. The bar underneath each node shows the fraction of points
going to the left and to the right, to give a sense of how balanced each split is. Alongside each mean,
we also show a histogram of the 20 largest eigenvalues of the covariance matrix, which reveal how
closely the data in the cell is concentrated near a low-dimensional subspace. The last bar in the
histogram is the variance unaccounted for.

Notice that most of the variance lies in a small number of directions, as might be expected. And
this rapidly becomes more pronounced as we go further down in the tree. Hence, very quickly, the
cell means become good representatives of the dataset: an experimental corroboration that RP trees
adapt to the low intrinsic dimension of the data.

This is also brought out in Figure 6 (bottom), where the images are shown projected onto the plane
defined by their top two principal components. (The outer ring of images correspond to the linear
combinations of the two eigenvectors at those locations in the plane.) The left image shows how the
data was split at the topmost level (dark versus light). Observe that this random cut is actually quite
close to what the PCA split would have been, corroborating our earlier intuition (recall Figure 3).
The right image shows the same thing, but for the first two levels of the tree: data is shown in four
colors corresponding to the four different cells.
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Figure 6: Top: Three levels of the RP tree for MNIST digit 1. Bottom: Images projected onto the
first two principal components. Colors represent different cells in the RP tree, after just one split
(left) or after two levels of the tree (right).
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