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Abstract

We show that under suitable assumptions (primarily linearization) a simple and
perspicuous online learning rule for Information Bottleneck optimization with
spiking neurons can be derived. This rule performs on common benchmark tasks
as well as a rather complex rule that has previously been proposed [1]. Further-
more, the transparency of this new learning rule makes a theoretical analysis of
its convergence properties feasible. A variation of this learning rule (with sign
changes) provides a theoretically founded method for performing Principal Com-
ponent Analysis (PCA) with spiking neurons. By applying this rule to an ensem-
ble of neurons, different principal components of the input can be extracted. In
addition, it is possible to preferentially extract those principal components from
incoming signalsX that are related or are not related to some additional target
signal Y. In a biological interpretation, this target signéf (also called rele-
vance variable) could represent proprioceptive feedback, input from other sensory
modalities, or top-down signals.

1 Introduction

The Information Bottleneck (IB) approach [2] allows the investigation of learning algorithms for
unsupervised and semi-supervised learning on the basis of clear optimality principles from infor-
mation theory. Two types of time-varying inpul§ and Y are considered. The learning goal is

to learn a transformation fronX' into another signal” that extracts only those components from

X that are related to the relevance sigial. In a more global biological interpretatioki might
represent for example some sensory input, &nithe output of the first processing stage forin

the cortex. In this articl@” will simply be the spike output of a neuron that receives the spike trains
X as inputs. The starting point for our analysis is the first learning rule for IB optimization in for
this setup, which has recently been proposed in [1], [3]. Unfortunately, this learning rule is compli-
cated, restricted to discrete time and no theoretical analysis of its behavior is feasible. Any online
learning rule for IB optimization has to make a number of simplifying assumptions, since true 1B
optimization can only be carried out in an offline setting. We show here, that with a slightly different
set of assumptions than those made in [1] and [3], one arrives at a drastically simpler and intuitively
perspicuous online learning rule for IB optimization with spiking neurons. The learning rule in [1]
was derived by maximizing the objective functiohy:

Lo =—I(X,Y)+ BI(Y,Yr) — yDk(P(Y)||P(Y)), @

The termDx 1 (P(Y)||P(Y)) denotes the Kullback-Leibler divergence between the distribuB¢¥ )
and a target distributio®(Y"). This term ensures that the weights remain bounded, it is shortly discussed in

[4].




wherel(.,.) denotes the mutual information between its argumentssand positive trade-off fac-

tor. The target signal was assumed to be given by a spike train. The learning rule from [1] (see
[3] for a detailed interpretation) is quite involved and requires numerous auxiliary definitions (hence
we cannot repeat it in this abstract). Furthermore, it can only be formulated in discrete time (steps
size At) for reasons we want to outline briefly: In the lindiit — 0 the essential contribution to the
learning rule, which stems from maximizing the mutual informatiol’, Y) between output and
target signal, vanishes. This difficulty is rooted in a rather technical assumption, made in appendix

A.4 in [3], concerning the expectation valﬁé at time stepk of the neural firing probability ,

given the information about the postsynaptic spikes and the target signal spikes up to the preceding
time stepk — 1 (see our detailed discussion in [&])The restriction to discrete time prevents the
application of powerful analytical methods like the Fokker-Planck equation, which requires contin-
uous time, for analyzing the dynamics of the learning rule.

In section 2 of this paper, we propose a much simpler learning rule for IB optimization with spiking
neurons, which can also be formulated in continuous time. In contrast to [3], we approximate the

critical termﬁk with a linear estimator, under the assumption thaandYr are positively corre-

lated. Further simplifications in comparison to [3] are achieved by considering a simpler neuron
model (the linear Poisson neuron, see [5]). However we show through computer simulation in [4]
that the resulting simple learning rule performs equally well for the more complex neuron model
with refractoriness from [1] - [5]. The learning rule presented here can be analyzed by the means of
the drift function of the corresponding Fokker-Planck equation. The theoretical results are outlined
in section 3, followed by the consideration of a concrete IB optimization task in section 4. A link
between the presented learning rule and Principal Component Analysis (PCA) is established in sec-
tion 5. A more detailed comparison of the learning rule presented here and the one of [3] as well as
results of extensive computer tests on common benchmark tasks can be found in [4].

2 Neuron model and learning rule for IB optimization

We consider a linear Poisson neuron wiffsynapses of weights = (wy, ..., wy) . Itis driven by
the inputX,, consisting ofV' spike trainsX;;(t) = Y=, d(t — t%), j € {1,..., N}, wheret! denotes
the time of the i'th spike at synapge The membrane potentialt) of the neuron at time is given
by the weighted sum of the presynaptic activiti€s) = (v (t),...,vn(t)):

N

u(t) = Y w(t) )
j=1

vi(t) = [ e(t —s)X;(s)ds.

The kernek(.) models the EPSP of a single spike (in simulatieft$ was chosen to be a decaying
exponential with a time constant ef, = 10 ms). The postsynaptic neuron spikes at timeith the
probability densityy(t):

Uo

with uo being a normalization constant. The postsynaptic spike train is denole@dps- > . 6(t —
t'), with the firing timest’;.
We now consider the IB task described in general in [2], which consists of maximizing the objective
function Lip, in the context of spiking neurons. As in [6], we introduce a further términto
the the objective function that reflects the higher metabolic costs for the neuron to maintain strong
synapses, a natural, simple choice belng= —\ wa. Thus the complete objective functidn
to maximize is:
N
L=ILp+Ls=—I(X,Y)+BI(Yr,Y) = A>_ w?. (3)

j=1

>The remedy, proposed in section 3.1 in [3], of replacing the mutual informd(i®nY7) in Lo by an
information ratel (Y, Yr)/At does not solve this problem, as the tef(, Yr) /At diverges in the continuous
time limit.



The objective function differs slightly from L, given in (1), which was optimized in [3]; this
change turned out to be advantageous for the PCA learning rule given in section 5, without signifi-
cantly changing the characteristics of the IB learning rule.

The online learning rule governing the change of the weightg) at timet is obtained by a gradient
ascent of the objective functiab:

iw (t) — aaiL
dt J n awj'
For small learning rates: and under the assumption that the presynaptic idpund the target
signalY7 are stationary processes, the following learning rule can be derived:
a o Yyt - T _
i) = s s (= ) —a0) + 5 (FIV() - FIVRl0)) ) - edus(). @)

where the operatdr.) denotes the low-pass filter with a time constaant(in simulationsre = 3s),

i. e. for a functionf:
t J—
70 == [ ew (<120 sejas ©

TC J -0

The operato’[Yr|(t) appearing in (4) is equal to the expectation value of the membrane potential
(u(t)) x|y, = Elu(t)[Yr], given the observationd’r(7)|r € R) of the relevance signali' is thus
closely linked to estimation and filtering theory. For a known joint distribution of the proceSses
andYr, the operato# could in principal be calculated exactly, but it is not clear how this quantity
can be estimated in an online process; thus we look for a simple approximation tmder the
above assumptiong; is time invariant and can be approximated by a Volterra series (for details see

f4]):
WOy, = FVO =3 [ [ walt =1t =) [ Vit ©)

n=0
In this article, we concentrate on the situation, where F can be well approximated by its linearization
I [Yr](t), corresponding to a linear estimator(@f(t)) yy,.. For /1 [Yr](t) we make the following
ansatz:

F[Yr|(t) = Fi[Yr](t) = ¢ up(t) = c/ k1(t —t1)Yp(t1)dty. @)
R

According to (7),F is approximated by a convolutionr(t) of the relevance signalr and a suit-

able prefactor. Assuming positively correlated andYr, 1(t) is chosen to be a non-anticipating

decaying exponentialkp(—t/79)O(t) with a time constant, (in simulationsry = 100 ms), where

O(t) is the Heaviside step function. This choice is motivated by the standard models for the impact

of neuromodulators (see [7]), thus such a kernel may be implemented in a realistic biological mech-

anism. It turned out that the choice gf was not critical, it could be varied over a decade ranging

from 10 ms to 100 ms. The prefactor appearing in (7) can be determined from the fact thats

the optimal linear estimator of the form given in (7), leading to:

_ {ur(®), u(t))
(ur(t), ur(t))
The quantityc can be estimated online in the following way:
%c(t) = (ur(t) —ur(t)) [(u(t) —u(t) — c(t)(ur(t) —ur(t))].

Using the above definitions, the resulting learning rule is given by (in vector notation):

Gult) =T D [ (u(t) = (1) + () 3(ur(t) ~ wr(e)] ~ adu?) ©

Equation (8) will be called the spike-based learning rule, as the postsynaptic spike {raexplic-
itly appears. An accompanying rate-base learning rule can also be derived:

Gu(t) = @z [ u(t) ) + e 3ur(0) ~ wr(0)] - o). ©




3 Analytical results

The learning rules (8) and (9) are stochastic differential equations for the weiglisven by the
processed’(.), v;(.) andur(.), of which the last two are assumed to be stationary with the means
(vj(t)) = vo and(ur(t)) = ur, respectively. The evolution of the solutiongt) to (8) and (9)

may be studied via a Master equation for the probability distribution of the weights) (see [8]).

For small learning rates, the stationary distributiop(w) sharply peaksat the roots of the drift
function A(w) of the corresponding Fokker-Planck equation (the detailed derivation is given in [4]).
Thus, fora <« 1, the temporal evolution of the learning rules (8) and (9) may be studied via the
deterministic differential equation:

d 1

— — A D) = — 0 1 U — U 1
il ) al/ouoz( C% + BCH) b — arb (20)

—~

I
] =

Wy, (11)
1

<.
Il

wherez is the total weight. The matri€' = —C° + 8C* (with the element€’;;) has two contribu-
tions. C? is the covariance matrix of the input and the matitk quantifies the covariance between
the activitiesv; and the traces;:

cy = (mlt), ()
(i), ur () {ur (), v;(t))

(ur(t),ur(t))
Now the critical pointav* of dynamics of (10) are investigated. These critical points, if asymptoti-
cally stable, determine the peaks of the stationary distribytiar) of the weightsw; we therefore
expect the solutions of the stochastic equations to fluctuate around these fixedgoitits and A

are much larger than one, the term containing the matfixan be neglected and equation (10) has
a unique stable fixed point*:

1

w' x CT
cl = (ui(t),ur(t)).

Under this assumption the maximal mutual information between the target dig(al and the
output of the neurorY (¢) is obtained by a weight vectasr = w* that is parallel to the covariance
vectorC™.

In general, the critical points of equation (10) depend on the eigenvalue spectrum of the symmetric
matrix C: If all eigenvalues are negative, the weight vecefodecays to the lower hard bouid In

case of at least one positive eigenvalue (which existsisfchosen large enough), there is a unique
stable fixed pointv*:

wt = —H p (12)
/\’LLQVOb

N
i=1

The vectorb appearing in (12) is the eigenvector @fcorresponding to the largest eigenvajue
Thus, a stationary unimodadistribution p(w) of the weightsw is predicted, which is centered
around the value*.

4 A concrete example for IB optimization

A special scenario of interest, that often appears in the literature (see for example [1], [9] and [10]),
is the following: The synapses, and subsequently the input spike trains Modifferent subgroups

%It can be shown that the diffusion term in the FP equation scaleélike, i. e. for small learning rates,
fluctuations tend to zero and the dynamics can be approximated by the differential equation (10) .
“Note thatp(w) denotes the distribution of the weight vector, not the distribution of a single weigh).
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Figure 1: A The basic setup for the Information Bottleneck optimizatid®=-D Numerical and
analytical results for the IB optimization task described in section 4. The temporal evolution of
the average weights; = 1/M ZjeGl w; of the four different synaptic subgrous are shown.

B The performance of the spike-based rule (8). The highest trajectory correspoiidsitetays
close to its analytical predicted fixed point value obtained from (12), which is visualized by the
upper dashed line. The trajectory just below belong&4pfor which the fixed point value is also
plotted as dashed line. The other two trajectotigsandw, decay and eventually fluctuate above
the predicted value of zerdC The performance of the rate-based rule (9); results are analogous to
the ones of the spike-based rul Simulation of the deterministic equation (10).

Gy, le{l1,...,N/M} of the same siz&//M < N. The spike trains\; and Xy, j # k, are statis-
tically independent if they belong to different subgroups; within a subgroup there is a homogeneous
covariance ternC?k = ¢, j # kfor j, k € Gy, which can be due either to spike-spike correlations

or correlations in rate modulations. The covariance between the target Bigaatl the spike trains

X is homogeneous among a subgroup.

As a numerical example, we consider in figure 1 a modification of the 1B task presented in figure 2 of
[1]. The N = 100 synapses formi/ = 4 subgroupss; = {25(1—1)+1,...,25l}, L € {1,...,4}.
Synapses ili7; receive Poisson spike trains of constant rate= 20 Hz, which are mutually spike-

spike correlated with a correlation-coefficiemtf 0.5. The same holds for the spike trains @.

Spike trains foiGG3 andG, are uncorrelated Poisson trains with a common rate modulation, which is
equal to low pass filtered white noise (cut-off frequehdyz) with meany, and standard deviation
(SD) o = vy /2. The rate modulations fa&; andG, are however independent (though identically
distributed). Two spike trains for different synapse subgroups are statistically independent. The
target signal’> was chosen to be the sum of two Poisson trains. The first is of constant, rael

has spike-spike correlations with; of coefficient 0.5; the second is a Poisson spike train with the
same rate modulation as the spike trainggfsuperimposed by additional white noise of SHz.
Furthermore, the target signal was turned off during random intérvalse resulting evolution of

the weights is shown in figure 1, illustrating the performance of the spike-based rule (8) as well as
of the rate-based rule (9). As expected, the weights pandG5 are potentiated asr has mutual
information with the corresponding part of the input. The synapse&s,oind G, are depressed.

The analytical result for the stable fixed point obtained from (12) is shown as dashed lines and

is in good agreement with the numerical results. Furthermore the trajectory of the sal(tjoto

SSpike-spike correlated Poisson spike trains were generated according to the method outlined in [9].
5These intervals of silence were modeled as random telegraph noise with a time constant of 200 ms and a
overall probability of silence of.5.



the deterministic equation (10) is plotted.

The presented concrete IB task was slightly changed from the one presented in [1], because for the
setting used here, the largest eigenvalwé C' and its corresponding eigenvectaran be calculated
analytically. The simulation results for the original setting in [1] can also be reproduced with the
simpler rules (8) and (9) (not shown).

5 Relevance-modulated PCA with spiking neurons

The presented learning rules (8) and (9) exhibit a close relation to Principal Component Analysis
(PCA). A learning rule which enables the linear Poisson neuron to extract principal components
from the inputX(.) can be derived by maximizing the following objective function:

N N
LPCA:*LIB*)\ZU}?:JFI(XaY)*ﬂ[(YTvy)*)\Zw]Zv (13)
=1

j=1

which just differs from (3) by a change of sign in front bfg. The resulting learning rule is in close
analogy to (8):

d Yt
= Em

The corresponding rate-based version can also be derived. Without the tragef the target sig-

nal, it can be seen that the solutidiit) of deterministic equation corresponding to (14) (which is of

the same form as (10) with the obvious sign changes) converges to an eigenvector of the covariance
matrix C°. Thus, fors = 0 we expect the learning rule (14) to perform PCA for small learning rates

a. The rule (14) without the relevance signal is comparable to other PCA rules, e. g. the covariance
rule (see [11]) for non-spiking neurons.

The side information given by the relevance sighal.) can be used to extract specific principal
components from the input, thus we call this paradigm relevance-modulated PCA. Before we con-
sider a concrete example for relevance-modulated PCA, we want to point out a further application
of the learning rule (14).

The target signal’r can also be used to extract different components from the input with different
neurons (see figure 2). Considerneurons receiving the same inpkit These neurons have the
outputsYi (.), ..., Y, (t), target signals}(.), ..., Y (¢t) and weight vectorsv!(¢), ..., w™(t),

the latter evolving according to (14). In order to prevent all weight vectors from converging towards
the same eigenvector 6f° (the principal component), the target sigivg! for neuroni is chosen to

be the sum of all output spike trains excépt

[(u(t) —u(t)) — c(t)Blur(t) — ur(t)] — arw(?). (14)

N
Yit)= > Y. (15)

J=1, j#i

If one weight vecton’(t) is already close to the eigenvectdrof C°, than by means of (15), the
basins of attraction o#* for the other weight vectors/(t), j # i are reduced (or even vanish,
depending on the value @. It is therefore less likely (or impossible) that they also convergé to
In practice, this setup is sufficiently robust, if only a small numbker] of different components is
to be extracted and if the differences between the eigenvaluesthese principal components are
not too big. For the PCA learning rule, the time constaptof the kernels; (see (7)) had to be
chosen smaller than for the IB tasks in order to obtain good performance; wegised0 ms in
simulations. This is in the range of time constants for IPSPs. Hence, the signatsild probably
be implemented via lateral inhibition.

The learning rule considered in [3] displayed a close relation to Independent Component Analysis
(ICA). Because of the linear neuron model used here and the linearization of further terms in the
derivation, the resulting learning rule (14) performs PCA instead of ICA.

The results of a numerical example are shown in figure 2. 7Rhe 3 for the regular PCA experi-

ment neurons receive the same inguand their weights change according to (14). The weights and
input spike trains are grouped into four subgrodfs . . . , G4, as for the IB optimization discussed

"Note that the inpuX’ may well exhibit a much larger number of principal components. However it is only
possible to extract a limited number of them by different neurons at the same time.
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Figure 2: A The basic setup for the PCA task: Thedifferent neurons receive the same inpat
and are expected to extract different principal components BfE.The temporal evolution of the
average subgroup weighis = 1/25 Zjegl w; for the groupss; (black solid line),G; (light gray
solid line) andG'; (dotted line).B-C Results for the relevance-modulated PCA task: neuron 1 (fig.
B) specializes ori7> and neuron 2 (figC) on subgroups. D-F Results for the regular PCA task:
neuron 1 (figD) specialize orG{, neuron 2 (figE) on G and neuron 3 (figF) on G5 .

in section 4. The only difference is that all groups (exceptdq) receive spike-spike correlated
Poisson spike trains with a correlation coefficient for the groGps G2, G3 of 0.5, 0.45, 0.4
respectively. Grouygr, receives uncorrelated Poisson spike trains. As can be seen in fifute 2

F, the different neurons specialize on different principal components corresponding to potentiated
synaptic subgroup&'y, G2 andGs5 respectively. Without the relevance signais(.), all neurons

tend to specialize on the principal component correspondiiig tthot shown).

As a concrete example for relevance-modulated PCA, we consider the above setup with slight mod-
ifications: Now we wanin = 2 neurons to extract the componeidts and G5 from the inputX,

and not the principal compone@ . This is achieved with an additional relevance sidrig) which

is the same for both neurons and has spike-spike correlationsGwitnd G5 of 0.45 and 0.4. We

add the termy/(Y,Y2) to the objective function (13), whergis a positive trade-off factor. The
resulting learning rule has exactly the same structure as (14), with an additional term ¥ifie to
The numerical results are presented in figuf®@ @ndC, showing that it is possible in this setup to
explicitly select the principle components that are extracted (or not extracted) by the neurons.

6 Discussion

We have introduced and analyzed a simple and perspicuous rule that enables spiking neurons to
perform IB optimization in an online manner. Our simulations show that this rule works as well
as the substantially more complex learning rule that had previously been proposed in [3]. It also
performs well for more realistic neuron models as indicated in [4]. We have shown that the con-
vergence properties of our simplified IB rule can be analyzed with the help of the Fokker-Planck
equation (alternatively one may also use the theoretical framework described in A.2 in [12] for its
analysis). The investigation of the weight vectors to which this rule converges reveals interesting
relationships to PCA. Apparently, very little is known about learning rules that enable spiking neu-
rons to extract multiple principal components from an input stream (a discussion of a basic learning
rule performing PCA is given in chapter 11.2.4 of [5]). We have demonstrated both analytically and
through simulations that a slight variation of our new learning rule performs PCA. Our derivation

of this rule within the 1B framework opens the door to new variations of PCA where preferentially
those components are extracted from a high dimensional input stream that are —or are not—related to
some external relevance variable. We expect that a further investigation of such methods will shed
light on the unknown principles of unsupervised and semi-supervised learning that might shape and
constantly retune the output of lower cortical areas to intermediate and higher cortical areas. The
learning rule that we have proposed might in principle be able to extract from high-dimensional



sensory input streams those components that are related to other sensory modalities or to internal
expectations and goals.

Quantitative biological data on the precise way in which relevance sigha{such as for example
dopamin) might reach neurons in the cortex and modulate their synaptic plasticity are still missing.
But it is fair to assume that these signals reach the synapse in a low-pass filtered form of the type
that we have assumed for our learning rules. From that perspective one can view the learning rules
that we have derived (in contrast to the rules proposed in [3]) as local learning rules.
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