
Optimistic Linear Programming gives Logarithmic
Regret for Irreducible MDPs

Ambuj Tewari
Computer Science Division

Univeristy of California, Berkeley
Berkeley, CA 94720, USA

ambuj@cs.berkeley.edu

Peter L. Bartlett
Computer Science Division and Department of Statistics

University of California, Berkeley
Berkeley, CA 94720, USA

bartlett@cs.berkeley.edu

Abstract

We present an algorithm called Optimistic Linear Programming (OLP) for learn-
ing to optimize average reward in an irreducible but otherwise unknown Markov
decision process (MDP). OLP uses its experience so far to estimate the MDP. It
chooses actions by optimistically maximizing estimated future rewards over a set
of next-state transition probabilities that are close to the estimates, a computation
that corresponds to solving linear programs. We show that the total expected re-
ward obtained by OLP up to time T is within C(P) log T of the reward obtained
by the optimal policy, where C(P) is an explicit, MDP-dependent constant. OLP
is closely related to an algorithm proposed by Burnetas and Katehakis with four
key differences: OLP is simpler, it does not require knowledge of the supports
of transition probabilities, the proof of the regret bound is simpler, but our regret
bound is a constant factor larger than the regret of their algorithm. OLP is also
similar in flavor to an algorithm recently proposed by Auer and Ortner. But OLP
is simpler and its regret bound has a better dependence on the size of the MDP.

1 Introduction

Decision making under uncertainty is one of the principal concerns of Artificial Intelligence and
Machine Learning. Assuming that the decision maker or agent is able to perfectly observe its own
state, uncertain systems are often modeled as Markov decision processes (MDPs). Given complete
knowledge of the parameters of an MDP, there are standard algorithms to compute optimal policies,
i.e., rules of behavior such that some performance criterion is maximized. A frequent criticism of
these algorithms is that they assume an explicit description of the MDP which is seldom available.
The parameters constituting the description are themselves estimated by simulation or experiment
and are thus not known with complete reliability. Taking this into account brings us to the well
known exploration vs. exploitation trade-off. On one hand, we would like to explore the system as
well as we can to obtain reliable knowledge about the system parameters. On the other hand, if we
keep exploring and never exploit the knowledge accumulated, we will not behave optimally.

Given a policy π, how do we measure its ability to handle this trade-off? Suppose the agent gets a
numerical reward at each time step and we measure performance by the accumulated reward over
time. Then, a meaningful quantity to evaluate the policy π is its regret over time. To understand
what regret means, consider an omniscient agent who knows all parameters of the MDP accurately
and behaves optimally. Let VT be the expected reward obtained by this agent up to time T . Let V π

T
denote the corresponding quantity for π. Then the regret Rπ

T = VT − V π
T measures how much π is

hurt due to its incomplete knowledge of the MDP up to time T . If we can show that the regret Rπ
T

grows slowly with time T , for all MDPs in a sufficiently big class, then we can safely conclude that
π is making a judicious trade-off between exploration and exploitation. It is rather remarkable that

1

for this notion of regret, logarithmic bounds have been proved in the literature [1,2]. This means that
there are policies π with Rπ

T = O(log T). Thus the per-step regret Rπ
T /T goes to zero very quickly.

Burnetas and Katehakis [1] proved that for any policy π (satisfying certain reasonable assumptions)
Rπ

T ≥ CB(P) log T where they identified the constant CB(P). This constant depends on the tran-
sition function P of the MDP1. They also gave an algorithm (we call it BKA) that achieves this rate
and is therefore optimal in a very strong sense. However, besides assuming that the MDP is irre-
ducible (see Assumption 1 below) they assumed that the support sets of the transition distributions
pi(a) are known for all state-action pairs. In this paper, we not only get rid of this assumption but
our optimistic linear programming (OLP) algorithm is also computationally simpler. At each step,
OLP considers certain parameters in the vicinity of the estimates. Like BKA, OLP makes optimistic
choices among these. But now, making these choices only involves solving linear programs (LPs)
to maximize linear functions over L1 balls. BKA instead required solving non-linear (though con-
vex) programs due to the use of KL-divergence. Another benefit of using the L1 distance is that
it greatly simplifies a significant part of the proof. The price we pay for these advantages is that
the regret of OLP is C(P) log T asymptotically, for a constant C(P) ≥ CB(P). We should note
here that a number of algorithms in the literature have been inspired by the “optimism in the face of
uncertainty” principle [3]–[7].

The algorithm of Auer and Ortner (we refer to it as AOA) is another logarithmic regret algorithm for
irreducible2 MDPs. AOA does not solve an optimization problem at every time step but only when
a confidence interval is halved. But then the optimization problem they solve is more complicated
because they find a policy to use in the next few time steps by optimizing over a set of MDPs. The
regret of AOA is CA(P) log T where

CA(P) = c
|S|5|A|Tw(P)κ(P)2

∆∗(P)2
, (1)

for some universal constant c. Here |S|, |A| denote the state and action space size, Tw(P) is the worst
case hitting time over deterministic policies (see Eqn. (12)) and ∆∗(P) is the difference between
the long term average return of the best policy and that of the next best policy. The constant κ(P) is
also defined in terms of hitting times. Under Auer and Ortner’s assumption of bounded rewards, we
can show that the constant for OLP satisfies

C(P) ≤ 2|S||A|T (P)2

Φ∗(P)
. (2)

Here T (P) is the hitting time of an optimal policy is therefore necessarily smaller than Tw(P). We
get rid of the dependence on κ(P) while replacing Tw(P) with T (P)2. Most importantly, we signif-
icantly improve the dependence on the state space size. The constant Φ∗(P) can roughly be thought
of as the minimum (over states) difference between the quality of the best and the second best ac-
tion (see Eqn. (9)). The constants ∆∗(P) and Φ∗(P) are similar though not directly comparable.
Nevertheless, note that C(P) depends inversely on Φ∗(P) not Φ∗(P)2.

2 Preliminaries

Consider an MDP (S,A, R, P) where S is the set of states, A = ∪i∈SA(i) is the set of actions
(A(i) being the actions available in state i), R = {r(i, a)}i∈S,a∈A(i) are the rewards and P =
{pi,j(a)}i,j∈S,a∈A(i) are the transition probabilities. For simplicity of analysis, we assume that
the rewards are known to us beforehand. We do not assume that we know the support sets of the
distributions pi(a).

The history σt up to time t is a sequence i0, k0, . . . , it−1, kt−1, it such that ks ∈ A(is) for all s < t.
A policy π is a sequence {πt} of probability distributions on A given σt such that πt(A(st)|σt) = 1
where st denotes the random variable representing the state at time t. The set of all policies is
denoted by Π. A deterministic policy is simply a function µ : S → A such that µ(i) ∈ A(i).
Denote the set of deterministic policies by ΠD. If D is a subset of A, let Π(D) denote the set of

1Notation for MDP parameters is defined in Section 2 below.
2Auer & Ortner prove claims for unichain MDPs but their usage seems non-standard. The MDPs they call

unichain are called irreducible in standard textbooks (for example, see [9, p. 348])

2

policies that take actions in D. Probability and expectation under a policy π, transition function P

and starting state i0 will be denoted by Pπ,P
i0

and Eπ,P
i0

respectively. Given history σt, let Nt(i),
Nt(i, a) and Nt(i, a, j) denote the number of occurrences of the state i, the pair (i, a) and the triplet
(i, a, j) respectively in σt.

We make the following irreducibility assumption regarding the MDP.
Assumption 1. For all µ ∈ ΠD, the transition matrix Pµ = (pi,j(µ(i)))i,j∈S is irreducible (i.e. it
is possible to reach any state from any other state).

Consider the rewards accumulated by the policy π before time T ,

V π
T (i0, P) := Eπ,P

i0
[
T−1∑
t=0

r(st, at)] ,

where at is the random variable representing the action taken by π at time t. Let VT (i0, P) be the
maximum possible sum of expected rewards before time T ,

VT (i0, P) := sup
π∈Π

V π
T (i0, P) .

The regret of a policy π at time T is a measure of how well the expected rewards of π compare with
the above quantity,

Rπ
T (i0, P) := VT (i0, P)− V π

T (i0, P) .

Define the long term average reward of a policy π as

λπ(i0, P) := lim inf
T→∞

V π
T (i0, P)

T
.

Under assumption 1, the above limit exists and is independent of the starting state i0. Given a
restricted set D ⊆ A of actions, the gain or the best long term average performance is

λ(P,D) := sup
π∈Π(D)

λπ(i0, P) .

As a shorthand, define λ∗(P) := λ(P,A).

2.1 Optimality Equations

A restricted problem (P,D) is obtained from the original MDP by choosing subsets D(i) ⊆ A(i)
and setting D = ∪i∈SD(i). The transition and reward functions of the restricted problems are
simply the restrictions of P and r to D. Assumption 1 implies that there is a bias vector h(P,D) =
{h(i;P,D)}i∈S such that the gain λ(P,D) and bias h(P,D) are the unique solutions to the average
reward optimality equations:

∀i ∈ S, λ(P,D) + h(i;P,D) = max
a∈D(i)

[r(i, a) + 〈pi(a), h(P,D)〉] . (3)

We will use h∗(P) to denote h(P,A). Also, denote the infinity norm ‖h∗(P)‖∞ by H∗(P). Note
that if h∗(P) is a solution to the optimality equations and e is the vector of ones, then h∗(P) + ce
is also a solution for any scalar c. We can therefore assume ∃i∗ ∈ S, h∗(i∗;P) = 0 without any loss
of generality.

It will be convenient to have a way to denote the quantity inside the ‘max’ that appears in the
optimality equations. Accordingly, define

L(i, a, p, h) := r(i, a) + 〈p, h〉 ,
L∗(i;P,D) := max

a∈D(i)
L(i, a, pi(a), h(P,D)) .

To measure the degree of suboptimality of actions available at a state, define
φ∗(i, a;P) = L∗(i;P,A)− L(i, a, pi(a), h∗(P)) .

Note that the optimal actions are precisely those for which the above quantity is zero.
O(i;P,D) := {a ∈ D(i) : φ∗(i, a;P) = 0} ,

O(P,D) := Πi∈SO(i;P,D) .

Any policy in O(P,D) is an optimal policy, i.e.,
∀µ ∈ O(P,D), λµ(P) = λ(P,D) .

3

2.2 Critical pairs

From now on, ∆+ will denote the probability simplex of dimension determined by context. For a
suboptimal action a /∈ O(i;P,A), the following set contains probability distributions q such that if
pi(a) is changed to q, the quality of action a comes within ε of an optimal action. Thus, q makes a
look almost optimal:

MakeOpt(i, a;P, ε) := {q ∈ ∆+ : L(i, a, q, h∗(P)) ≥ L∗(i;P,A)− ε} . (4)
Those suboptimal state-action pairs for which MakeOpt is never empty, no matter how small ε is,
play a crucial role in determining the regret. We call these critical state-action pairs,

Crit(P) := {(i, a) : a /∈ O(i;P,A) ∧ (∀ε > 0, MakeOpt(i, a;P, ε) 6= ∅)} . (5)
Define the function,

Ji,a(p;P, ε) := inf{‖p− q‖21 : q ∈ MakeOpt(i, a;P, ε)} . (6)
To make sense of this definition, consider p = pi(a). The above infimum is then the least distance
(in the L1 sense) one has to move away from pi(a) to make the suboptimal action a look ε-optimal.
Taking the limit of this as ε decreases gives us a quantity that also plays a crucial role in determining
the regret,

K(i, a;P) := lim
ε→0

Ji,a(pi(a);P, ε) . (7)

Intuitively, if K(i, a;P) is small, it is easy to confuse a suboptimal action with an optimal one and
so it should be difficult to achieve small regret. The constant that multiplies log T in the regret bound
of our algorithm OLP (see Algorithm 1 and Theorem 4 below) is the following:

C(P) :=
∑

(i,a)∈Crit(P)

2φ∗(i, a;P)
K(i, a;P)

. (8)

This definition might look a bit hard to interpret, so we give an upper bound on C(P) just in terms
of the infinity norm H∗(P) of the bias and Φ∗(P). This latter quantity is defined below to be the
minimum degree of suboptimality of a critical action.
Proposition 2. Suppose A(i) = A for all i ∈ S. Define

Φ∗(P) := min
(i,a)∈Crit(P)

φ∗(i, a;P) . (9)

Then, for any P ,

C(P) ≤ 2|S||A|H∗(P)2

Φ∗(P)
.

See the appendix for a proof.

2.3 Hitting times

It turns out that we can bound the infinity norm of the bias in terms of the hitting time of an optimal
policy. For any policy µ define its hitting time to be the worst case expected time to reach one state
from another:

Tµ(P) := max
i6=j

Eµ,P
j [min{t > 0 : st = i}] . (10)

The following constant is the minimum hitting time among optimal policies:
T (P) := min

µ∈O(P,D)
Tµ(P) . (11)

The following constant is defined just for comparison with results in [2]. It is the worst case hitting
time over all policies:

Tw(P) := max
µ∈ΠD

Tµ(P) . (12)

We can now bound C(P) just in terms of the hitting time T (P) and φ∗(P).
Proposition 3. Suppose A(i) = A for all i ∈ S and that r(i, a) ∈ [0, 1] for all i ∈ S, a ∈ A. Then
for any P ,

C(P) ≤ 2|S||A|T (P)2

Φ∗(P)
.

See the appendix for a proof.

4

3 The optimistic LP algorithm and its regret bound

Algorithm 1 Optimistic Linear Programming
1: for t = 0, 1, 2, . . . do
2: st ← current state
3:
4: . Compute solution for “empirical MDP” excluding “undersampled” actions
5: ∀i, j ∈ S, a ∈ A(i), p̂t

i,j(a)← 1+Nt(i,a,j)
|A(i)|+Nt(i,a)

6: ∀i ∈ S, Dt(i)← {a ∈ A(i) : Nt(i, a) ≥ log2 Nt(i)}
7: ĥt, λ̂t ← solution of the optimality equations (3) with P = P̂ t,D = Dt

8:
9: . Compute indices of all actions for the current state

10: ∀a ∈ A(st), Ut(st, a)← supq∈∆+{r(st, a) + 〈q, ĥt〉 : ‖p̂t
st

(a)− q‖1 ≤
√

2 log t
Nt(st,a)}

11:
12: . Optimal actions (for the current problem) that are about to become “undersampled”
13: Γ1

t ← {a ∈ O(st; P̂ t,Dt) : Nt(st, a) < log2(Nt(st) + 1)}
14:
15: . The index maximizing actions
16: Γ2

t ← arg maxa∈A(st) Ut(st, a)
17:
18: if Γ1

t = O(st; P̂ t,Dt) then
19: at ← any action in Γ1

t
20: else
21: at ← any action in Γ2

t
22: end if
23: end for

Algorithm 1 is the Optimistic Linear Programming algorithm. It is inspired by the algorithm of
Burnetas and Katehakis [1] but uses L1 distance instead of KL-divergence. At each time step t,
the algorithm computes the empirical estimates for transition probabilities. It then forms a restricted
problem ignoring relatively undersampled actions. An action a ∈ A(i) is considered “undersam-
pled” if Nt(i, a) < log2 Nt(i). The solutions ĥt, λ̂t might be misleading due to estimation errors.
To avoid being misled by empirical samples we compute optimistic “indices” Ut(st, a) for all legal
actions a ∈ A(st) where st is the current state. The index for action a is computed by looking at
an L1-ball around the empirical estimate p̂t

st
(a) and choosing a probability distribution q that max-

imizes L(i, a, q, ĥt). Note that if the estimates were perfect, we would take an action maximizing
L(i, a, p̂t

st
(a), ĥt). Instead, we take an action that maximizes the index. There is one case where we

are forced not to take an index-maximizing action. It is when all the optimal actions of the current
problem are about to become undersampled at the next time step. In that case, we take one of these
actions (steps 18–22). Note that both steps 7 and 10 can be done by solving LPs. The LP for solving
optimality equations can be found in several textbooks (see, for example, [9, p. 391]). The LP in step
10 is even simpler: the L1 ball has only 2|S| vertices and so we can maximize over them efficiently.

Like the original Burnetas-Katehakis algorithm, the modified one also satisfies a logarithmic regret
bound as stated in the following theorem. Unlike the original algorithm, OLP does not need to know
the support sets of the transition distributions.
Theorem 4. Let β denote the policy implemented by Algorithm 1. Then we have, for all i0 ∈ S and
for all P satisfying Assumption 1,

lim sup
T→∞

Rβ
T (i0, P)
log T

≤ C(P) ,

where C(P) is the MDP-dependent constant defined in (8).

Proof. From Proposition 1 in [1], it follows that

Rβ
T (i0, P) =

∑
i∈S

∑
a/∈O(i;P,A)

Eβ,P
i0

[NT (i, a)]φ∗(i, a;P) + O(1) . (13)

5

Define the event
At := {‖ĥt − h∗(P)‖∞ ≤ ε ∧ O(P̂ t,Dt) ⊆ O(P)} . (14)

Define,

N1
T (i, a; ε) :=

T−1∑
t=0

1 [(st, at) = (i, a) ∧At ∧ Ut(i, a) ≥ L∗(i;P,A)− 2ε] ,

N2
T (i, a; ε) :=

T−1∑
t=0

1 [(st, at) = (i, a) ∧At ∧ Ut(i, a) < L∗(i;P,A)− 2ε] ,

N3
T (ε) :=

T−1∑
t=0

1
[
Āt

]
,

where Āt denotes the complement of At. For all ε > 0,

NT (i, a) ≤ N1
T (i, a; ε) + N2

T (i, a; ε) + N3
T (ε) . (15)

The result then follows by combining (13) and (15) with the following three propositions and then
letting ε→ 0 sufficiently slowly.

Proposition 5. For all P and i0 ∈ S, we have

lim
ε→0

lim sup
T→∞

∑
i∈S

∑
a/∈O(i;P,A)

Eβ,P
i0

[N1
T (i, a; ε)]

log T
φ∗(i, a;P) ≤ C(P) .

Proposition 6. For all P , i0, i ∈ S, a /∈ O(i;P,A) and ε sufficiently small, we have

Eβ,P
i0

[N2
T (i, a; ε)] = o(log T) .

Proposition 7. For all P satisfying Assumption 1, i0 ∈ S and ε > 0, we have

Eβ,P
i0

[N3
T (ε)] = o(log T) .

4 Proofs of auxiliary propositions

We prove Propositions 5 and 6. The proof of Proposition 7 is almost the same as that of Proposition 5
in [1] and therefore omitted (for details, see Chapter 6 in the first author’s thesis [8]). The proof of
Proposition 6 is considerably simpler (because of the use of L1 distance rather than KL-divergence)
than the analogous Proposition 4 in [1].

Proof of Proposition 5. There are two cases depending on whether (i, a) ∈ Crit(P) or not. If
(i, a) /∈ Crit(P), there is an ε0 > 0 such that MakeOpt(i, a;P, ε0) = ∅. On the event At (recall the
definition given in (14)), we have |〈q, ĥt〉 − 〈q, h∗(P)〉| ≤ ε for any q ∈ ∆+. Therefore,

Ut(i, a) ≤ sup
q∈∆+

{r(i, a) + 〈q, ĥt〉}

≤ sup
q∈∆+

{r(i, a) + 〈q, h∗(P)〉}+ ε

< L∗(i;P,A)− ε0 + ε [∵ MakeOpt(i, a;P, ε0) = ∅]
< L∗(i;P,A)− 2ε provided that 3ε < ε0

Therefore for ε < ε0/3, N1
T (i, a; ε) = 0.

Now suppose (i, a) ∈ Crit(P). The event Ut(i, a) ≥ L∗(i;P,A)− 2ε is equivalent to

∃q ∈ ∆+ s.t.
(
‖p̂t

i(a)− q‖21 ≤
2 log t

Nt(i, a)

)
∧
(
r(i, a) + 〈q, ĥt〉 ≥ L∗(i;P,A)− 2ε

)
.

On the event At, we have |〈q, ĥt〉 − 〈q, h∗(P)〉| ≤ ε and thus the above implies

∃q ∈ ∆+ s.t.
(
‖p̂t

i(a)− q‖21 ≤
2 log t

Nt(i, a)

)
∧ (r(i, a) + 〈q, h∗(P)〉 ≥ L∗(i;P,A)− 3ε) .

6

Recalling the definition (6) of Ji,a(p;P, ε), we see that this implies

Ji,a(p̂t
i(a);P, 3ε) ≤ 2 log t

Nt(i, a)
.

We therefore have,

N1
T (i, a; ε) ≤

T−1∑
t=0

1
[
(st, at) = (i, a) ∧ Ji,a(p̂t

i(a);P, 3ε) ≤ 2 log t

Nt(i, a)

]

≤
T−1∑
t=0

1
[
(st, at) = (i, a) ∧ Ji,a(pi(a);P, 3ε) ≤ 2 log t

Nt(i, a)
+ δ

]
(16)

+
T−1∑
t=0

1
[
(st, at) = (i, a) ∧ Ji,a(pi(a);P, 3ε) > Ji,a(p̂t

i(a);P, 3ε) + δ
]

where δ > 0 is arbitrary. Each time the pair (i, a) occurs Nt(i, a) increases by 1, so the first count
is no more than

2 log T

Ji,a(pi(a);P, 3ε)− δ
. (17)

To control the expectation of the second sum, note that continuity of Ji,a in its first argument implies
that there is a function f such that f(δ) > 0 for δ > 0, f(δ)→ 0 as δ → 0 and Ji,a(pi(a);P, 3ε) >
Ji,a(p̂t

i(a);P, 3ε) + δ implies that ‖pi(a) − p̂t
i(a)‖1 > f(δ). By a Chernoff-type bound, we have,

for some constant C1,

Pβ,P
i0

[‖pi(a)− p̂t
i(a)‖1 > f(δ) |Nt(i, a) = m] ≤ C1 exp(−mf(δ)2) .

and so the expectation of the second sum is no more than

Eβ,P
i0

[
T−1∑
t=0

C1 exp(−Nt(i, a)f(δ)2)] ≤
∞∑

m=1

C1 exp(−mf(δ)2) =
C1

1− exp(−f(δ)2)
. (18)

Combining the bounds (17) and (18) and plugging them into (16), we get

Eβ,P
i0

[N1
T (i, a; ε)] ≤ 2 log T

Ji,a(pi(a);P, 3ε)− δ
+

C1

1− exp(−f(δ)2)
.

Letting δ → 0 sufficiently slowly, we get that for all ε > 0,

Eβ,P
i0

[N1
T (i, a; ε)] ≤ 2 log T

Ji,a(pi(a);P, 3ε)
+ o(log T) .

Therefore,

lim
ε→0

lim sup
T→∞

Eβ,P
i0

[N1
T (i, a; ε)]

log T
≤ lim

ε→0

2
Ji,a(pi(a);P, 3ε)

=
2

K(i, a;P)
,

where the last equality follows from the definition (7) of K(i, a;P). The result now follows by
summing over (i, a) pairs in Crit(P).

Proof of Proposition 6. Define the event

A′t(i, a; ε) := {(st, at) = (i, a) ∧At ∧ Ut(i, a) < L∗(i;P,A)− 2ε} ,

so that we can write

N2
T (i, a; ε) =

T−1∑
t=0

1 [A′t(i, a; ε)] . (19)

Note that on A′t(i, a; ε), we have Γ1
t ⊆ O(i; P̂ t,Dt) ⊆ O(i;P,A). So, a /∈ O(i;P,A). But a was

taken at time t, so it must have been in Γ2
t which means it maximized the index. Therefore, for all

optimal actions a∗ ∈ O(i;P,A), we have, on the event A′t(i, a; ε),

Ut(i, a∗) ≤ Ut(i, a) < L∗(i;P,A)− 2ε .

7

Since L∗(i;P,A) = r(i, a∗) + 〈pi(a∗), h∗(P)〉, this implies

∀q ∈ ∆+, ‖q − p̂t
i(a

∗)‖1 ≤

√
2 log t

Nt(i, a∗)
⇒ 〈q, ĥt〉 < 〈pi(a∗), h∗(P)〉 − 2ε .

Moreover, on the event At, |〈q, ĥt〉 − 〈q, h∗(P)〉| ≤ ε. We therefore have, for any a∗ ∈ O(i;P,A),

A′t(i, a; ε) ⊆

{
∀q ∈ ∆+, ‖q − p̂t

i(a)‖1 ≤

√
2 log t

Nt(i, a)
⇒ 〈q, h∗(P)〉 < 〈pi(a), h∗(P)〉 − ε

}

⊆

{
∀q ∈ ∆+, ‖q − p̂t

i(a)‖1 ≤

√
2 log t

Nt(i, a)
⇒ ‖q − pi(a)‖1 >

ε

‖h∗(P)‖∞

}

⊆

{
‖p̂t

i(a)− pi(a)‖1 >
ε

h∗(P)
+

√
2 log t

Nt(i, a)

}

⊆
t⋃

m=1

{
Nt(i, a) = m ∧ ‖p̂t

i(a)− pi(a)‖1 >
ε

‖h∗(P)‖∞
+

√
2 log t

Nt(i, a)

}
Using a Chernoff-type bound, we have, for some constant C1,

Pβ,P
i0

[‖p̂t
i(a)− pi(a)‖1 > δ |Nt(i, a) = m] ≤ C1 exp(−mδ2/2) .

Using a union bound, we therefore have,

Pβ,P
i0

[A′t(i, a; ε)] ≤
t∑

m=1

C1 exp

−m

2

(
ε

‖h∗(P)‖∞
+

√
2 log t

m

)2


≤ C1

t

∞∑
m=1

exp
(
− mε2

2‖h∗(P)‖2∞
− ε
√

2m log t

‖h∗(P)‖∞

)
= o

(
1
t

)
.

Combining this with (19) proves the result.

References

[1] Burnetas, A.N. & Katehakis, M.N. (1997) Optimal adaptive policies for Markov decision processes. Math-
ematics of Operations Research 22(1):222–255

[2] Auer, P. & Ortner, R. (2007) Logarithmic online regret bounds for undiscounted reinforcement learning.
Advances in Neural Information Processing Systems 19. Cambridge, MA: MIT Press.

[3] Lai, T.L. & Robbins, H. (1985) Asymptotically efficient adaptive allocation rules. Advances in Applied
Mathematics 6(1):4–22.

[4] Brafman, R.I. & Tennenholtz, M. (2002) R-MAX - a general polynomial time algorithm for near-optimal
reinforcement learning. Journal of Machine Learning Research 3:213–231.

[5] Auer, P. (2002) Using confidence bounds for exploitation-exploration trade-offs. Journal of Machine Learn-
ing Research 3:397–422.

[6] Auer, P., Cesa-Bianchi, N. & and Fischer, P. (2002) Finite-time analysis of the multiarmed bandit problem.
Machine Learning 47(2-3):235-256.

[7] Strehl, A.L. & Littman, M. (2005) A theoretical analysis of model-based interval estimation. In Proceedings
of the Twenty-Second International Conference on Machine Learning, pp. 857-864. ACM Press.

[8] Tewari, A. (2007) Reinforcement Learning in Large or Unknown MDPs. PhD thesis, Department of Elec-
trical Engineering and Computer Sciences, University of California at Berkeley.

[9] Puterman, M.L. (1994) Markov Decision Processes: Discrete Stochastic Dynamic Programming. New
York: John Wiley and Sons.

8

